EXHIBIT A DG Consents Sub, Inc. Modification Application FCC Form 312 November 2013

Description of Modification of License Application

In this Modification of License Application, DG Consents Sub, Inc. ("DG Consents") proposes two modifications of its non-geostationary satellite orbit ("NGSO") Earth Exploration-Satellite Service ("EESS") space station authorizations.¹ First, DG Consents requests authority to consolidate its EESS space stations under a single call sign. Second, DG Consents proposes to modify the orbit characteristics of one of its EESS space stations – GeoEye-1 – to change the orbital altitude of the satellite.

A. Request to Consolidate EESS Space Stations Under Single Call Sign

DG Consents first requests authority to modify its license under Call Sign S2129 to include the EESS space stations currently licensed to DG Consents under Call Sign 2348 and Call Sign 2144.² Four space stations – QuickBird, WorldView-1, WorldView-2 and WorldView-3 – are currently licensed under Call Sign S2129. The space stations to be moved to Call Sign S2129 are the IKONOS satellite, currently licensed under Call Sign S2144, and the GeoEye-1 and GeoEye-2 satellites, currently licensed under Call Sign S2348.

The proposed modification will place seven commonly owned space stations under one call sign, a ministerial step that comports with current operation of the space stations as a single constellation. These space stations have been owned and operated by subsidiaries of DigitalGlobe since January 31, 2013, and have been marketed as a single constellation since that date. Operating from a consolidated platform has resulted in technical efficiencies, which in turn benefits the public interest by enabling DigitalGlobe to offer customers lower cost products and services.

B. Request to Change the Orbital Altitude of GeoEye-1

DG Consents next requests authority to modify the orbit characteristics of GeoEye-1 from its present authorized altitude of 681 kilometers to a new altitude within the 590 kilometer

¹ DG Consents is a subsidiary of DigitalGlobe, Inc. ("DigitalGlobe").

² DigitalGlobe acquired the EESS space station licensed under Call Sign 2348 and Call 2144 following the transfer of control of GeoEye Licencse Corp. from its then–parent company Geo Eye, Inc. to DigitalGlobe earlier this year. *See* SAT-T/C-20120817-00139. The transfer of control was consummated on January 31, 2013. On November 19, 2013, the Commission approved the pro forma assignment of the two EESS space station licenses held by GeoEye License Corp. to DG Consents. *See* SAT-ASG-20131104-00128.

to 830 kilometer range, inclusive.³ The proposed range is consistent with the license from the National Oceanic and Atmospheric Administration ("NOAA") to operate GeoEye-1 within an orbital altitude range of 450 kilometers to 850 kilometers,⁴ and is further constrained at the low end (590 kilometers versus 450 kilometers) to ensure compliance with power flux density ("pfd") limits. The baseline operating plan for the immediate future is to raise the GeoEye-1 orbit to an altitude of 770 kilometers, consistent with the pending request for special temporary authority to operate at that altitude.

As a threshold matter, DG Consents observes that the Commission has determined in previous cases involving NGSO satellites in other services that changes in orbit altitudes (and associated changes in such related parameters as inclination angles) are not considered to be major unless they increase the potential for interference.⁵ Those same principles apply to the change in altitude of the GeoEye-1 satellite that DG Consents proposes in this Modification Application.

DG Consents also notes that observations the Commission previously made with respect to a pre-launch orbit altitude change for the QuickBird EESS satellite, licensed to a subsidiary of DigitalGlobe, remain true today. In May 2001, EarthWatch Incorporated (the former name of DigitalGlobe's parent corporation) sought to lower the authorized orbit altitude of QuickBird from 600 kilometers to its current 450 kilometer range. In assessing this proposed reduction, the Commission noted that "spacecraft design decisions should be left to each space station licensee, because the licensee is in a better position to determine how to tailor its system to meet the particular needs of its customer base."⁶ It went on to state that where an orbit altitude change is technically efficient, permits additional entrants, and is otherwise in the public interest, the Commission will approve the change.⁷

DG Consent's current proposal meets this three-pronged standard. First, the baseline altitude change to 770 kilometers is technically efficient. The altitude change will result in more consistent revisit times as GeoEye-1 is phased in with WorldView-2, an EESS space station licensed to DG Consents under Call Sign S2129. The pfd values for the downlink bands remain within the regulatory limits established in No. 21.16 of the International Telecommunication

³ GeoEye License Corp. filed a request to operate at an orbital altitude of 770 kilometers under special temporary authority in advance of the instant request for permanent authority to operate at that altitude. That requests remains pending before the Commission. *See* SAT-STA-20131031-00127.

⁴ *See* GeoEye 1 license to operate a private commercial space-based remote sensing system dated May 14, 2010 from National Oceanic and Atmospheric Administration.

⁵ See, e.g., Orbital Communications Corp., 13 FCC Rcd 10828, (¶¶ 23-24) (Int'l. Bur. 1998); *Teledesic Corp.*, 14 FCC Rcd 2261 (¶ 13) (Int'l. Bur. 1999) (changes in orbital configuration, including number of satellites, number of planes, orbit altitude and inclination angle, not considered major without increase in interference to other systems or increase in difficulty in sharing).

⁶ EarthWatch Incorporated, 16 FCC Rcd 15985, 15986 (Int'l Bur. 2001) ("EarthWatch Modification").

⁷ EarthWatch Modification, 16 FCC Rcd at 15987.

Union's Radio Regulations over the entire altitude range of 590 to 830 kilometers. Raising the altitude to the baseline 770 kilometers will, in fact, mean a reduction in pfd at the Earth's surface.

Second, nothing in this proposal has any impact on additional EESS entry into the 8025-8400 MHz band. To the extent that the altitude change may make GeoEye-1 more susceptible to interference, DG Consents commits not to claim any greater protection from harmful interference than it is entitled to claim with the satellite at an orbital altitude of 681 kilometers.

Third, the grant of this Modification Application will otherwise serve the public interest by increasing the commercial capacity of GeoEye-1, with a corresponding increase of up to 50 percent improvement in the company's ability to meet its commercial business requirements. The data generated through the enhanced operations of GeoEye-1 will continue to advance myriad public and national interests such as meteorology, national security, and improved understanding of our environment and climate. Moreover, competition in the market for commercial remote sensing data will continue to be robust.

In further support of its request for modification, DG Consents offers the information and demonstrations provided below.

1. Information Required Under Section 25.114 of the Commission's Rules

DG Consents provides the following information in accordance with Section 25.114 of the Commission's rules.⁸ DG Consents provides this information only to the extent that it has changed from the information currently on file for Call Sign S2348, and hereby certifies that the remaining information has not changed.⁹

A. General Description of Overall Facilities, Operations and Services

Except for the new altitude range (and corresponding technical refinements) requested herein, GeoEye-1 will continue to be operated as currently authorized. GeoEye-1 will transmit high-resolution satellite images and telemetry using the 8025-8400 MHz band allocated to the EESS. DigitalGlobe's ground segment will send commands to GeoEye-1 using the 2025-2110 MHz band. All radio frequency communications between the modified GeoEye-1 space station and the U.S. will be via Remote Ground Terminals in Prudhoe Bay, Alaska (Call Sign E040264), Fairbanks, Alaska (Call Sign E950499), and Dulles, Virginia (Call Sign E980375.) The Commission authorizations for each of these earth stations include GeoEye-1 as a Point of Communication.

DG Consents has not finalized the orbit altitude for GeoEye-1, but is certain that the altitude will be between 590 kilometers and 830 kilometers, inclusive. Thus, for purposes of

⁸ 47 C.F.R. § 25.114.

⁹ See 47 C.F.R. § 25.117(d)(1). No changes are proposed in this Modification Application to GeoEye-2, the second satellite currently licensed under Call Sign S2348.

demonstrating compliance with regulatory and technical provisions such as pfd limits, link budgets and predicted antenna gain contours, DG Consents includes data and showings for both 590 kilometers and 830 kilometers. Although the altitude of GeoEye-1 can thus be anywhere in the 590-830 kilometer range, DG Consents includes data for a representative or nominal altitude of 770 kilometers, which represents the altitude as proposed in the pending request for special temporary authority.

B. Schedule S

The technical characteristics of the modified GeoEye-1 satellite are detailed in the Schedule S portion of the FCC Form 312 of this Application, a copy of which is included as Attachment A hereto. DG Consents completed the electronic version Schedule S to the best of its ability since the form is more readily suited for geosynchronous communication satellites. Any discrepancies between the data in the electronic version of Schedule S and the version included in the print out in Attachment A should be resolved in favor of the print version in Attachment A.

C. Link Budgets and Power Flux Density Calculation

The modified satellite's link budgets and pfd limits at the surface of the Earth are included as Attachment B hereto. The pfds at the Earth's surface produced by GeoEye-1 data and telemetry transmissions satisfy the pfd limits in Table 21-4 of the ITU Radio Regulations.¹⁰

D. Predicted Gain Contours

Attachment C hereto shows the predicted gain contours required by Section 25.114(d)(3) of the Commission's rules at the three U.S. earth station sites at Prudhoe Bay, Fairbanks and Dulles. The gain contours are plotted for GeoEye-1's nominal altitude of 770 kilometers, and at the highest (830 kilometers) and lowest (590 kilometers) points of its anticipated altitude range. Attachment C depicts the contours from a 90° elevation angle.

E. Public Interest Considerations

The grant of the request to modify the orbital altitude of GeoEye-1 will permit DG Consents to increase the area coverage of the satellite and realize a more consistent "revisit" time (i.e., the time between imaging opportunities available to GeoEye-1). As noted above, this will increase the commercial capability of GeoEye-1 by up to 50 percent, thereby enhancing the ability of DigitalGlobe to serve the various and growing customer demands for its highresolution satellite imagery services.

¹⁰ Section 25.208 of the Commission's Rules does not contain pfd limits at the Earth's surface produced by emissions from NGSO EESS space stations operating in the 8025-8400 MHz band.

F. Orbital Debris Mitigation

In support of this request, DG Consents offers the following showings on the orbital debris mitigation elements in Section 25.114(d)(14) of the Commission's Rules:

DG Consents confirms that GeoEye-1 will not undergo any planned release of debris during its normal operations. DG Consents also has assessed the probability of the spacecraft becoming a source of debris by collision with small debris or meteoroids of less than one centimeter in diameter that could cause loss of control and prevent post-mission disposal. DG Consents has taken steps to limit the effects of such collisions through redundancy, shielding, separation of components, and physical characteristics.

DG Consents assessed and limited the probability of accidental explosions during and after completion of mission operations. The assessment was based on possible failure modes that could result in explosions, and operational procedures were adopted to limit the probability that they occur. As part of the satellite manufacturing process, steps were taken to ensure that debris generation will not result from the conversion of energy sources on board the satellite into energy that fragments the satellite. All sources of stored energy onboard the spacecraft will have been depleted when no longer required for mission operations or post-mission disposal.

DG Consents assessed and limited the probability of the spacecraft becoming a source of debris by collisions with large debris or other operational spacecraft. DG Consents does not intend to place GeoEye-1 in an orbit that is identical to or very similar to an orbit used by other space stations during or after the orbit raising activity. This specifically includes minimizing the potential for collision with manned spacecraft. To DG Consent's understanding, only the International Space Station and China's Tiangong-1 Space Station module are presently or imminently inhabited orbiting objects. The operational altitude of the International Space Station is approximately 400 kilometers, ¹¹ and the altitude of the Tiangong-1 space module is now approximately 382 kilometers. ¹² Both facilities are significantly below the minimum possible operational orbit altitude proposed for GeoEye-1 (590 kilometers). With these measures, collisions will be able to be avoided even if there is at some future point less separation in orbits than is anticipated at a minimum today.¹³

As noted above, DG Consents requested and received favorable action from NOAA on its plan for the post-mission disposal of GeoEye-1. The Commission has previously determined that "[t]o the extent that a remote sensing satellite applicant has submitted its post-mission disposal plans to NOAA for review and approval, [it] will not require submission of such

¹¹ <u>http://www.nasa.gov/mission_pages/station/expeditions/expedition26/iss_altitude.html</u> (last visited November 12, 2013).

¹² <u>http://www.spacedaily.com/reports/Tiangong 1 orbiter enters long term operation management 999.html</u> (last visited November 12, 2013).

¹³ DG Consents will take identical proactive measures with respect to any other inhabitable orbiting objects that may be introduced during the time when GeoEye-1 is in orbit.

information" as part of its examination of the debris mitigation disclosures of remote sensing satellites.¹⁴ Accordingly, no submission regarding DG Consent's post-mission disposal plans is required or included with this application.

As a final measure, DG Consents provides in Table 1 below the information called for in Section 25.114(d)(14)(iii) of the Commission's Rules, and "discloses the accuracy – if any – with which the orbital parameters of [its] non-geostationary satellite orbit space stations will be maintained, including apogee, perigee, inclination, and the right ascension of the ascending node(s)."¹⁵ While GeoEye-1 is still in operational condition and propellant is still available, the orbit will be maintained to within the Table 1 accuracies.

Orbital Parameters	Maintenance Accuracy
Inclination Angle	$\pm 0.2^{\circ}$
Apogee	$\pm 2 \text{ km}$
Perigee	±2 km
Right Ascension of the	$\pm 5^{\circ}$
Ascending Node	

 Table 1: Anticipated Ranges of Accuracy to Which
 GeoEye-1 Orbital Parameters Will Be Maintained

To the extent that Section 25.114(d)(14)(iii) also calls for indication of the anticipated evolution over time of the satellite's orbit, DG Consents notes that after orbit maintenance is no longer possible, GeoEye-1's apogee and perigee altitudes will gradually decay over time due to atmospheric drag until the satellite reenters the atmosphere. During this period the inclination and right ascension of the ascending node will also drift outside of the Table 1 maintenance limits due to gravitational perturbations. Table 2 below shows predicted worst-case (shortest) propellant life and reentry times for the lowest, current and highest anticipated GeoEye-1 operational altitudes. Note the propellant life is the number of years of additional life, after the altitude change is accomplished and not the total life from launch.

Table 2:	Predicted	Pro	pellant	Life	and '	Time to	Reentry
							•/

Altitude	Propellant Life After Altitude Change	Time to Reentry After Propellant Depletion
590 km (shortest life)	11 years	9 years
681 km (original orbit)	25 years	25 years
770 km (baseline plan)	16 years	50 years

¹⁴ See Mitigation of Orbital Debris, 19 FCC Rcd 11567, 11610 (2004). The Commission's decision addressed 15 U.S.C. § 5622(b)(4), which contained a licensing requirement identical to that in 51 U.S.C. § 60122(b)(4) to notify NOAA of the post-mission disposal of spacecraft. Section 60122 of Title 51 replaced Section 5622 of Title 15 effective December 18, 2010. *See* Pub.L. 111-314, 124 Stat. 3328 (2010).

¹⁵ 47 C.F.R. § 25.114(d)(14)(iii).

Notes:

- 1. Propellant Life is calculated assuming 3-sigma launch dispersions are removed and all remaining propellant is used to maintain the orbit.
- 2. Time to Reentry is calculated from the point when all propulsive orbit maintenance ceases, which may occur prior to the propellant life limit.

G. Extent of Communications with GeoEye-1 During Descent to the Atmosphere

DG Consents intends to utilize GeoEye-1 for imaging services until such services are no longer possible. However, given the propellant life and lengthy reentry times shown in Table 2 above, the GeoEye-1 satellite will be decommissioned prior to dropping below 590 kilometers. No communications with the satellite during descent to the atmosphere below this altitude are required.

ATTACHMENT A

Annotated FCC Form 312, Schedule S

FEDERAL COMMUNICATIONS COMMISSION SATELLITE SPACE STATION AUTHORIZATIONS (Technical and Operational Description)

Page 1: General, Frequency Bands, and GSO Orbit

S1. GENERAL INFORMATION Complete for all satellite applications.

a. Space Station or Satellite Network Name: GEOEYE-1	e. Estimated Date of Placement into Service: 2/20/2009	i. Will the space station(s) operate on a Common Carrier basis?
b. Construction Commencement Date:	f. Estimated Lifetime of Satellite(s):	j. Number of transponders offered on a Common Carrier basis:
9/29/2004	7 Years	0
c. Construction Completion Date:	g. Total Number of Transponders:	k. Total Common Carrier Transponder Bandwidth:
1/3/2007	0	0 MHz
d. Estimated Launch Date: 9/6/2008	h. Total Transponder Bandwidth (No. Transponders x Bandwidth): 0 MHz	1. Orbit Type: Mark all boxes that apply.

S2. OPERATING FREQUENCY BANDS Identify the frequency range and transmit/receive mode for all frequency bands inwhich this station will operate. Also indicate the nature of service(s) for each frequency band.

	Frequency Band Limits				
Lower Frequency	/ (_Hz)	Upper Frequency	y (_Hz)		
a. Numeric	b. Unit (K/M/G)	c. Numeric	d. Unit (K/M/G)	e. T/R Mode	f. Nature of Service(s): List all that apply to this band
8025	M	8400	M	Т	Earth exploration satellite service
2025	M	2110	M	R	Earth exploration satellite service
-					

S3. ORBITAL INFORMATION FOR GEOSTATIONARY SATELLITES ONLY:

a. Nominal Orbital Longitude (D	Degrees E/W):			b. 1	Reason for orbital location selection:
Longitudinal Tolerance or E/W S c. Toward West:	Station-Keeping: Degrees	e. Inclination Excursion or N/S Station-Keeping Tolerance:	Range of orbital arc in which adequate service can be provided (Optional):	<u>E/W</u>	
d. Toward East:	Degrees	Degrees	g. Easternmost:		
h. Reason for service arc selectio	on (Optional):				

1

1

54. ORBITAL INFORMATION FOR NON-GEOSTATIONARY SATELLITES ONLY

S4a. Total Number of Satellites in Network or System: ______ S4b. Total Number of Orbital Planes in Network or System: ______ S4c. Celestial Reference Body (Earth, Sun, Moon, etc.): <u>E</u> S4d. Orbit Epoch Date: 2013/09/18 14:00:00 UTC

For each Orbital Plane Provide:

(e)	(f)	(g) Inclination	(h)	(i)	, (j)	(k) Right Ascension	(l) Argument	Activ	e Service Arc ((Degrees)	Range
Plane No.	lites in Plane	Angle (degrees)	(Seconds)	(km)	(km)	of the Ascending Node (Deg.)	of Perigee (Degrees)	(m) Begin Angle	(n) End Angle	(o) Other
1 Min	1	97.74	5780	614	601	335.161	90			
1 Nom	1	98.47	6006	796	779	335.161	90			
1 Max	1	98.81	6107	874	860	335.161	90			
							Ú.			
							0			

S5. INITIAL SATELLITE PHASE ANGLE For each satellite in each orbital plane, provide the initial phase angle.

(a) Orbital Plane No.	(b) Satellite Number	(c) Initial Phase Angle (Degrees)									
1	1	0				-					
						1					
						-					

Rev 4d, June 19, 2003, 5:45 pm

FCC 312, Schedule S - Page 2 June, 2003

S6. SERVICE AREA CHARACTERISTICS For each service area provide:

(a) Service Area ID	(b) Type of Associated Station (Earth or Space)	(c) Service Area Diagram File Name (GXT File)	(d) Service Area Description. Provide list of geographic areas (state postal codes or 1TU 3-ltr codes), satellites or Figure No. of Service Area Diagram.
		- i	

Rev 4d, June 19, 2003, 5:45 pm

FCC 312, Schedule S - Page 3 June, 2003

		Isot	ropic	(e)	(f)	(9)	(h)Polar.	(i)			Transmit		1		Receive		
(a)	(b)	Anteni	na Gain	Pointing	Rotational	Min. Cross-	ization	Polarization	(<u>)</u>	(k) Input	DEffective	(m) May	(n) System	(o) G/T at	(p) Min.	Input Atter	nuator (dB)
Beam ID	T/R Mode	(c) Peak (dBi)	(d) Edge (dBi)	Error (Degrees)	Error (Degrees)	Polar Iso- lation (dB)	switch- able? (Y/N)	Alignment Rel. Equatorial Plane (Degrees)	Service Area ID	Losses (dB)	Output Power (W)	ÉIRP (dBW)	Noice Temp- erature (K)	Max.Gain Pt. (dB/K)	Saturation Flux Density (dBW/m2)	(q) Max. Value	(r) Step Size
WB-L	Т	26	3	1		21	N			9	10	26.7					
WB-R	Т	26	3	1		21	N			9	10	26.7			j	ĺ	ĺ
NB	Т	5	-7	0		19	N			10	1	-4.5					
CMD	R	5	-7	0		19	N						290	-40	-50.1		
														-			
	_																
			1														
			-														
														0			
			1														

S7. SPACE STATION ANTENNA BEAM CHARACTERISTICS For each antenna beam provide:

Rev 4d, June 19, 2003, 5:45 pm

FCC 312, Schedule S - Page 4 June, 2003

Page 5: Beam Diagrams

S8. ANTENNA BEAM DIAGRAMS For each beam pattern provide the reference to the graphic image and numerical data: Also provide the power flux density levels in each beam that result from the emission with the highest power flux density.

(a) Beam	(b) T/R	(c) Co- or Cross-	(d) GSO Ref. Orbital	(e) NGSO Antenna Gain	(f) GSO Antenna Gain	At Angle of	Max. Power Flu of Arrival above	x Density (dBW horizontal (for o	//m2 per Refere emission with h	nce Bandwidth* ighest PFD)	h*) (l) Reference Bandwidth*
ID	Mode	("C" or "X")	(Deg. E/W)	(Figure / Table / Exhibit)	(GXT File)	(g) 5 Deg	(h) 10 Deg	(i) 15 Deg	(j) 20 Deg	(k) 25 Deg	(4kHz or 1MHz)
		-									
				<u>,</u>							
		1									
					-						
		1								-	
		-		4					4		
									-		-
						-			-		
		-	-								
HI las a Defa	ren an Da	ndwidth of 4	ILLT OF 1 MU	as appropriate to the ECO Dul	as that apply to the subject for	uancy band (8.2	5 209)				

Rev 4d, June 19, 2003, 5:45 pm

FCC 312, Schedule S - Page 5 June, 2003

Page 6: Channels and Transponders

S9. SPAC	CE STATION	N CHA	NNELS For each	n frequency channe	el provide:	S10. SPAC	CE STATIO	N TRANSPON	DERS** For ea	ach transponder	provide:
235	(h)	2.5	(d)	(3)	(f)	65	(h)	Receiv	e Band	Transm	it Band
(a) Channel No.	Assigned Bandwidth (kHz)	(c) T/R Mode	Center Frequency (MHz)	Polarization (H,V,L,R)	TT&C or Comm Channel (T or C)	(a) Transponder ID	Transponder Gain* (dB)	(c) Channel No.	(d) Beam ID	(e) Channel No.	(f) Beam ID
WB-L	370000	Т	8210	L	C						
WB-R	370000	Т	8210	R	C						
NB	59.7	Т	8394	R	Т						
CMD	128	R	2092.6	R	т						
	-										
						2					
											0
			[
						<u></u>					
						÷					0

*Transponder gain between output of receiving antenna and input of transmitting antenna. ***Also complete this table for half-links such as TT&C and on-board processing. In such cases, provide the receive or transmit information, as appropriate.

Rev 4d, June 19, 2003, 5:45 pm

FCC 312, Schedule S - Page 6 June, 2003

(a) Digital Mod. ID	(b) Emission Designator	(c) Assigned Bandwidth (kHz)	(d) No. of Phases	(e) Uncoded Data Rate (kbps)	(f) FEC Error Correction Coding Rate	(g) CDMA Processing Gain (dB)	(h) Total C/N Performance Objective (dB)	(i) Single Entry C/I Objective (dB)
WB-L	370MG1D	370000	4	370000				9.8
WB-R	370MG1D	370000	4	370000				9.8
NB	59K7G1D	59.7	4	59.7				9.8
CMD	128KG1D	128	2	128				9.8
-								
			-					
							-	

S11. DIGITAL MODULATION PARAMETERS For each digital emission provide:

Rev 4d, June 19, 2003, 5:45 pm

FCC 312, Schedule S - Page 7 June, 2003

S12. ANALOG MODULATION PARAMETERS For each analog emission provide:

(a) Analog Mod ID	(b) Emission Designator	(c) Assigned Bandwidth	(d) Signal Type*	(e) Channels per	(f) Ave. Companded Talker Level	Multi-channe (g) Bottom Baseband	(h) (h) Top Baseband	(i) RMS Modulation	(j) Video Standard NTSC, BAL etc	(k) Video Noise Weight-	(l) Video & SCPC/FM Modulation	(m) SCPC/FM Compander, Preemphasis, & Noise Weight-	(n) Total C/N Performance Objective	(0) Single Entry C/I Objective
1100.11		(KHZ)	(See DeloW)	Carrier	(dBm0)	Frea (MHz)	Frea. (MHz)	Index	PAL, CIC.	ing (ub)	maex	ing (dB)	(dB)	(dB)
	1		-		-									
				3							-			
											-			
			-											
	1													
			i		·						-	r		·
									-					
			-									-		
				ć										2

*Indicate whether signal is (a) FDM/FM, (b) CSSB/AM, (c) SCPC/FM, or (d) TV/FM. Rev 4d, June 19, 2003, 5:45 pm

FCC 312, Schedule S - Page 8 June, 2003

S13. TYPICAL EMISSIONS For each planned type of emission provide:

Asso	ciated	Modul	ation ID	(e)	(f)	(g) Noise	(h) Energy	Receive Bar	id (Assoc.Tra	nsmit Stn)		Transmit E	and (This Sp	ace Station)	1.1
Transponde	er ID Range	(c) Digital	(d) Analog	Carriers	Carrier	Budget	Dispersal	(i)Assoc.Stn	Assoc.	Station	EIRP	(dBW)	Max. Power	Flux Density	(p) Assoc. Stn
(a) Start	(b) End	(Table S11)	(Table S12)	Transponder	(kHz)	(Table No.)	(kHz)	Gain (dBi)	(i) Min.	(k) Max	(l) Min.	(m) Max	(n)dBW/m2	(o)Ref. BW** (4kHz or 1MHz)	Rec. G/T (dB/K)
							-				1	1		-	
-															
2															
								-							
1															

* For those emissions using energy dispersal, provide the bandwidth of the energy dispersal. Otherwise, leave blank.
**Use a Reference Bandwidth of 4 kHz or 1 MHz as appropriate to the FCC Rules that apply to the subject frequency band (§ 25.208). Rev 4d, June 19, 2003, 5:45 pm

FCC 312, Schedule S - Page 9 June, 2003

	260		
S14b. City Longmont	S14c. County Boulder	S14d. State / Country CO	\$14e. Zip Code 80503
S14f. Telephone Number 303-684-4000	S14g. Call Si	ign of Control Station (if appropriate)	
S14a. Street Address			
S14b. City	S14c. County	S14d. State / Country	S14e. Zip Code
S14f. Telephone Number	S14g. Call Si	ign of Control Station (if appropriate)	
S14a. Street Address			
S14b. City	S14c. County	S14d. State / Country	S14e. Zip Code
S14f. Telephone Number	S14g. Call Si	ign of Control Station (if appropriate)	
S14a. Street Address			
S14b. City	S14c. County	S14d. State / Country	S14e. Zip Code
S14f. Telephone Number	S14g. Call Si	ign of Control Station (if appropriate)	
S14a. Street Address			
	S14c. County	S14d. State / Country	S14e. Zip Code
S14b. City			
S14b. City S14f. Telephone Number	S14g. Call Si	ign of Control Station (if appropriate)	
S14b. City S14f. Telephone Number S14a. Street Address	S14g. Call Si	ign of Control Station (if appropriate)	

Rev 4d, June 19, 2003, 5:45 pm

Page 11: Characteristics & Certifications

S15a. Mass of spacecraft without fuel (kg) 1722	Spacecraft Dimensions	Probability of Survival
S15b. Mass of fuel & disposables at launch (kg) 180	(meters)	to End of Life (0.0 - 1.0)
S15c. Mass of spacecraft and fuel at launch (kg)	S15f. Length (m)	S15i. Payload
1902	6.15	0.933
S15d. Mass of fuel, in orbit, at beginning of life (kg)	S15g. Width (m)	S15j. Bus
173.5	2.38	0.769
S15e. Deployed Area of Solar Array (square meters)	S15h. Height (m)	S15k. Total
18.2	4.09	0.717

S15. SPACECRAFT PHYSICAL CHARACTERISTICS

S16. SPACECRAFT ELECTRICAL CHARACTERISTICS

Spacecraft	Electrical Po At Beginn	ower (Watts) ing of Life	Electrical Power (Watts) At End of Life				
Subsystem	At Equinox	At Solstice	At Equinox	At Solstice			
Payload (Watts)	^(a) 318	^(f) 318	^(k) 318	^(p) 318			
Bus (Watts)	^(b) 1306	^(g) 1306	(1) 1306	^(q) 1306			
Total (Watts)	^(c) 1624	^(h) 1624	^(m) 1624	^(r) 1624			
Solar Array (Watts)	^(d) 4559	⁽ⁱ⁾ 4413	⁽ⁿ⁾ 3911	^(s) 3786			
Depth of Battery Discharge (%)	^(e) 27 %	^(j) 27 %	⁽⁰⁾ 27 %	^(t) 27 %			

S17. CERTIFICATIONS

a. Are the power flux density limits of § 25.208 met?	YES	NO	X N/A
b. Are the appropriate service area coverage requirements of § 25.143(b)(ii) and (iii), or § 25.145(c)(1) and (2) met?	YES	NO	X N/A
c. Are the frequency tolerances of § 25.202(e) and the out-of-band emission limits of § 25.202(f)(1), (2), and (3) met?	X YES	NO	N/A
		e	

In addition to the information required in this Form, the space station applicant is required to provide all the information specified in Section 25.114 of the Commission's rules, 47 C.F.R. § 25.114.

ATTACHMENT B

Summary Information Related to GeoEye Non-GSO EESS Remote Sensing Satellite System

GE1		10		
370 IVIDPS DA	ATA KATE DOWNLINK ANALYS	00	Dulles, VA	
Fo = 8.210 G	OQPSK Hz Modulation	590	km Altitude	
DOWNLINK I	PARAMETERS:			
Fre	equency		8.21	GHz
Or	oit height in km		590	km
Lo	cal elevation above hor.		5	degrees
Da	ta rate		370	Mbps
Ba	ndwidth (baseband)		185	MHz
Sp	acecraft ant. EIRP at max scan		55.8	dBm
Sla	int range		2304.74	km
Gr	ound ant. G/T		27.9	dB/K
BE	R		5.00E-04	
Re	quired Eb/No (without coding)		8.3	dB
Ha	rdware imp. BER loss		-2.5	dB
LINK CALCU	LATION:			
TOTAL POW	ER TO			
GROUND:				
Sa	tellite EIRP		55.8	dBm
Pa	th loss		-178.0	dB
То	tal loss (rain, polarization, etc.)		-3.8	dB
RECEIVER S	ENSITIVITY:			
Re	quired Eb/No		8.3	dB
Av	ailable Eb/No		11.1	dB
DC	WNLINK MARGIN		2.8	dB
ANTENNA SI	7FS·			
Spacecraft A	ntenna			
Segment				
Sp	acecraft dish diameter		19.7	inches
Ap	prox. HPBW		9.0	degrees
Ga	in of spacecraft antenna		26.0	dBic
Lo	ss between HPA out and ant. out	put	-9.0	dB
Tra	ansmitter Po		7.5	watts
Elf	RP of satellite system		55.8	dBm
Ground Ante	nna Segment			
Gr	ound antenna			
G/	Г		27.9	dB/K
Sy	stem noise temperature		171.6	K (referenced at aperture)
Dir	ectivity gain ground antenna		52.3	dBic
Gr	ound dish diameter		5.4	meters
Ар	prox. HPBW		0.5	degrees

GE1					
370 Mbps D	DATA RATE DO	OWNLINK ANALYS	SIS	Dulles, VA	
		ck			
Fo = 8.210	GHz Mod	ulation	770	km Altitude	
		<u>!S:</u>			
F	Frequency			8.21	GHz
C	Drbit height in k	m		770	km
L	ocal elevation	above hor.		5	degrees
C	Data rate			370	Mbps
E	Bandwidth (base	eband)		185	MHz
S	Spacecraft ant.	EIRP at max scan		55.8	dBm
S	Slant range			2718.88	km
0	Ground ant. G/T	-		27.9	dB/K
E	BER			5.00E-04	
F	Required Eb/No	(without coding)		8.3	dB
F	Hardware imp. E	BER loss		-2.5	dB
LINK CALC TOTAL PO GROUND:	ULATION: WER TO				
5	Satellite EIRP			55.8	dBm
F	Path loss			-179.4	dB
Т	Total loss (rain,	polarization, etc.)		-3.8	dB
RECEIVER	SENSITIVITY:				
F	Required Eb/No			8.3	dB
A	vailable Eb/No			10.0	dB
		RGIN		1.7	dB
ANTENNA Spacecraft Segment	<u>SIZES:</u> Antenna				
5	Spacecraft dish	diameter		19.7	inches
A	Approx. HPBW			9.0	degrees
0	Gain of spaceer	aft antenna		26.0	dBic
L	oss between H	PA out and ant. out	put	-9.0	dB
Т	ransmitter Po			7.5	watts
E	EIRP of satellite	system		55.8	dBm
Ground An	tenna Segmen	<u>it</u>			
	Fround antenna	1		07.0	
0				27.9	
	system noise te	mperature		171.6	K (referenced at aperture)
	Directivity gain (ground antenna		52.3	aric
	round dish dia	meter		5.4	meters
A	Approx. HPBW			0.5	degrees

GE1				
370 Mbps D	ATA RATE DOWNLINK ANALY	SIS	Dulles, VA	
Fo = 8.210 (OQPSK GHz Modulation	830	km Altitude	e
	PARAMETERS:		0.04	
F	requency		8.21	GHZ
	rbit neight in km		830	KM da waa a
	ocal elevation above nor.		5	degrees
	ala rale		370	
В	andwidth (baseband)		185	
3	pacecrait ant. EIRP at max scan			dBm Ism
5	ant range		2847.85	
G	round ant. G/1		27.9	0B/K
В			5.00E-04	
R	equired Eb/No (without coaing)		8.3	
н	ardware imp. BER loss		-2.5	dВ
LINK CALC TOTAL POV GROUND:	ULATION: VER TO			
S	atellite EIRP		55.8	dBm
P	ath loss		-179.8	dB
Т	otal loss (rain, polarization, etc.)		-3.8	dB
RECEIVER	SENSITIVITY:			
R	equired Eb/No		8.3	dB
A	vailable Eb/No		9.7	dB
D	OWNLINK MARGIN		1.4	dB
ANTENNA S Spacecraft Segment	<u>SIZES:</u> Antenna			
S	pacecraft dish diameter		19.7	inches
A	pprox. HPBW		9.0	degrees
G	ain of spacecraft antenna		26.0	dBic
L	oss between HPA out and ant. or	utput	-9.0	dB
Т	ransmitter Po		7.5	watts
E	IRP of satellite system		55.8	dBm
Ground Ant	enna Segment			
G	round antenna			
G	/Τ		27.9	dB/K
S	ystem noise temperature		171.6	K (referenced at aperture)
D	irectivity gain ground antenna		52.3	dBic
G	round dish diameter		5.4	meters
A	pprox. HPBW		0.5	degrees

GE-1								
TELEME	TRY DOWNLINK			NADIR AN	ITENNA			
			.					
	FREQUENCY	8.394	GHz			TH IT	0.04	METERS
	POWER	2.0	WATTS		RANGE		2304.74	KM
	ALTITUDE	590.0	KM					
				DATA RA	TE	59.7	KBPS	
				MARGIN				
				DATA	6.0	dB		
	ANTENNA: NADIR							
			dPm					
	PASSIVE LOSS		dB		-15 5			
	S/C ANTENNA GAIN > +/-1()8	uD		-10.0			
	DEG		dBic		0.0			
	FREE SPACE DISPERSION	l						
	LOSS		dB		-178.2			
	ATMOSPHERIC LOSS		dB		-2.9			
	G/T		dB/K		27.6			
		/т	dBm/K		-136.0			
	BOLTZMANN	/ 1	ubm/n		-130.0			
	CONSTANT		dBm/Hz-K		-198.6			
	TOTAL RECEIVED POWER	/KT	dB-Hz		62.6			
	DATA CHANNEL							
					CD C			
		De			02.0 47.9			
		050			47.0			
			dB		14.9			
			dB		13.1 1.2			
	AVAILABLE SIGNAL MARG	IN	dB					
					5.0			

GE-1								
TELEME	TRY DOWNLINK			NADIR AN	ITENNA			
	FREQUENCY	8.394	GHz		WAVELENG	TH	0.04	METERS
	POWER	2.0	WATTS		RANGE		2718.88	KM
	ALTITUDE	770.0	KM					
				DATA RA	TE	59.7	KBPS	
				ΠΔΤΔ	45	dB		
				DAIA	4.5	uВ		
	ANTENNA: NADIR							
	PARAMETER		UNITS		VALUE			
	TOTAL TRANSMIT POWER		dBm		33.0			
	PASSIVE LOSS		dB		-15.5			
	S/C ANTENNA GAIN > +/-10)8						
	DEG		dBic		0.0			
	FREE SPACE DISPERSION				470.0			
	LUSS		dB		-179.6			
			aв		-2.9			
	G/T		dB/K		27.6			
	TOTAL RECEIVED POWER	/Т	dBm/K		-137.4			
	BOLTZMANN	/ •	abnint		10711			
	CONSTANT		dBm/Hz-K		-198.6			
	TOTAL RECEIVED POWER	/KT	dB-Hz		61.2			
	DATA CHANNEL							
	DATA POWER/KT		dB-Hz		61.2			
	INFORMATION RATE 32 KE	BPS	dB-Hz		47.8			
	AVAILABLE S/N		dB		13.4			
	REQUIRED Eb/No 1.00E-6 E	BER	dB		13.1			
	CODING GAIN		dB		4.2			
	AVAILABLE SIGNAL MARG	IN	dB		4.5			

GE-1									
TELEMETRY DOWNLINK				NADIR ANTENNA					
	FREQUENCY 8.3		GHz		WAVELENG	TH	0.04	METERS	
	POWER	2.0			5 DEG SLAN	11	2847 85	КM	
		2.0 830.0	KM		NANGL		2047.03	I XIVI	
	ALTHODE .	000.0		DATA RA	TE	59.7	KBPS		
							-		
				MARGIN					
				DATA	4.1	dB			
	ANTENNA: NADIR								
	ANTENNA. NADIN								
	PARAMETER		UNITS		VALUE				
	TOTAL TRANSMIT POWER		dBm		33.0				
	PASSIVE LOSS		dB		-15.5				
	S/C ANTENNA GAIN > +/-108								
			dBic		0.0				
	I OSS		dB		-180.0				
	ATMOSPHERIC LOSS		dB		-2.9				
	GROUND STATION		0.2						
	G/T		dB/K		27.6				
	TOTAL RECEIVED POWER	/T	dBm/K		-137.8				
			dBm/Hz_K		-108.6				
	TOTAL RECEIVED POWER	/KT	dB-H7		60.8				
					00.0				
	DATA CHANNEL								
	DATA POWER/KT		dB-Hz		60.8				
	INFORMATION RATE 32 KE	BPS	dB-Hz		47.8				
	AVAILABLE S/N		dB		13.0				
	REQUIRED Eb/No 1.00E-6 E	BER	dB		13.1				
			dB		4.2				
	AVAILABLE SIGNAL MARG	IIN	aв		4.1				

GE-1								
COMMAND								
<u>UPLINK</u>	LINK OMNI ANTENNA NOMINAL							
DigitalGlobe								
FREQUENCY	2.0920000	GHz						
UPLINK	51.3	dBW EIRP	WAVELE	WAVELENGTH 5 DEG SLANT		METERS		
			5 DEG SL					
ALTITUDE	519.0	KM	RANGE	RANGE		KM		
				DATA				
	4 53	545		RATE	64	KBPS		
CMD MOD INDEX	1.5 <i>1</i>	RAD		MARGIN	7.8	dB		
ANTENNA: OMNIN	NOMINAL +/-	75 DEG						
PARAMETER			UNIT	UNIT				
UPLINK EIRP			dBW		51.3			
FREE SPACE DISPI	ERSION LOS	S	dB		-165.4			
POINTING LOSS			dB		0.0			
ATMOSPHERIC LOSS			dB		-1.1			
S/C ANTENNA GAIN < +/- 75 DEG			dBi		-10.0			
POLARIZATION LOSS			dB		-0.5			
S/C LINE LOSS			dB		-4.7			
TOTAL S/C RECEIV	dBm		-100.4					
SYSTEM TEMPERA	dB-K	dB-K						
G/T			dB/K	dB/K				
			dB-Hz	dB-Hz 68.				
					0010			
					1.00E-			
REQUIRED BIT ERF			06					
RECEIVED EB/N0	dB		20.4					
IMPLEMENTATION	dB		-2					
REQUIRED EB/N0	dB		10.6					
MARGIN	dB		7.8					

GE-1								
COMMAND								
<u>UPLINK</u>	INK OMNI ANTENNA NOMINAL							
DigitalGlobe								
FREQUENCY	2.0920000	GHz						
UPLINK	51.3	dBW EIRP	WAVELE	WAVELENGTH 5 DEG SLANT		METERS		
			5 DEG SL					
ALTITUDE	770.0	KM	RANGE	RANGE		KM		
				DATA				
				RATE	64	KBPS		
CMD MOD INDEX	1.57	RAD		MARGIN	5.7	dB		
ANTENNA: OMNIN	NOMINAL +/-	75 DEG						
PARAMETER			UNIT	UNIT				
UPLINK EIRP			dBW		51.3			
FREE SPACE DISPI	ERSION LOS	S	dB		-167.5			
POINTING LOSS			dB		0.0			
ATMOSPHERIC LOSS			dB		-1.1			
S/C ANTENNA GAIN < +/- 75 DEG			dBi		-10.0			
POLARIZATION LOSS			dB		-0.5			
S/C LINE LOSS			dB		-4.7			
TOTAL S/C RECEIV	dBm		-102.6					
SYSTEM TEMPERA	dB-K		29.7					
G/T			dB/K	dB/K				
RECEIVED C/N0			dB-Hz	dB-Hz 60				
					00.1			
					1.00E-			
REQUIRED BIT ERF			06					
RECEIVED EB/N0	dB		18.3					
IMPLEMENTATION LOSS			dB	dB				
REQUIRED EB/N0	dB		10 6					
MARGIN	dB		57					

GE-1								
COMMAND								
<u>UPLINK</u>	LINK OMNI ANTENNA NOMINAL							
DigitalGlobe								
FREQUENCY	2.0920000	GHz						
UPLINK	51.3	dBW EIRP	WAVELEN	WAVELENGTH 5 DEG SLANT		METERS		
			5 DEG SL					
ALTITUDE	830.0	KM	RANGE	RANGE		KM		
				DATA				
				RATE	64	KBPS		
CMD MOD INDEX	1.57	RAD		MARGIN	5.3	dB		
ANTENNA: OMNI N	NOMINAL +/-	75 DEG						
PARAMETER			UNIT		VALUE			
UPLINK EIRP			dBW		51.3			
FREE SPACE DISPI	ERSION LOS	S	dB		-167.9			
POINTING LOSS	dB		0.0					
ATMOSPHERIC LOSS			dB		-1.1			
S/C ANTENNA GAIN < +/- 75 DEG			dBi		-10.0			
POLARIZATION LOSS			dB		-0.5			
S/C LINE LOSS			dB		-4.7			
TOTAL S/C RECEIV	dBm		-103.0					
SYSTEM TEMPERA			dB-K	dB-K				
G/T	dB/K	dB/K						
			dB-Hz	dB-Hz 66.0				
			40112		00.0			
					1.00F-			
REQUIRED BIT ERF	ROR RATE				06			
RECEIVED EB/N0	dB		17.9					
IMPLEMENTATION	dB		-2					
REQUIRED EB/NO	dB		10 6					
MARGIN	dB		53					

ATTACHMENT C

Predicted Antenna Gain Patterns

TECHNICAL CERTIFICATE

I, Jeff Culwell, hereby certify, under penalty of perjury, that I am the technically qualified person responsible for the preparation of the engineering information contained in the technical portions of the foregoing amendment and the related attachment, that I am familiar with Part 25 of the Commission's Rules, and that the technical information is complete and accurate to the best of my knowledge and belief.

Jeff Culwell /s/

Jeff Culwell VP Operations DigitalGlobe, Inc.

Dated: November 25, 2013