RF RADIATION HAZARD ANALYSIS Exhibit #B

Antenna Diameter, (D) = 1.2 meters / 3.9372 Feet

Antenna Surface Area (Sa) = 1.1310 sq meters

Subreflector Diameter (Ds) = 0.0000 centimeters

Ku Wavelength at 14.250 GHz (LAMBDA) = 0.02103807 meters

Power output of VPC Flange= 20.000 dB

Path Loss to OMT (IL) = 0.6 dB

Power at OMT, (P) = 87.10 Watts

Antenna Gain at 14.250GHz (G) = 43.30 dBi (2 port antenna gain)

Antenna Gain given in Power Ration, (Ges) = 2.14E+04 Antenna Aperture Efficiency (N) = 0.650

Region			Radition Level		Hazard Assessment	
Far Field, (Rf) =	41.068 meters /	134.75 Feet	8.786	mW/cm sq	Potential Hazard	
Near Field, (Wf) =	17.112 meters /	56.144 Feet	20.023	mW/cm sq	Potential Hazard	
Transition Region (Rt)			equal to or less than			
Ru <rt<rf< td=""><td></td><td></td><td>20.023</td><td>mW/cm sq</td><td>Potential Hazard</td></rt<rf<>			20.023	mW/cm sq	Potential Hazard	
Between Main Reflector			N/A (no subreflector)			
and Subreflector (Ws)						
Main Reflector Region (Wm)			15.402	mW/cm sq	Potential Hazard	
Power Density Between Reflector			7.701	mW/cm sq	Potential Hazard	
and Ground						
Far Field Off Axis (WF)			0.088	mW/cm sq	Meets ANSI Requirements	
Near Field Off Axis (WN	I)		0.200	mW/cm sq	Meets ANSI Requirements	

Conclusion: Based on the above analysis, harmful areas of Radiation do exist in the areas around the antenna and in the path of the antenna toward the satellite that it is pointed at. The Area occupied by the general public will not exceed the ANSI limit of 1mW cm sq. because the antenna is mounted on top of the truck, which is at least 8 feet above the ground, and safety increases with look angles used by the Satellites in the United States on Dom. Sat. arch. The areas on the ground and behind the antenna are 100 times less power (20dB) when at a min. of the dia. of the reflector. This is reflected in the Off Axis figures as seen above (WF) & (WN). The SNG will be marked with the standard radiation hazard warnings, and on the antenna itself. The warning signs will warn personnel to avoid the area around and in front of the reflector when the transmitter is operating. To ensure compliance with safety limits, the earth station transmitter will be turned off and marked to remain off whenever maintenance and repair personnel are required to work in the areas of potential hazard as defined in the above study. Additionally, the earth station personnel will be trained to ensure that the antenna path is clear at all times while the transmitter is in operation. The only access to the roof of the truck is a ladder that is not accessible by the general public.

Note: See Exhibit #Ba for how the above calculations were made.

Exhibit Ba Analysis on Non-Ionizing Radiation									
Antenna Diameter, (D) =	D: =	1.2 meters	D*3.281 =	3.937	Feet				
Antenna Surface Area, (Sa) =	Sa: = π	**4	Sa =	1.131	sq meters				
Subreflector Diameter, (Ds) =	Ds: =	0 cm	Ds*.3937	0.000	Inches				
Area of Subreflector, (As) =	As : = π	*	As=	0.000	sq meters				
Center Frequency, (Cf) =	Cf: =	14.250 GHz							
Wavelength at (Cf), (Lambda) =	Lambda =	0.0210380671 meters							
Tansmit Power at HPA or VPC Flange, (P1) =	P1= P2:=log(p	100.00 watts 1)*10	P2=	20.000	dB				
Path Loss from HPA or VPC to OMT, (IL) =	Loss: = P3:= P2-L0	0.6 oss	P3=	19.400	OMT Pwr in dB				
	P:= 1	0 — P3 — 10	P=	87.096	OMT Pwr in watts				
Antenna Gain at (Cf), (Gain) =	Gain: =	43.30 dBi							
Antenna Gain Converted to Power Ratio (Ges)=	Ges: = 1	0 <u>Gain</u> 10	Ges =	2.14E+04	Ratio				
Antenna Aperture Efficiency, (n) =	n: =	0.6500							
Far Field (Rf) =	Rf=	.60 * (D*D) Lambda	Rf = Rf*3.281=	41.068 134.745	meters feet				
Far Field (Rf) = Far Field Power Density (Wf) =	Rf= Wf= 4*		Rf*3.281=						
	Wf=	Lambda Ges*P	Rf*3.281=	134.745 8.786	feet mw sq cm				
	Wf=	Lambda Ges*P * 1	Rf*3.281=	134.745	feet				
Far Field Power Density (Wf) =	Wf= 4*	Lambda Ges*P π * .1 (D*D) 4*Lambda (D*D) (D*D)	Rf*3.281= Wf = Rn= Rf*3.281=	134.745 8.786 17.112	feet mw sq cm meters				
Far Field Power Density (Wf) = Near Field (Rn) =	Wf= 4*	Lambda Ges*P π * .1 (D*D) 4*Lambda (D*D) (D*D)	Rf*3.281= Wf = Rn= Rf*3.281=	134.745 8.786 17.112 56.144	feet mw sq cm meters feet				
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) =	Wf= 4* Rn=	Lambda Ses*P (Rf*Rf) * .1 (D*D) 4*Lambda 16*n*P * .1 (D*D) (D*D) * .1 (D*D) (D*D) * .1 (D*D)	Rf*3.281= Wf = Rn= Rf*3.281= Wn =	134.745 8.786 17.112 56.144 20.023	mw sq cm meters feet mw sq cm mw sq cm				
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) =	Wf= $\frac{4^*}{4^*}$ Rn= $\frac{1}{\pi}$ Rt =	Lambda	Rf*3.281= Wf = Rn= Rf*3.281= Wn =	134.745 8.786 17.112 56.144 20.023	mw sq cm mw sq cm mw sq cm mw sq cm				
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) = Pwr Density at Sub Reflector (Ws) =	Wf= 4* Rn= Wn= Rt =	Lambda Ses*P T * .1 (D*D) 4*Lambda 16*n*P * .1 (D*D) Wn*1 2*P * 1000 As 2*P * 1	Rf*3.281= Wf = Rn= Rf*3.281= Wn = Rt=	134.745 8.786 17.112 56.144 20.023 20.023	mw sq cm meters feet mw sq cm mw sq cm (Equal to or less than)				
Far Field Power Density (Wf) = Near Field (Rn) = Near Field Power Density (Wn) = Transition Region (Rt) = Pwr Density at Sub Reflector (Ws) = Main Reflector Region Pwr Density (Wm) = Pwr Density between main reflector and	Wf= 4* Rn= — Wn= π' Rt = Ws= Wm=	Lambda Ses*P T * .1 (Rf*Rf) * .1 (D*D) 4*Lambda 16*n*P * .1 (D*D) Wn*1 Sa 2*P * .1 Sa F .1 Sa	Rf*3.281= Wf = Rn= Rf*3.281= Wn = Rt= Ws =	134.745 8.786 17.112 56.144 20.023 20.023 N/A	mw sq cm meters feet mw sq cm mw sq cm (Equal to or less than) mw sq cm				