FEDERAL COMMUNICATIONS COMMISSION SATELLITE SPACE STATION AUTHORIZATIONS (Technical and Operational Description)

S1. GENERAL INFORMATION Complete for all satellite applications.

a. Space Station or Satellite Network Name:		i Will the space station(s) operate on a Common Carrier Basis:				
INMARSAT-3 F2	10/15/1996	N				
b. Construction Commencement Date:	f. Estimated Lifetime of Satellite(s):	j. Number of transponders offered on a common carrier basis:				
	13 Years	0				
c. Construction Completion Date:	a Total Number of Transponders	L. Tatal Carrier Carrier Transmoster des Daraduidthe				
c. Construction Completion Date:	g. Total Number of Transponders:	k. Total Common Carrier Transponder Bandwidth:				
c. Construction Completion Date.	 g. rotal number of transponders. 4 	0 MHz				
d1. Est Launch Date Begin: d2. Est Launch Date End:	 h. Total Transponder Bandwidth (no. transponders x Bandwidth) 					

S2. OPERATING FREQUENCY BANDS Identify the frequency range and transmit/receive mode for all frequency bands in which this station will oper Also indicate the nature of service(s) for each frequency band.

	Frequency	Band Limits							
Lower Frequency (_Hz)	Upper Frequency (_	_Hz)	e. T/R Mode	f. Nature of Service(s): List all that apply to this band				
a. Numeric	b. Unit (K/M/G)	c. Numeric	d. Unit (K/M/G)						
1525	М	1559	М	Т	Mobile-Satellite Service				
1626.5	М	1660.5	М	R	Mobile-Satellite Service				
6425	М	6454	М	R	Feeder Link for Mobile Satellite Service in FSS				
3600	М	3629	М	Т	Feeder Link for Mobile Satellite Service in FSS				

S3. ORBITAL INFORMATION FOR GEOSTATIONARY SATELLITES ONLY:

a. Nominal Orbital Longitude (Degrees	E/W):	b. Alternate	Drbital Longitu	ude (Degrees E/W):			c. Reason for orbital location selection:
15.5 W								Inmarsat is authorized by the United Kingdom to
Longitudinal Tolerance or E/W	1 0			Range of orbital are in which	h adequate serv	/ice can be	operate the Inmarsat-3 F2 satellite at 15.5 W.L.	
d. Toward West:	0.1	Degrees	N/S Station-I Tolerance:	veeping	provided (Optional):	Degrees	E/W	
e. Toward East:	0.1	Degrees	2.7	Degrees	g. Westernmost: h. Easternmost:			
i. Reason for service are s	selection	(Optional)	:					

Page 2: NGSO Orbits

S4. ORBITAL INFORMATION FOR NON-GEOSTATIONARY SATELLITES ONLY

S4a. Total Number of Satellites in Network or System:

S4b. Total Number of Orbital Planes in Network or System:

S4c. Celestial Reference Body (Earth, Sun, Moon, etc.):

S4d. Orbit Epoch Date:

For each Orbital Plane Provide:

ſ	(e) Orbital	(f) No. of	(g) Inclination	(h) Orbital	(i) Apogee (km)	(j) Perigee (km)	(k) Right Ascension	(I) Argument of	Active Service Arc Range (D		e (Degrees)
	Plane No.	Satellites in	Angle (degrees)	Period			of the Ascending	Perigee	(m) Begin	(n) End	(o) Other
		Plane		(Seconds)			Node (Deg.)	(Degrees)	Angle	Angle	

S5. INITIAL SATELLITE PHASE ANGLE For each satellite in each orbital plane, provide the intital phase angle.

(a) Orbital	(b) Satellite	(c) Initial
Plane No.	Number	Phase Angle
		(Degrees)

NO NGSO DATA FILED

S6. SERVICE AREA CHARACTERISTICS for each service area provide:

(a) Service Area ID	(b) Type of Associated Station (Earth or Space)	(d) Service Area Description. Provide list of geographic areas (state postal codes or ITU 3-ltr codes), satellites or Figure No. of Service Area Diagram.
GLOBAL	S	All visible areas of the Earth.

Page 3: Service Areas

Page 4: Antenna Beams

S7. SPACE STATION ANTENNA BEAM CHARACTERISTICS For each antenna beam provide:

(a)	(b)	Isotropic	Antenna	(e)	(f)	(g) Min.	(h) Polar-	(i) Polarization	(j) Service		Transmit				Receive		
Beam	T/R	Ga	ain	_ 0	Rotational	Cross-	ization	Alignment Rel.	Area ID	(k)	(I) Effective	(m)	(n)	(o) G/T	(p) Min.	Input Atten	uator (dB)
ID	Mode	(c) Peak		Error	Error	Polar Iso-	Switch- able?	Equatorial		Input	Output	Max.	System	Max.	Saturation	(q) Max.	(r) Step
		(dBi)	(dBi)	(Degrees)	(Degrees)	iation (db)	(Y/N)	Plane (Degrees)		Losses (dB)	Power (W)	EIRP (dBW)	Noice Temp (k)		Flux Density (dBW/m2)	Value	Size
CGU	R	20.5	16.5	0.1	0.1	30	N		GLOBAL				891	-9	-98	24	2
CGU	R	20.5	16.5	0.1	0.1	30	N		GLOBAL				891	-9	-98	24	2
CGD	Т	20	16.5	0.1	0.1	30	N		GLOBAL	3.3	10.5	30.5					
CGD	Т	20	16.5	0.1	0.1	30	N		GLOBAL	3.3	10.5	30.5					
LGU	R	18.5	16	0.1	0.1		N		GLOBAL				562	-9	-109	23	2
LGD	Т	19.5	17	0.1	0.1		N		GLOBAL	4.1	159	41.5					

(a) (b) (c) Co-or (d) GSO e) NGSO Antenna Gain (f) GSO Antenna Max. Power Flux Density (dBW/M2/Hz) Beam Ť/Ŕ Cross Ref. Contour Description Gain Contour Data At Angle of Arrival above horizontal (for emission with highest PFD) ID Mode Polar Orbital (Figure/Table/ Exhibit) (GXT File) (g) 5 Deg (h) 10 Deg (i) 15 Deg (j) 20 Deg (k) 25 Deg Mode ("C" Longitude (Deg. E/W) or" X") CGU R С -15.5 CGUR.GXT CGU R С -15.5 CGUL.GXT CGD -15.5 CGDR.GXT -180.2 -179.8 -179.5 -179.2 С -180 CGD CGDL.GXT -180.2 -179.5 -179.2 С -15.5 -180 -179.8 LGUR.GXT LGU -15.5 С R LGD С LGDR.GXT -15.5

S8. ANTENNA BEAM DIAGRAMS For each beam pattern provide the reference to the graphic image and numerical data: Also provide the power flux density levels in each beam that result from the emission with the highest power flux density. Page 5: Beam Diagrams

Page 6: Channels and Transponders

00.017													
(a) Channel No.	(B) Assigned Bandwidth (kHz)	(c) T/R Mode	(d) Center Frequency (MHz)	(e) Polarization (H, V, L, R)	(f) TTC or Comm Channel (T or C)								
CUR	29000	R	6439.5	R	С								
CUL	29000	R	6439.5	L	С								
CDR	29000	Т	3614.5	R	С								
CDL	29000	Т	3614.5	L	С								
LUR	34000	R	1643.5	R	С								
LDR	34000	Т	1542	R	С								

S9. SPACE STATION CHANNELS For each frequency channel provide: S10. SPACE STATION TRANSPONDERS For each transponder provide:

(a)	(b)	Receive	Band	Transmit Band		
Transponder ID	Transponder Gain (dB)	(c) Channel No.	(d) Beam ID	(e) Channel No.	(f) Beam ID	
FL1	137	CUR	CGUR	LDR	LGDR	
FL2	137	CUL	CGUL	LDR	LGDR	
RL1	127	LUR	LGUR	CDR	CGDR	
RL2	127	LUR	LGUR	CDL	CGDL	

S11. DIGITAL MODULATION PARAMETERS For each digital emission provide:

(a) Digital Mod. ID	(b) Emission Designator	(c) Assigned Bandwidth (kHz)	(d) No. of Phases	(e)Uncoded Data Rate (kbps)	(f) FEC Error Correction Coding Rate	Processing	(h) Total C/N Performance Objective (dB)	(i) Single Entry C/I Objective (dB)
D1	5K00G1D	5000	2	0.3	0.5		3.5	15.7

Page 7: Digital Modulation

Page 8: Analog Modulation

S12. ANALOG MODULATION PARAMETERS For each analog emission provide:

(a)	(b) Emission	(c)	(d) Signal	(e)	Multi-channel Telephony				(j) Video	(k) Video	(I) Video	(m) SCPC/FM	· · /	() 0
Analog Mod. II		Assigned Bandwidth (kHz)	Туре	Channels per Carrier	(f) Ave. Companded Talker Level (dBm0)	(g) Bottom Baseband Freq. (MHz)	(h) Top Baseband Freq. (MHz)	(i) RMS Modulation Index	Standard NTSC, PAL, etc.	Noise- Weighting (dB)	and SCPC/FM Modulation Index	Compander, Preemphasis, and Noise Weighting (dB)	Performance Objective (dB)	Entry C/I Objective (dB)

Page 9: Typical Emissions

S13. TYPICAL EMISSIONS For each planned type of emission provide:

Associated Transponder ID Range		lation ID	(-)		(g)Noise Budget	(h) Energy	Receive Ba	and (Assoc. Ti	ransmit Stn)	Tra	nsmit Band	(This Space Stat	tion)	
(a) Start	er ID Range (b) End	(c) Digital (Table S11)	(d) Analog (Table S12)	per Transponder	Spacing (kHz)	Reference (Table No.)	Dispersal Bandwidth (kHz)	(i)Assoc. Stn. Max.	Assoc. Statio Power		EIRP	(dBW)	Power Flux	(o)Assoc. Stn Rec. G/T
		511)					. ,	Antenna Gain (dBi)	(j) Min.	(k) Max.	(I) Min.	(m) Max.	Density (dBW/m2/Hz)	(dB/K)
FL1	FL2	D1		83	10000	FL INM-C LB.d		54	1.5	7.1	19.8	24.3		-23
RL1	RL2	D1		2900	10000	RL INM-C LB.d		54	10.5	16	-24.7	-13.4	-175.5	30.7

Page 10: TT and C

S14. Is the space station(s) controlled and monitored remotely? If Yes, provide the location and telephone number of the TT and C control point(s): #Error

Remote Control (TT C) Location(s):

S14f. Telephone Number: +1 250-749-6646

S14a: Street Address: Beijing Inmarsat TTC Station				
S14b. City: Beijing	S14c. County:		S14d. State/Country	S14e. Zip Code: 102206
S14f. Telephone Number: +86 10 6202 7169		S14g. Call Sign of	Control Station (if appropriate):	
Remote Control (TT C) Locatio	on(s):			
S14a: Street Address: Stazione del Fucino				
S14b. City: Ortucchio AQ	S14c. County: Avezzano		S14d. State/Country	S14e. Zip Code: 67050
S14f. Telephone Number: +39 0863 550597		S14g. Call Sign of	Control Station (if appropriate):	
Remote Control (TT C) Locatio	on(s):			
S14a: Street Address: 8801 Youbou Road				
S14b. City: Lake Cowichan	S14c. County: BC		S14d. State/Country	S14e. Zip Code: V0R 2G0

S14g. Call Sign of Control Station (if appropriate):

Page 11: Characteristics and Certifications

S15. SPACECRAFT PHYSICAL CHARACTERISTICS:

S15a: Mass of spacecraft without fuel (kg): 827	Spacecraft Dimensions (meters)	Probability of Survival to End of Life (0.0 - 1.0)
S15b. Mass of fuel and disposables at launch (kg): 283		
S15c. Mass of spacecraft and fuel at launch (kg): 1110	S15f. Length (m): 3.15	S15i. Payload: 0.72
S15d. Mass of fuel, in orbit, at beginning of life (kg): 283	S15g. Width (m): 20.67	S15j. Bus: 0.9
S15e. Deployed Area of Solar Array (square meters): 30.5	S15h. Height (m): 2.31	S15k. Total: 0.65

S16. SPACECRAFT ELECTRICAL CHARACTERISTICS:

Spacecraft Subsystem		wer (Watts) At ng of Life	Electrical Power (Watts) At End of Life				
	At Equinox	At Solstice	At Equinox	At Solstice			
Payload (Watts):	^{(a):} 2099	^{(f):} 2132	^{(k):} 2099	^{(p):} 2132			
Bus (Watts):	^{(b):} 717	^{(g):} 478	^{(l):} 717	^{(q):} 478			
Total (Watts):	^{(c):} 2816	^{(h):} 2610	^(m) 2816	^{(r):} 2610			
Solar Array (Watts):	^{(d):} 3700	^{(i):} 3250	^{(n):} 3105	^{(s):} 2832			
Depth of Battery Discharge (%):	^(e) 70 %	^(j) 0 %	⁽⁰⁾ 70 %	^(t) 0 %			

S17. CERTIFICATIONS:

a. Are the power flux density limits of § 25.208 met?:	X	YES		NO		N/A
b. Are the appropriate service area coverage requirements of § 25.143(b)(ii) and (iii), or § 25.145(c)(1) and (2) met	?	YES		NO	Х	N/A
c. Are the frequency tolerances of § 25.202(e) and the out-of-band emission limits of § 25.202(f)(1), (2) and (3) me	? X	YES		NO		N/A
In addition to the information required in this Form, the space station applicant is required to provide all the information specified in Section 25.114 of the						
Commission's rules, 47 C.F.R § 25.114.						