Radiation Hazard Analysis

Operator:				
Location Designation:	Front Range Ed	FCC Callsign:		
County:	Larmier	SES ID:		
Town:	Fort Collins		STA:	
State/Zip:	CO	80521		
Input Values	Value	Unit		
$D = Aperture \ Diameter$	7.30	Meters		
d = Subreflector Diameter	0.56	Meters		
G = Antenna Gain	64.6	dBi		
FCC Designation	Ка	Band		
F = Frequency	28.000	GHz		
P = Transmitter Power Watts:	150	Watts		
$R_{ua} = closest point to uncontrolled area$	50	meters		
Elevation angle at closest point R_{ua}	10	Degrees		
Height (AGL)	10.00	meters		
OET 65 Calculated Values	Formula	Value	Unit	
$OET 65 Calculated Values$ $\lambda = Wavelength$	$\frac{c}{F}$	Value 0.0107	Unit meters	
	<u>c</u>			
$\lambda = Wavelength$	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{\frac{G\lambda^2}{4\pi}}{\pi D^2/4}$	0.0107	meters	
λ = Wavelength G = Antenna Gain	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2	0.0107 2884031.503	meters (W) linear percentage	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2	0.0107 2884031.503 63%	meters (W) linear	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$	0.0107 2884031.503 63% 41.854	meters (W) linear percentage meters ²	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$ $\frac{D^2}{4\lambda}$	0.0107 2884031.503 63% 41.854 2463.009	meters (W) linear percentage meters ² cm ²	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector R_{nf} = Near-Field Region	$\frac{\frac{C}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ πR^2 πr^2 D^2	0.0107 2884031.503 63% 41.854 2463.009 1244.263	meters (W) linear percentage meters ² cm ² meters	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$ $\frac{D^2}{4\lambda}$ $>R_{nf}$	0.0107 2884031.503 63% 41.854 2463.009 1244.263 216	meters (W) linear percentage meters ² cm ² meters Meters AGL	
λ = Wavelength G = Antenna Gain η = Apperture Efficiency A = Area of reflector a = area of subreflector R_{nf} = Near-Field Region	$\frac{\frac{c}{F}}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$ $\frac{D^2}{4\lambda}$	0.0107 2884031.503 63% 41.854 2463.009 1244.263 216 1244.263	meters (W) linear percentage meters ² cm ² meters Meters AGL >meters	

Band	Frequency
L	1000-2000
S	2000-4000
С	4000-8000
X	8000-12500
Ки	12500-18000
K	18000-25500
Ka	26500-40000
0	40000-50000
V	50000-75000

					Exposure Limits	
	Radiation Analysis Zone	Formula	Level	Value	General Public	Occupational
					<1mW/cm2	<5mW/cm2
1	Power Subreflector	<u>4P</u> a	243.605	mW/cm2	>FCC MPE See Note 1	>FCC MPE See Note 2
2	Antenna Surface	$\frac{4P}{A}$	1.434	mW/cm2	>FCC MPE See Note 1	<fcc mpe<="" td=""></fcc>
3	Main Reflector Ground	$\frac{P}{A}$	0.358	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
4	S _{nf} =Near-Field Power Density	<u>4η P</u> A	0.901	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
5	$S_t = Max$ Transition Power Density	<u>≺</u> S _{nf}	0.901	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
6	$S_{ff} = Max Far field Power Density$	$\frac{PG}{4\pi R_{ff}}^2$	0.386	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
7	Off Access Level Near Field	S _{nf} - 20 dB	0.00901	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>

Notes

1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The antenna is marked with RF Radiation Hazard signage.

2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.

3. The field develops 10 meters above ground level at the minimum elevation angle which is not accessable to the general public.

Radiation Hazard Analysis

Operator: Location Designation:		FCC Callsign:		
County:	Larmier	SES ID:		
Town:	Fort Collins		STA:	
State/Zip:	CO 80521			
Input Values	Value	Unit		
$D = Aperture \ Diameter$	9.10	Meters		
d = Subreflector Diameter	0.56	Meters		
G = Antenna Gain	66.4	dBi		
FCC Designation	Ка	Band		
F = Frequency	28.000	GHz		
P = Transmitter Power Watts:	150	Watts		
$R_{ua} = closest point to uncontrolled area$	50	meters		
Elevation angle at closest point R_{ua}	10	Degrees		
Height (AGL)	12.00	meters		
OET 65 Calculated Values	Formula	Value	Unit	
$\lambda = Wavelength$	$\frac{c}{F}$	0.0107	meters	
λ = Wavelength G = Antenna Gain		0.0107 4365158.322	meters (W) linear	
	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$			
G = Antenna Gain	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{2}$	4365158.322	(W) linear percentage	
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$	4365158.322 61%	(W) linear	
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$	4365158.322 61% 65.039	(W) linear percentage meters ²	
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$ $\frac{D^2}{4\lambda}$	4365158.322 61% 65.039 2463.009	(W) linear percentage meters ² cm ²	
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$ $R_{nf} = Near-Field \ Region$	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$ $\frac{D^2}{2}$	4365158.322 61% 65.039 2463.009 1933.522	(W) linear percentage meters ² cm ² meters	
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$	$\frac{F}{10^{(G/10)}}$ $\frac{G\lambda^2/4\pi}{\pi D^2/4}$ $\frac{\pi R^2}{\pi r^2}$ $\frac{D^2}{4\lambda}$	4365158.322 61% 65.039 2463.009 1933.522 336	(W) linear percentage meters ² cm ² meters Meters AGL	,
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$ $A = Area \ of \ reflector$ $a = area \ of \ subreflector$ $R_{nf} = Near-Field \ Region$	F $10^{(G/10)}$ $G\lambda^{2}/4\pi$ $\pi D^{2}/4$ πR^{2} πr^{2} D^{2} 4λ R_{nf}	4365158.322 61% 65.039 2463.009 1933.522 336 1933.522	(W) linear percentage meters ² cm ² meters Meters AGL >meters	

Band	Frequency
L	1000-2000
S	2000-4000
С	4000-8000
X	8000-12500
Ки	12500-18000
K	18000-25500
Ka	26500-40000
0	40000-50000
V	50000-75000

					Exposure Limits	
	Radiation Analysis Zone	Formula	Level	Value	General Public	Occupational
					<1mW/cm2	<5mW/cm2
1	Power Subreflector	<u>4P</u> a	243.605	mW/cm2	>FCC MPE See Note 1	>FCC MPE See Note 2
2	Antenna Surface	$\frac{4P}{A}$	0.923	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
3	Main Reflector Ground	$\frac{P}{A}$	0.231	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
4	S _{nf} =Near-Field Power Density	<u>4η P</u> A	0.565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
5	$S_t = Max Transition Power Density$	<u>≺</u> S _{nf}	0.565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
6	$S_{ff} = Max Far field Power Density$	$\frac{PG}{4\pi R_{ff}}^2$	0.242	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
7	Off Access Level Near Field	S _{nf} - 20 dB	0.00565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>

Notes

1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The antenna is marked with RF Radiation Hazard signage.

2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.

3. The field develops 12 meters above ground level at the minimum elevation angle which is not accessable to the general public.