Radiation Hazard Analysis

5	MCI Mt Jackson Shenandoah Quicksburg	22847	FCC Callsign: SES ID: STA:	
Input Values	Value	Unit		Band
D = Aperture Diameter	9.10	Meters		L
d = Subreflector Diameter	0.56	Meters		S
G = Antenna Gain	66.4	dBi		С
FCC Designation	Ка	Band		X
F = Frequency	28.000	GHz		Ки
P = Transmitter Power Watts:	150	Watts		K
$R_{ua} = closest point to uncontrolled area$	50	meters		Ka
Elevation angle at closest point R_{ua}	10	Degrees		0
Height (AGL)	12.00	meters		V
OET 65 Calculated Values	Formula	Value	Unit	
$\lambda = Wavelength$	<u>c</u>	0.0107	meters	
Ŭ	F	01010,		
G = Antenna Gain	<i>F</i> 10 ^(G/10)	4365158.322	(W) linear	
$G = Antenna \ Gain$ $\eta = Apperture \ Efficiency$	$\frac{10^{(G/10)}}{G\lambda^{2}/4\pi}$ $\pi D^{2}/4$			
	$ \frac{10^{(G/10)}}{G\lambda^2/4\pi} $ $ \frac{\pi D^2/4}{\pi R^2} $	4365158.322	(W) linear percentage meters ²	
$\eta = Apperture Efficiency$	$ \frac{10^{(G/10)}}{G\lambda^2/4\pi} $ $ \frac{\pi D^2/4}{\pi R^2} $	4365158.322 61%	(W) linear percentage meters ²	
η = Apperture Efficiency A = Area of reflector a = area of subreflector	$ \frac{10^{(G/10)}}{G\lambda^2/4\pi} $ $ \frac{G\lambda^2/4\pi}{\pi D^2/4} $ $ \pi R^2 $ $ \frac{\pi r^2}{D^2} $	4365158.322 61% 65.039	(W) linear percentage	
η = Apperture Efficiency A = Area of reflector	$ \frac{10^{(G/10)}}{G\lambda^2/4\pi} $ $ \frac{G\lambda^2/4\pi}{\pi D^2/4} $ $ \frac{\pi D^2/4}{\pi R^2} $ $ \frac{D^2}{4\lambda} $	4365158.322 61% 65.039 2463.009	(W) linear percentage meters ² cm ²	
η = Apperture Efficiency A = Area of reflector a = area of subreflector R_{nf} = Near-Field Region	$ \frac{10^{(G/10)}}{G\lambda^2/4\pi} $ $ \frac{\Lambda}{\pi}D^2/4 $ $ \frac{\pi}{R^2} $ $ \frac{\pi}{r^2} $ $ \frac{D^2}{r^2} $	4365158.322 61% 65.039 2463.009 1933.522	(W) linear percentage meters ² cm ² meters	
η = Apperture Efficiency A = Area of reflector a = area of subreflector	$ \frac{10^{(G/10)}}{G\lambda^2/4\pi} $ $ \frac{G\lambda^2/4\pi}{\pi D^2/4} $ $ \frac{\pi D^2/4}{\pi R^2} $ $ \frac{D^2}{4\lambda} $	4365158.322 61% 65.039 2463.009 1933.522 336	(W) linear percentage meters ² cm ² meters Meters AGL	
η = Apperture Efficiency A = Area of reflector a = area of subreflector R_{nf} = Near-Field Region	$ \frac{G^{(G/10)}}{G\lambda^2/4\pi} $ $ \frac{G\lambda^2/4\pi}{\pi D^2/4} $ $ \frac{\pi D^2/4}{\pi R^2} $ $ \frac{D^2}{4\lambda} $ $ >R_{nf} $	4365158.322 61% 65.039 2463.009 1933.522 336 1933.522	(W) linear percentage meters ² cm ² meters Meters AGL >meters	

					Exposure Limits	
Radiation Analysis Zone		Formula	Level	Value	General Public	Occupational
					<1mW/cm2	<5mW/cm2
1	Power Subreflector	<u>4P</u> a	243.605	mW/cm2	>FCC MPE See Note 1	>FCC MPE See Note 2
2	Antenna Surface	$\frac{4P}{A}$	0.923	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
3	Main Reflector Ground	$\frac{P}{A}$	0.231	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
4	S _{nf} =Near-Field Power Density	<u>4η P</u> A	0.565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
5	$S_t = Max Transition Power Density$	<u>≺</u> S _{nf}	0.565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
6	$S_{ff} = Max Far field Power Density$	$\frac{PG}{4\pi R_{ff}}^2$	0.242	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>
7	Off Access Level Near Field	S _{nf} - 20 dB	0.00565	mW/cm2	<fcc mpe<="" td=""><td><fcc mpe<="" td=""></fcc></td></fcc>	<fcc mpe<="" td=""></fcc>

Notes

1. The antenna is installed in a controlled location access is restricted to authorized personnel only. The antenna is marked with RF Radiation Hazard signage.

2. Inside the controlled area, MPE levels exceed the MPE exposure for occupational levels. The levels will be reduced to safe MPE by removing power to the transmitters when work is performed on or around the antenna. This area can only be accessed by qualified personnel.

3. The field develops 12 meters above ground level at the minimum elevation angle which is not accessable to the general public.

 Frequency

 1000-2000

 2000-4000

 4000-8000

 8000-12500

 12500-18000

 26500-40000

 4000-50000

 50000-75000