INTELSAT.
Envision. Connect. Transform.

July 15, 2019
Ms. Marlene H. Dortch
Secretary
Federal Communications Commission
$44512^{\text {th }}$ Street, S.W.
Washington, D.C. 20554
Re: Request for Special Temporary Authority to Conduct In-Orbit Testing of the Intelsat 39 Satellite; Call Sign S3023

Dear Ms. Dortch:
Intelsat License LLC ("Intelsat") herein requests a grant of Special Temporary Authority ("STA") ${ }^{1}$ for 30 days, beginning August 10, 2019, to conduct in-orbit testing ("IOT") of the Intelsat 39 satellite at 55.3° E.L., to drift the satellite to its permanent location of 62.0° E.L., ${ }^{2}$ and to conduct additional IOT at 62.0° E.L. Intelsat 39 is scheduled to be launched on July 24, 2019. The IOT and drift are expected to last approximately 60 days.

Intelsat 39 IOT payload testing will be performed in the following frequency bands:

- $3625-4200 \mathrm{MHz}, 10700-11700 \mathrm{MHz}$ and $12250-12750 \mathrm{MHz}$ (space-to-Earth); and
- $5850-6425 \mathrm{MHz}, 13000-13250 \mathrm{MHz}$, and $13750-14500 \mathrm{MHz}$ (Earth-to-space). ${ }^{3}$

Telemetry, Tracking, and Command ("TT\&C") services during IOT and drift will be performed in the following center frequencies:

- $3948.5 \mathrm{MHz}, 3949.0 \mathrm{MHz}, 3951.0 \mathrm{MHz}, 3953.0 \mathrm{MHz}$, and 3953.5 MHz (space-to-Earth); and
- 6174.7 MHz and 6177.3 MHz (Earth-to-space).

[^0]Ms. Marlene H. Dortch

July 15, 2019
Page 2

In support of its request, Intelsat submits the following information.
During the IOT of Intelsat 39, Intelsat will operate in the above referenced C- and Ku-bands. Intelsat has identified the operational satellites within $+/-6$ degrees of both IOT locations. Coordination is ongoing with several operators to resolve potential interference issues. Intelsat expects to complete coordination discussions before launch of the Intelsat 39 satellite. In the unlikely event that harmful interference occurs, Intelsat will take all necessary steps to eliminate the interference.

Intelsat has assessed and limited the probability of the space station becoming a source of debris as a result of collision with large debris or other operational space stations during IOT at 55.3° E.L. Intelsat 39 will not be located at the same orbital location as another satellite or at an orbital location that has an overlapping station-keeping volume with another satellite. Further, Intelsat is not aware of any other Federal Communications Commission ("Commission") licensed system, or any other system applied for and under consideration by the Commission, having an overlapping stationkeeping volume with Intelsat 39 at 55.3° E.L. In addition, Intelsat is not aware of any system with an overlapping station-keeping volume with Intelsat 39 at 55.3° E.L. that is the subject of an International Telecommunications Union filing and that is either in orbit or progressing towards launch.

The IOT of Intelsat 39 is a critical step in ensuring that the satellite will be fully operational at 62.0° E.L. This, in turn, will provide continuity of service to customers at the 62.0° E.L. location, and thereby promotes the public interest.

For the reasons set forth herein, Intelsat respectfully requests that the Commission grant this request.
Sincerely,
/s/ Cynthia J. Grady
Cynthia J. Grady
Senior Counsel
Intelsat US LLC
cc: Stephen Duall
Jay Whaley
Cindy Spiers

[^0]: ${ }^{1}$ Intelsat has filed this STA request, an FCC Form 159, and a $\$ 980.00$ filing fee electronically via the International Bureau's Filing System.
 ${ }^{2}$ See Policy Branch Information; Actions Taken, Report No. SAT-01326, File No. SAT-LOA-20171205-00164 (June 29, 2019) (Public Notice). During the drift from 164.2° E.L. to 169.0° E.L., only the satellite's TT\&C frequencies will be utilized.
 ${ }^{3}$ IOT payload testing of $3625-4200 \mathrm{MH}, 10700-10950 \mathrm{MHz}, 11200-11450 \mathrm{MHz}, 11450-11700 \mathrm{MHz}$ and $12250-12750 \mathrm{MHz}$ will occur at 55.3° E.L. and IOT payload testing of $10950-11200 \mathrm{MHz}$ and $14000-14250 \mathrm{MHz}$ will occur at 62.0° E.L.

