RADIATION HAZARD STUDY

This radiation hazard study describes the R.F. radiation environment of the permanent fixed Ku-band uplink operated by Christian Ministries of the Vallley, Inc. This fixed earth station uplink is located at a lattitude of 26d-09m-54s North and a longitude of 98d-00m-55s West, in Weslaco, Texas.

This study is done to comply with the requirements of Section 1.1307(b) of the rules of the Federal Communications Commission. All calculations conform to the proceedures presented in OET Bulletin No. 65 for aperature antennas.

Transmit antenna: Prodelin 2.4 meter KU-band
Antenna Diameter $\mathrm{D}:=2.4 \cdot \mathrm{~m}$
Antenna Efficency $\quad \eta:=67 . \%$
Transmitter: 4 watt output flange SSPA, operated at 50% power
Transmit Power

$$
\begin{aligned}
& P:=4 \cdot \text { watt } \cdot 50 \cdot \% \\
& P=2 \cdot \text { watt }
\end{aligned}
$$

$$
\mathrm{mw}:=\frac{\mathrm{watt}}{1000}
$$

$$
\text { at } 14.0 \mathrm{GHz}
$$

at 14.5 GHz
Antenna Gain
Wavelength

$$
\begin{aligned}
& \mathrm{G}_{1}:=49.10 \\
& \lambda_{1}:=2.14285 \cdot \mathrm{~cm}
\end{aligned}
$$

$$
\mathrm{G}_{2}:=49.30
$$

$$
\lambda_{2}:=2.06896 \cdot \mathrm{~cm}
$$

Calculations for the Near Field (Fresnel Region)

Extent of the Near Field

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{n} 1}:=\frac{\mathrm{D}^{2}}{4 \cdot \lambda_{1}} & \mathrm{R}_{\mathrm{n} 2}:=\frac{\mathrm{D}^{2}}{4 \cdot \lambda_{2}} \\
\mathrm{R}_{\mathrm{n} 1}=67.2 \cdot \mathrm{~m} & \mathrm{R}_{\mathrm{n} 2}=69.6 \cdot \mathrm{~m}
\end{array}
$$

Maximum Near Field
Power Density

$$
\begin{aligned}
& S_{\mathrm{n}}:=\frac{16 \cdot \eta \cdot \mathrm{P}}{\pi \cdot \mathrm{D}^{2}} \\
& \mathrm{~S}_{\mathrm{n}}=0.118 \cdot \frac{\mathrm{mw}}{\mathrm{~cm}^{2}}
\end{aligned}
$$

at 14.0 GHz

Distance to Far Field

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{f} 1}:=\frac{0.6 \cdot \mathrm{D}^{2}}{\lambda_{1}} \\
& \mathrm{R}_{\mathrm{f} 1}=161.281 \cdot \mathrm{~m}
\end{aligned}
$$

Absolute Gain of Antenna

$$
G_{a 1}:=10^{\frac{\mathrm{G}_{1}}{10}}
$$

Maximum Far Field Power Density

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{f} 1}:=\frac{\mathrm{P} \cdot \mathrm{G}_{\mathrm{a} 1}}{4 \cdot \pi \cdot \mathrm{R}_{\mathrm{f} 1}^{2}} \\
& \mathrm{~S}_{\mathrm{f} 1}=0.05 \cdot \frac{\mathrm{mw}}{\mathrm{~cm}^{2}}
\end{aligned}
$$

at 14.5 GHz
$\mathrm{R}_{\mathrm{f} 2}:=\frac{0.6 \cdot \mathrm{D}^{2}}{\lambda_{2}}$
$\mathrm{R}_{\mathrm{f} 2}=167.04 \cdot \mathrm{~m}$

$$
G_{a 2}:=10^{\frac{\mathrm{G}_{2}}{10}}
$$

$$
\mathrm{S}_{\mathrm{f} 2}:=\frac{\mathrm{P} \cdot \mathrm{G}_{\mathrm{a} 2}}{4 \cdot \pi \cdot \mathrm{R}_{\mathrm{f} 2}^{2}}
$$

$$
\mathrm{S}_{\mathrm{f} 2}=0.049 \cdot \frac{\mathrm{mw}}{\mathrm{~cm}^{2}}
$$

Area of Reflector $\quad \mathrm{A}:=\pi \cdot\left(\frac{\mathrm{D}}{2}\right)^{2}$

$$
\mathrm{A}=4.524 \cdot \mathrm{~m}^{2}
$$

$\begin{aligned} & \text { Power Density at the } \\ & \text { Reflector Surface }\end{aligned} \quad \mathrm{S}_{\text {ref }}:=\left(2 \cdot \frac{\mathrm{P}}{\mathrm{A}}\right)$

$$
\mathrm{S}_{\mathrm{ref}}=0.088 \cdot \frac{\mathrm{mw}}{\mathrm{~cm}^{2}}
$$

Calculations between the Antenna and the Ground:

Power Density between Antenna and Ground

$$
\begin{aligned}
& S_{g a}:=\frac{\mathrm{P}}{\mathrm{~A}} \\
& \mathrm{~S}_{\mathrm{ga}}=0.044 \cdot \frac{\mathrm{mw}}{\mathrm{~cm}^{2}}
\end{aligned}
$$

Conclusions

The power densities in the Near Field, Far Field, Transition Zone, at the Surface of the Reflector, and between the Reflector and the Ground are all below the allowable limit. Nowhere do they exceed the level of $5 \mathrm{mw} / \mathrm{cm}^{2}$ as listed in OET Bulletin No. 65. Thus, this transmit earth terminal meets FCC requirements for human exposure to radio frequency energy.

