Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554

In the Matter of Application by)
SES AMERICOM INC) E^{1}
SES AMERICOM, INC.) File No. SAT-MOD
) Call Sign S2181
For Modification of AMC-16)
Fixed-Satellite Space Station License)

APPLICATION OF SES AMERICOM, INC.

SES Americom, Inc. (doing business as "SES"), hereby respectfully requests a modification of its license for the AMC-16 fixed-satellite space station to permit reorientation of the satellite's Ka-band beams. Grant of the requested authority will enable SES to tailor the Ka-band coverage of AMC-16 to better accommodate customer service requirements.

A completed FCC Form 312 is attached, and SES incorporates by reference the technical information previously provided in support of AMC-16.¹ In addition, SES is providing information relating to the proposed modification to the AMC-16 license in the attached Technical Appendix and Schedule S.

MODIFICATION

AMC-16 is a Ku/Ka-band hybrid spacecraft launched in 2004 and operating at 85° W.L. SES has a customer request for repointing to slightly adjust the satellite's Ka-band

coverage. No change in the Ku-band gain contours of the satellite is planned. SES proposes to

¹ See File Nos. SAT-MOD-20060929-00113; SAT-MOD-20050621-00132; SAT-AMD-20051115-00218; SAT-RPL-20040227-00024; SAT-MOD-20040227-00022 & SAT-LOA-19950929-00133.

accomplish the desired effect by reorienting AMC-16 to obtain the desired Ka-band coverage and using the gimbal on the Ku-band antenna to maintain the current Ku-band coverage pattern.

Reorientation of AMC-16 as proposed will not adversely affect any other operators. The technical appendix includes an interference analysis demonstrating that operation of the AMC-16 Ka-band antenna with the proposed modified coverage will conform to Commission requirements for operations at two-degree spacing. AMC-16 will also be operated consistent with applicable existing and future coordination agreements.²

Furthermore, the proposed change will not impair service to existing customers. Because there will be no change to the AMC-16 Ku-band coverage area, customers receiving Ku-band service from AMC-16 will be unaffected.

The Commission has generally permitted satellite operators the flexibility to design and modify their networks in response to customer requirements, absent compelling countervailing public interest considerations.³ Here, grant of the requested modification will permit SES to accommodate customer requirements and facilitate efficient use of AMC-16 to provide service to customers.

² SES has previously coordinated the Ka-band operations of AMC-16 with U.S. Federal systems, as required by footnote US 334 to the table of frequency allocations, 47 C.F.R. § 2.106. SES will advise the appropriate U.S. government representative regarding the proposed change in coverage of the AMC-16 Ka-band payload.

³ See, e.g. AMSC Subsidiary Corporation, 13 FCC Rcd 12316 at \P 8 (IB 1998) (the Commission generally leaves space station design decisions to the licensee "because the licensee is in a better position to determine how to tailor its system to meet the particular needs of its customers") (footnote omitted).

WAIVER REQUEST

SES seeks any necessary waiver of Sections 25.114(d)(14)(ii) and 25.283(c) of

the Commission's rules in connection with the requested AMC-16 modification.⁴ Grant of the waiver is consistent with Commission policy:

The Commission may waive a rule for good cause shown. Waiver is appropriate if special circumstances warrant a deviation from the general rule and such deviation would better serve the public interest than would strict adherence to the general rule. Generally, the Commission may grant a waiver of its rules in a particular case if the relief requested would not undermine the policy objective of the rule in question and would otherwise serve the public interest.⁵

Sections 25.114(d)(14)(ii) and 25.283(c) address requirements relating to venting

stored energy sources at the spacecraft's end of life.⁶ AMC-16 is a Lockheed Martin A2100

model spacecraft. As described in more detail in the attached Technical Appendix, the oxidizer

tanks on the spacecraft were sealed following completion of the launch phase and will therefore

retain residual pressure when the spacecraft is retired. Given the spacecraft design, it is

physically impossible for SES to vent the oxidizer tanks in order to comply with

Section 25.283(c).

Under Commission precedent, grant of a waiver is warranted. In a number of

cases involving various spacecraft models with similar limitations, the Commission has waived

⁵ *PanAmSat Licensee Corp.*, 17 FCC Rcd 10483, 10492 (Sat. Div. 2002) (footnotes omitted).

⁴ As discussed in the Technical Appendix, operation of AMC-16 as modified will conform to the terms of the waiver previously granted by the Commission with respect to the crosspolarization isolation requirements of Section 25.210(i) of the Commission's rules. *See* Technical Appendix at 2 & n.3.

⁶ Section 25.283(c) contains the substantive venting requirement, and Section 25.114(d)(14)(ii) requires applicants to submit information that addresses "whether stored energy will be removed at the spacecraft's end of life." 47 C.F.R. § 25.114(d)(14)(ii).

Section 25.283(c) to permit launch and operation of spacecraft that do not allow for full venting of pressure vessels at end of life, based on a finding that modifying the space station design at a late stage of construction would pose an undue hardship.⁷ SES would have faced the same hardship if it had been required to alter the design of AMC-16 to conform to Section 25.283(c) prior to launch of the spacecraft.

With AMC-16 already in orbit and operational, there is no question of bringing the satellite into compliance with the rule. The Commission has expressly recognized this, finding a waiver of Section 25.283(c) to be justified for in-orbit spacecraft that cannot satisfy the rule's requirements. For example, in a decision involving the SES AMC-2 satellite, the Commission waived the rule on its own motion, observing that venting the spacecraft's sealed oxidizer tanks "would require direct retrieval of the satellite, which is not currently possible."⁸

The same practical obstacle is present here. Because AMC-16 is already in orbit, SES can do nothing to enable full venting of residual pressure in the oxidizer tanks. Given this reality, a waiver is clearly warranted.

⁷ See, e.g., EchoStar Satellite Operating Corp., Call Sign S2746, File No. SAT-LOA-20071221-00183, grant-stamped Mar. 12, 2008, Attachment at ¶ 4 (granting a partial waiver of Section 25.283(c) for AMC-14, a Lockheed Martin A2100 model spacecraft, on the grounds that requiring modification of the satellite would present an undue hardship); *DIRECTV Enterprises LLC*, Call Sign S2797, File No. SAT-LOA-20090807-00086, grant-stamped Dec. 15, 2009, Attachment at ¶ 4 (same for DIRECTV 12, a Boeing 702 model spacecraft); *PanAmSat Licensee Corp.*, Call Sign S2237, File Nos. SAT-MOD-20070207-00027, SAT-AMD-20070716-00102, grant-stamped Oct. 4, 2007, Attachment at ¶ 7 (same for Intelsat 11, an Orbital Sciences Star model spacecraft).

⁸ SES Americom, Inc., Call Sign S2134, File No. SAT-MOD-20101215-00261, grantstamped Mar. 8, 2011, Attachment at ¶ 4. See also XM Radio Inc., Call Sign S2616, File No. SAT-MOD-20100722-00165, grant-stamped Oct. 14, 2010, Attachment at ¶ 2 (waiving Section 25.283(c) for XM-4, a Boeing 702 model spacecraft, because "modification of the spacecraft would present an undue hardship, since XM-4 is an in-orbit space station and venting XM-4's helium and xenon tanks would require direct retrieval of the satellite, which is not currently possible").

CONCLUSION

For the foregoing reasons, SES respectfully requests expeditious grant of a

modification of the AMC-16 license to permit reorientation of the spacecraft in order to adjust

the Ka-band footprint as described herein.

Respectfully submitted,

SES AMERICOM, INC.

By: <u>/s/ Daniel C.H. Mah</u>

Of Counsel Karis A. Hastings SatCom Law LLC 1317 F Street, N.W., Suite 400 Washington, D.C. 20004 Tel: (202) 599-0975

Daniel C.H. Mah Regulatory Counsel SES Americom, Inc. Four Research Way Princeton, NJ 08540

Dated: December 24, 2012

TECHNICAL APPENDIX

<u>1.0</u> Overall Description

This technical appendix is being filed in support of the application of SES Americom for modification of the license for the AMC-16 Ku-band/Ka-band spacecraft to change the pointing of the Ka-band beams. The Ku-band beam pointing remains unchanged; as a result, the accompanying Schedule S only provides information on the Ka band payload. This modification also provides some minor updates to the spacecraft operating conditions. As modified, the spacecraft's Ka-band payload (downlinks in the frequency ranges of 18.6-18.8 GHz and 19.7-20.2 GHz and uplinks in the frequency ranges of 28.4-28.6 GHz and 29.5-30 GHz) will continue to operate with 10 spot beams¹ providing coverage of the Continental United States, but with a slightly different coverage for each beam.

The interference analysis provided in Appendix 2 of this filing demonstrates that AMC-16 complies with Commission standards for Ka-band operations in a two-degree spacing environment with the modified pointing. Specifically, the analysis shows that the limits in Section 25.138 will be met and therefore this modification will not adversely affect adjacent satellite operations.

In addition, this modification application updates the polarizations associated with AMC-16's TT&C sub-system and also updates some of the spacecraft's physical and electrical characteristics.

¹ The Ka-band payload of AMC-16 has 12 spot beams. However, only 10 spot beams are used in the configuration described in this modification application. Two of the 12 spot beams are turned off because they do not cover geographic areas where service can be provided.

Table 1 below provides a cross-reference to technical information supplied in the 2004

application² for the AMC-16 Ka-band payload and identifies whether any changes are proposed

in the instant modification, with citations to the location of the modified information.

	Section number	Location herein
	in the 2004 Ka-	of any revised
	band Filing	information
Overall Description	1.0	1.0
Communications Payload	2.0	2.0
Transponder Characteristics	2.1	2.1
- Ku-band configuration	2.1.1	No changes
- Ka-band configuration	2.1.2	2.1
Emission Designators	2.2	2.2
Communications Coverage	2.3	
- Ku-Band Transponders	2.3.1	No changes
- Ka-band Transponders	2.3.2	2.3; App. 1
Noise Temperatures	2.4	No changes
• Gain	2.5	No changes
Flux Control/IF Processor Attenuators	2.6	No changes
Saturation Flux Density	2.7	No changes
Transponder Gain	2.8	No changes
Spurious Emissions	2.9	No changes
Cross Polarization Isolation ³	2.10	No changes
Frequency Tolerance	2.11	No changes
Link Budgets	2.12	2.4
Cessation of Emissions	2.13	No changes
Interference Analysis	2.14	No changes for
-		Ku; Appendix 2

 Table 1: Ka-band Technical Information

² File No. SAT-MOD-20040227-00022 (the "2004 Ka-band Filing").

³ The grant of the 2004 Ka-band Filing included a waiver of the cross-polarization isolation requirements contained in Section 25.210(i) for the Ka-band payload. *See* File No. SAT-MOD-20040227-00022, grant-stamped Sept. 2, 2004, Terms and Conditions at ¶ 4 (authorizing AMC-16 with a Ka-band cross-polarization isolation ratio of 23 dB throughout the spacecraft's service area rather than the 30 dB required under the rule based on a demonstration that the shortfall will not adversely impact any other operator). The operation of the Ka-band payload under the modification proposed herein will continue to comply with the terms of this waiver.

Spacecraft Bus Description	3.0	No changes
• Tracking, Telemetry, and Command (TT&C)	3.1	3.1
Subsystem ⁴		
• Attitude Control and Station-keeping subsystem	3.2	No changes
Electrical Power Subsystem	3.3	3.2
Propulsion	3.4	No changes
• Structural Compatibility, Dimensions and Mass	3.5	3.3
Budget		
Thermal Control Subsystem	3.6	No changes
Reliability and operational life	3.7	No changes
Orbital Arc Considerations	4.0	No changes
Appendix 1 Coverage Maps for Ku-Band Contours		No changes
Appendix 2 Coverage Maps for Ka-Band Contours		Appendix 1
Section 25.138 Analysis (Ka-band Two Degree		Appendix 2
Spacing)		

2.0 Communications Payload: Ka-band configuration

2.1 Frequency Plan

In the Ka-band frequencies, AMC-16 will utilize 10 transponders of 125 MHz each, using spatial separation to provide two times frequency re-use. Each beam has two modes that are selectable by ground command: a centered wideband channel of 125 MHz or three subchannels of 39 MHz each. Each uplink beam can be routed to any or all downlink beams individually. Any 39 MHz subchannel can be switched to any of the three downlink subchannels by ground command. Each transponder will have a maximum EIRP of between 60.7 and 62 dBW/125 MHz. The frequency plan for the Ka-band transponders will continue to be that shown in Table 2. The frequency plan for the 10 operational beams is shown in Table 3.

⁴ The Ka-band beacon (18584 MHz, LHCP) is not presently used for TT&C purposes, although it is switched on in order for the Ka-band traffic to have a reference and to locate the spacecraft. This will not change with the repointing.

Channel number	Uplink Center Frequency (GHz)	Downlink Center Frequency (GHz)
1	28.5005	18.7005
2	29.5625	19.7625
3	29.6875	19.8875
4	29.8125	20.0125
5	29.9375	20.1375

Table 2: Ka-Band Frequency Plan

Table 3: Uplink and downlink frequencies of beams and subchannels

Note: The center frequencies of wideband (125 MHz) channels are the same as those of subchannel "b" of that beam.

		Uplink frequency	Downlink frequency
Beams	Subchannel	(GHz)	(GHz)
	а	28.4575	18.6575
1A, 1B	b	28.5005	18.7005
	с	28.5435	18.7435
	а	29.5195	19.7195
2A, 2B	b	29.5625	19.7625
	с	29.6055	19.8055
	а	29.6445	19.8445
3A, 3B	b	29.6875	19.8875
	с	29.7305	19.9305
	а	29.7695	19.9695
4A, 4B	b	29.8125	20.0125
	с	29.8555	20.0555
	a	29.8945	20.0945
5A, 5B	b	29.9375	20.1375
	с	29.9805	20.1805

2.2 Emission Designators

The emission designators for communications, command, and downlink beacon signals as well as typical communications carriers to be used on AMC-16 are shown in Table 4.

Signal	Emission Designator
Command	800KF9D
Telemetry/Ranging	300KF9D
Digital Compressed Television	36M0G7W
Digital Compressed Television	27M0G7W
Digital SCPC – FDMA 56 kbps, QPSK Modulated	100KG1W
T1 (1.544 Mbps), QPSK Modulated	1M60G7W
High Speed Digital Data (various data rates & modulation/coding rates)	42M0G7W
High Speed Digital Data (60 Mbps) 8PSK Modulated	39M1G7W
Digital TV (8 Mbps) QPSK Modulated	7M00G7W
High Speed Digital Data (100 Mbps) QPSK Modulated	98M0G7W
High Speed Digital Data (73 Mbps) 8PSK Modulated	48M0G7W
High Speed Digital Data (110 Mbps) 16QAM Modulated	42M0G7W
VSAT return link (1.2 Mbps) QPSK Modulated	1M50G7W
VSAT return link (various data rates and modulation/coding rates)	2M40G7W, 305KG1W, 36K0G1W

Table 4: Emission Designators

2.3 Ka-band Transponders

Attached hereto as Appendix 1 are coverage maps of each individual beam for the proposed nominal pointing. The maximum EIRP of any Ka-band beam ranges from 60.7 to 62.0 dBW/125 MHz.

2.4 Ka-band Link Budgets

This section reproduces the Ka-band link budgets contained in the 2004 Ka-band Filing, with

some minor editorial changes.

The services provided by AMC-16 will be wide ranging, including digital TV and digital transmission services ranging from 56 kbps to high-speed. Table 5 provides the characteristics of the earth stations used for this analysis at Ka-band. Tables 6-19 contain the link budget data described above using the earth station characteristics of Table 5.

Carrier Type	Earth Station Diameter Uplink (meters)	Earth Station Diameter Downlink (meters)
8-PSK 60 MBPS Data	6.0	1.2
Digital TV 8 MBPS QPSK	4.5	1.2
QPSK 100 MBPS Data	6.0	0.65
8PSK 73 MBPS Data	6.0	0.65
QPSK 1.2 MBPS Data	0.65	6.0
QPSK 3/4 DVB S2 52 Mbps	8.0	0.65
8PSK 2/3 DVB S2 70 Mbps	8.0	0.65
16APSK 3/4 DVB S2 100 Mbps	8.0	0.65
QPSK 3/4 DVB S2 3 Mbps	0.65	8.0
8PSK 2/3 DVB S2 4 Mbps	0.65	8.0
QPSK 3/4 DVB S2 380 kbps	0.65	8.0
BPSK 2/3 DVB S2 20 kbps	0.65	8.0

Table 5: Ka-Band Earth Station Sizes Used in Link Budget Analysis(Table 24 in 2004 application)

Parameter	8PSK 2-3 DVB S2 60 Mbps	QPSK 3-4 RS 8 Mbps
Transmit Power(dBW)	11.34	9.41
Transmit Loss (dB)	-1.00	-1.00
Antenna Gain (dBi)	63.49	60.99
Ground Station EIRP (dBW)	73.83	69.40
Uplink Rain Loss (dB)	0.00	0.00
Free Space Loss (dB)	-213.33	-213.33
Satellite G/T (dB/K)	9.00	9.00
Data Rate (dB-Hz)	77.77	69.03
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60
Eb/No (dB)	20.33	24.64
Eb/Io (dB)	17.34	18.59
Total Eb/(No + Io) (dB) For 10^{-7}	15.57	17.63

Table 6: Uplink Link Budget Calculations Digital
(Table 25 in 2004 application)

Table 7: Downlink Link Budget and Overall Calculation Digital(Table 26 in 2004 application)

Parameter	8PSK 2-3 DVB S2 60 Mbps	QPSK 3-4 RS 8 Mbps
Satellite Carrier EIRP (dBW)	50.33	42.60
Downlink Rain Loss (dB)	-9.00	-9.00
Free Space Loss (dB)	-209.93	-209.93
Ground Station G/T (dB/K)	25.59	25.59
Bit Rate (dB-Hz)	77.77	69.03
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60
Eb/No (dB)	7.82	8.83
Eb/Io (dB)	17.34	18.59
Eb/(No + Io) (dB)	7.36	8.39
Total UP/DOWN Eb/(No+Io) (dB)	6.75	7.90
Required Total Eb/(No+Io) (dB)	4.60	5.50
Margin (dB)	2.15	2.40

Parameter	QPSK 2-3 RS 100 Mbps	8PSK 2-3 RS 73 Mbps
Transmit Power(dBW)	18.31	14.56
Transmit Loss (dB)	-1.00	-1.00
Antenna Gain (dBi)	63.49	63.49
Ground Station EIRP (dBW)	80.80	77.05
Uplink Rain Loss (dB)	0.00	0.00
Free Space Loss (dB)	-213.33	-213.33
Satellite G/T (dB/K)	9.00	9.00
Data Rate (dB-Hz)	80.00	78.63
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60
Eb/No (dB)	25.07	22.69
Eb/Io (dB)	18.11	16.34
Total Eb/(No + Io) (dB) For 10^{-7}	17.31	15.44

Table 8: Uplink Link Budget Calculations Wide Band Digital
(Table 27 in 2004 application)

Table 9: Downlink Link Budget and Overall Calculation Wide Band Digital(Table 28 in 2004 application)

Parameter	QPSK 2-3 RS 100 Mbps	8PSK 2-3 RS 73 Mbps*
Satellite Carrier EIRP (dBW)	59.10	52.25
Downlink Rain Loss (dB)	-9.00	-1.00
Free Space Loss (dB)	-209.93	-209.93
Ground Station G/T (dB/K)	20.26	20.26
Bit Rate (dB-Hz)	80.00	78.63
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60
Eb/No (dB)	9.03	11.55
Eb/Io (dB)	18.11	16.34
Eb/(No + Io) (dB)	8.53	10.31
Total UP/DOWN Eb/(No+Io) (dB)	7.99	9.14
Required Total Eb/(No+Io) (dB)	5.00	6.80
Margin (dB)	2.99	2.34

*For these links, the coding rate is controlled dynamically to compensate for rain fade.

Parameter	QPSK 1-2 (Turbo) 1.2 Mbps
Transmit Power(dBW)	-0.78
Transmit Loss (dB)	-1.00
Antenna Gain (dBi)	44.18
Ground Station EIRP (dBW)	42.40
Uplink Rain Loss (dB)	0.00
Free Space Loss (dB)	-213.33
Satellite G/T (dB/K)	9.00
Data Rate (dB-Hz)	60.79
Boltzmann's Constant (dBW/K-Hz)	-228.60
Eb/No (dB)	5.88
Eb/Io (dB)	22.22
Total Eb/(No + Io) (dB) For 10^{-7}	5.78

Table 10: Uplink Link Budget Calculations Narrow Band Digital(Table 29 in 2004 application)

Table 11: Downlink Link Budget and Overall Calculation Narrow Band Digital(Table 30 in 2004 application)

Parameter	QPSK 1-2 (Turbo) 1.2 Mbps*
Satellite Carrier EIRP (dBW)	17.60
Downlink Rain Loss (dB)	-1.00
Free Space Loss (dB)	-209.93
Ground Station G/T (dB/K)	39.57
Bit Rate (dB-Hz)	60.79
Boltzmann's Constant (dBW/K-Hz)	-228.60
Eb/No (dB)	14.05
Eb/Io (dB)	22.22
Eb/(No + Io) (dB)	13.43
Total UP/DOWN Eb/(No+Io) (dB)	5.09
Required Total Eb/(No+Io) (dB)	2.70
Margin (dB)	2.39

*For these links, the coding rate is controlled dynamically to compensate for rain fade.

Parameter	QPSK 3/4 DVB S2 52 Mbps	8PSK 2/3 DVB S2 70 Mbps	
Transmit Power(dBW)	8.00	8.00	
Transmit Loss (dB)	-1.00	-1.00	
Antenna Gain (dBi)	65.99	65.99	
Ground Station EIRP (dBW)	72.99	72.99	
Uplink Rain Loss (dB)	0.00	0.00	
Free Space Loss (dB)	-213.33	-213.33	
Satellite G/T (dB/K)	9.00	9.00	
Data Rate (dB-Hz)	77.17	78.42	
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60	
Eb/No (dB)	20.09	18.84	
Eb/Io (dB)	14.76	16.03	
Total Eb/(No + Io) (dB) For 10^{-7}	13.64	14.20	

Table 12: Uplink Link Budget Calculations Digital
(Table 31 in 2004 application)

Table 13: Downlink Link Budget and Overall Calculation Digital(Table 32 in 2004 application)

Parameter	QPSK 3/4 DVB S2 52 Mbps	8PSK 2/3 DVB S2 70 Mbps	
Satellite Carrier EIRP (dBW)	53.00	53.00	
Downlink Rain Loss (dB)	-9.50	-6.25	
Free Space Loss (dB)	-209.93	-209.93	
Ground Station G/T (dB/K)	20.26	20.26	
Bit Rate (dB-Hz)	77.17	78.42	
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60	
Eb/No (dB)	5.26	7.26	
Eb/Io (dB)	14.76	16.03	
Eb/(No + Io) (dB)	4.80	6.72	
Total UP/DOWN Eb/(No+Io) (dB)	4.27	6.01	
Required Total Eb/(No+Io) (dB)	3.06	4.58	
Margin (dB)	1.21	1.43	

Parameter	16APSK 3/4 DVB S2 100 Mbps	QPSK 3/4 DVB S2 3 Mbps	
Transmit Power(dBW)	8.00	3.00	
Transmit Loss (dB)	-1.00	0.00	
Antenna Gain (dBi)	65.99	44.18	
Ground Station EIRP (dBW)	72.99	47.18	
Uplink Rain Loss (dB)	0.00	0.00	
Free Space Loss (dB)	-213.33	-213.33	
Satellite G/T (dB/K)	9.00	9.00	
Data Rate (dB-Hz)	80.18	64.87	
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60	
Eb/No (dB)	17.08	6.58	
Eb/Io (dB)	17.77	17.76	
Total Eb/(No + Io) (dB) For 10^{-7}	14.40	6.26	

Table 14: Uplink Link Budget Calculations Digital
(Table 33 in 2004 application)

Table 15: Downlink Link Budget and Overall Calculation Digital(Table 34 in 2004 application)

Parameter	16APSK 3/4 DVB S2 100 Mbps	QPSK 3/4 DVB S2 3 Mbps
Satellite Carrier EIRP (dBW)	53.00	36.18
Downlink Rain Loss (dB)	-3.00	-12.00
Free Space Loss (dB)	-209.93	-209.93
Ground Station G/T (dB/K)	20.26	39.57
Bit Rate (dB-Hz)	80.18	64.87
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60
Eb/No (dB)	8.75	17.55
Eb/Io (dB)	17.77	17.76
Eb/(No + Io) (dB)	8.24	14.64
Total UP/DOWN Eb/(No+Io) (dB)	7.30	5.67
Required Total Eb/(No+Io) (dB)	5.42	3.06
Margin (dB)	1.88	2.61

Parameter	8PSK 2/3 DVB S2 4 Mbps	QPSK 3/4 DVB S2 380 kbps	
Transmit Power(dBW)	3.00	-3.00	
Transmit Loss (dB)	0.00	0.00	
Antenna Gain (dBi)	44.18	44.18	
Ground Station EIRP (dBW)	47.18	41.18	
Uplink Rain Loss (dB)	0.00	0.00	
Free Space Loss (dB)	-213.33	-213.33	
Satellite G/T (dB/K)	9.00	9.00	
Data Rate (dB-Hz)	66.12	55.84	
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60	
Eb/No (dB)	5.33	9.61	
Eb/Io (dB)	19.03	17.76	
Total Eb/(No + Io) (dB) For 10^{-7}	5.15	8.99	

Table 16: Uplink Link Budget Calculations Digital
(Table 35 in 2004 application)

Table 17: Downlink Link Budget and Overall Calculation Digital(Table 36 in 2004 application)

Parameter	8PSK 2/3 DVB S2 4 Mbps	QPSK 3/4 DVB S2 380 kbps
Satellite Carrier EIRP (dBW)	36.18	30.18
Downlink Rain Loss (dB)	-3.00	-12.00
Free Space Loss (dB)	-209.93	-209.93
Ground Station G/T (dB/K)	39.57	39.57
Bit Rate (dB-Hz)	66.12	55.84
Boltzmann's Constant (dBW/K-Hz)	-228.60	-228.60
Eb/No (dB)	25.30	20.58
Eb/Io (dB)	19.03	17.76
Eb/(No + Io) (dB)	18.11	15.94
Total UP/DOWN Eb/(No+Io) (dB)	4.93	8.19
Required Total Eb/(No+Io) (dB)	4.58	3.06
Margin (dB)	0.35	5.13

Parameter	BPSK 2/3 DVB S2 20 kbps
Transmit Power(dBW)	-12.00
Transmit Loss (dB)	0.00
Antenna Gain (dBi)	44.18
Ground Station EIRP (dBW)	32.18
Uplink Rain Loss (dB)	0.00
Free Space Loss (dB)	-213.33
Satellite G/T (dB/K)	9.00
Data Rate (dB-Hz)	43.29
Boltzmann's Constant (dBW/K-Hz)	-228.60
Eb/No (dB)	13.16
Eb/Io (dB)	14.26
Total Eb/(No + Io) (dB) For 10^{-7}	10.67

Table 18: Uplink Link Budget Calculations Digital
(Second Table 36 in 2004 application)

Table 19: Downlink Link Budget and Overall Calculation Digital(Table 37 in 2004 application)

Parameter	BPSK 2/3 DVB S2 20 kbps
Satellite Carrier EIRP (dBW)	21.18
Downlink Rain Loss (dB)	-20.00
Free Space Loss (dB)	-209.93
Ground Station G/T (dB/K)	39.57
Bit Rate (dB-Hz)	43.29
Boltzmann's Constant (dBW/K-Hz)	-228.60
Eb/No (dB)	16.13
Eb/Io (dB)	14.26
Eb/(No + Io) (dB)	12.09
Total UP/DOWN Eb/(No+Io) (dB)	8.31
Required Total Eb/(No+Io) (dB)	1.83
Margin (dB)	6.48

3.0 Spacecraft Bus Description

3.1 Tracking, Telemetry, and Command (TT&C) Subsystem

The telemetry and command subsystem will consist of redundant receivers and transmitters, which will be able to operate through an omnidirectional antenna for transfer orbit mode and emergency on-station mode, wide angle horns for transfer orbit and on-station modes (command and telemetry), and through the communications antennas for on-station mode (telemetry). The satellite uses three independent Ku-band uplink command receivers and three downlink telemetry beacons, two at Ku-band and one at Ka-band, located at the band edges as shown in Table 20.

Function	Frequency	Polarization
Ku Low Beacon	11700.75	H or RHCP
Ku High Beacon	12199.25	V or LHCP
Ka Beacon	18584.0	LHCP
Command	14001.5	V

Table 20: AMC-16 Command and Telemetry Plan

3.2 Electrical Power Subsystem

The power subsystem provides electrical power generation, storage, conditioning and distribution to ensure uninterrupted communications services over the life of the mission. The solar arrays will be attached to the satellite by a solar array drive mechanism that serves to rotate the solar array wings to follow the sun and transmit the solar electrical power through to the satellite equipment.

In order to provide uninterrupted communications services and support the other subsystems through Equinox eclipse periods, the electrical power is temporarily provided by batteries. The Nickel Hydrogen batteries have sufficient capacity to provide for operation of the payload over the 15-year life of the spacecraft.

Table 21 provides an updated Power Budget for the 15-year life of the spacecraft.

System	Summer Solstice	Equinox
Payload	2235	2235
Bus	1665	2239
Total Load	3900	4474
Solar Array	3900	4500
Battery DOD	40	

 Table 21: AMC-16 EOL Power Budget

3.3 Structural Compatibility, Dimensions and Mass Budget

The updated Mass Budget for a 15 year spacecraft life is as shown in Table 22.

Table 22:	AMC-16	Mass	Budget	Summary
-----------	--------	------	---------------	---------

System	Mass (Kg)
S/C Total Dry Mass	1952
Fuel/Pressurant/Oxidizer	2133
Total Lift Off Mass	4065

4.0 Orbital Debris Mitigation

The information for AMC-16 required under Section 25.114(d)(14) of the Commission's rules is already on file with the Commission, and SES incorporates that information by reference herein.⁵ SES hereby submits the following supplemental information regarding orbital debris mitigation:

⁵ See File No. SAT-AMD-20051115-00218, Attachment 1.

§ 25.114(d)(14)(ii):

At the end of operational life, after the satellite has reached its final disposal orbit, onboard sources of stored energy will be depleted or secured, and the batteries will be discharged. However, at the end of AMC-16's operational life, there will be oxidizer remaining in the tanks that cannot be vented. Following insertion of the spacecraft into orbit, the spacecraft manufacturer permanently sealed the oxidizer tanks by firing pyrotechnic valves. Information regarding the residual oxidizer in the tanks is as follows:

Tank	Volume [l]	pressure [bar]	temp. [deg C]	Oxidizer mass [kg]
Ox 1	327.5	18.33	21	10.85
Ox 2	327.5	18.33	21	10.85

The oxidizer tanks are well shielded, and the residual pressure in the tanks will be well below their maximum rating. In the narrative portion of this application, SES Americom requests any necessary waiver of Sections 25.114(d)(14)(ii) and 25.283(c) in connection with the residual oxidizer that will remain in these tanks at the end of the satellite's life.

§ 25.114(d)(14)(iii):

SES uses the Space Data Center ("SDC") system from the Space Data Association to monitor the risk of close approach of its satellites with other objects. Any close encounters (separation of less than 10 km) are flagged and investigated in more detail. If required, avoidance maneuvers are performed to eliminate the possibility of collisions.

During any relocation, the moving spacecraft is maneuvered such that it is at least 30 km away from the synchronous radius at all times. In most cases, much larger deviation from the synchronous radius is used. In addition, the SDC system is used to ensure no close encounter occurs during the move. When de-orbit of a spacecraft is required, the initial phase is treated as a satellite move, and the same precautions are used to ensure collision avoidance.

APPENDIX 1

<u>COVERAGE MAPS FOR KA-BAND CONTOURS:</u> <u>NOMINAL POINTING</u>

Downlink Contours

Figure A1-1: Ka-band spot beam 1A, downlink gain contours, LHCP, Peak EIRP = 60.7 dBW

Figure A1-2: Ka-band spot beam 2B, downlink gain contours, LHCP, Peak EIRP = 61.7 dBW

Figure A1-3: Ka-band spot beam 3A, downlink gain contours, LHCP, Peak EIRP = 62.0 dBW

Figure A1-4: Ka-band spot beam 4A, downlink gain contours, LHCP, Peak EIRP = 61.0 dBW

Figure A1-5: Ka-band spot beam 5B, downlink gain contours, LHCP, Peak EIRP = 61.5 dBW

Figure A1-6: Ka-band spot beam 1B, downlink gain contours, LHCP, Peak EIRP = 61.3 dBW

Figure A1-7: Ka-band spot beam 2A, downlink gain contours, LHCP, Peak EIRP = 61.6 dBW

Figure A1-8: Ka-band spot beam 3B, downlink gain contours, LHCP, Peak EIRP = 61.2 dBW

Figure A1-9: Ka-band spot beam 4B, downlink gain contours, LHCP, Peak EIRP = 61.6 dBW

Figure A1-10: Ka-band spot beam 5A, downlink gain contours, LHCP, Peak EIRP = 61.7

dBW

Uplink Contours

Figure A1-11: Ka-band spot beam 1A, uplink gain contours, RHCP, G/T max = 14.7 dB/K

Figure A1-12: Ka-band spot beam 2B, uplink gain contours, RHCP, G/T max = 15.5 dB/K

APPENDIX 2

SECTION 25.138 ANALYSIS (KA-BAND TWO DEGREE SPACING)

IN SUPPORT OF AMC-16

1. Introduction

Section 25.138 contains off-axis EIRP density limits for Ka-band uplinks (§ 25.138(a)(1)), and pfd limits (§ 25.138(a)(6)). Each of these provisions is addressed below. The limits in Section 25.138 will be met in all cases, so that of the modified coverage of the Ka-band spot beams authorized pursuant to this modification will not adversely affect adjacent satellite operations.

2. Off-axis EIRP density limits

Section 25.138(a)(1), together with 25.138(b), specifies that certain EIRP density levels must be met by FSS earth stations, or coordination of the network is necessary with other licensees within +/-6 degrees of the licensed orbit location.

The following Tables demonstrate that AMC-16, using the uplink EIRP levels and earth station antenna sizes from the sample link budgets in the 2004 Ka-band Filing, Attachment A (Section 2.12), meets these off-axis EIRP density requirements.

					QPSK 1-2
	8PSK DVB	QPSK 3-4	QPSK 2-3	8PSK 2-3 73	Turbo
Carrier type	S2 60 Mbps	8 Mbps	100Mbps	Mbps	1.2Mbps
Frequency, GHz	29.5	29.5	29.5	29.5	29.5
IF bandwidth, kHz	32499.8	5787.2	81383.0	39606.4	1263.2
Carrier EIRP, dBW	73.8	69.4	80.8	77.1	42.4
Earth station antenna diameter, m	6.00	4.50	6.00	6.00	0.65
EIRP density, dBW/40 kHz	44.7	47.8	47.7	47.1	27.4
On-axis gain of earth station					
antenna	63.49	60.99	63.49	63.49	44.18
Off-axis gain at 2.1 degrees					
(topocentric)	20.94	20.94	20.94	20.94	20.94
Off-axis eirp density at 2 degrees,					
dBW/40 kHz	2.19	7.75	5.17	4.55	4.17
FCC 25.138, 18.5-25*log(2.1)					
dBW/40 kHz	10.44	10.44	10.44	10.44	10.44
Margin	8.26	2.69	5.27	5.90	6.28

Table C-1a. Off-axis EIRP density

	1 0010			onony			
			16APSK				
	QPSK 3/4	8PSK 2/3	3/4 DVB	QPSK 3/4	8PSK 2/3	QPSK 3/4	BPSK 2/3
	DVB S2 52	DVB S2 70	S2 100	DVB S2 3	DVB S2 4	DVB S2	DVB S2
Carrier type	Mbps	Mbps	Mbps	Mbps	Mbps	380 kbps	20 kbps
Frequency, GHz	29.5	29.5	29.5	29.5	29.5	29.5	29.5
IF bandwidth, kHz	34746.31	34578.32	34743.91	2046.01	2036.12	255.80	31.84
Carrier EIRP, dBW	72.99	72.99	72.99	47.18	47.18	41.18	32.18
Earth station antenna diameter, m	8.00	8.00	8.00	0.65	0.65	0.65	0.65
EIRP density, dBW/40 kHz	43.6	43.6	43.6	30.1	30.1	33.1	33.2
On-axis gain of earth station							
antenna	65.99	65.99	65.99	44.18	44.18	44.18	44.18
Off-axis gain at 2.1 degrees							
(topocentric)	20.94	20.94	20.94	20.94	20.94	20.94	20.94
Off-axis eirp density at 2 degrees,							
dBW/40 kHz	-1.44	-1.42	-1.44	6.85	6.87	9.88	9.93
FCC 25.138, 18.5-25*log(2.1)							
dBW/40 kHz	10.44	10.44	10.44	10.44	10.44	10.44	10.44
Margin	11.89	11.87	11.89	3.59	3.57	0.56	0.51

Table C-1b. Off-axis EIRP density

3. **PFD** limits

Section 25.138(a)(6), together with 25.138(b), specifies that certain power flux density (PFD) levels must be met by FSS space stations, or coordination of the space station is necessary with other licensees within +/- 6 degrees of the licensed orbit location.

The following Table demonstrates that AMC-16, using the maximum Ka-band EIRP levels in the 2004 Ka-band Filing, Attachment A (Section 2.1.2), meets these PFD requirements.

Table C-2. AMC-16 Worst Case PFD analysis					
Maximum EIRP, dBW	62.0				
IF Bandwidth, dBHz	79.1				
1 MHz, dBHz	60.0				
Minimum spreading loss, dBW/m2	162.1				
Maximum PFD, dBW/m2/1 MHz	-119.3				
25.138 level, dBW/m2/ 1MHz	-118				
Margin, dB	1.3				

In addition, Tables C-3a and C-3b provide a PFD analysis for the sample link budgets provided in the 2004 Ka-band Filing, Attachment A (Section 2.12).

Table C-3a. PFD calculations for Sample Link budgets							
	8PSK				QPSK		
	DVB S2	QPSK	QPSK 2-	8PSK	1-2		
	60	3-4 8	3	2-3 73	Turbo		
Carrier type	Mbps	Mbps	100Mbps	Mbps	1.2Mbps		
Frequency, GHz	19.7	19.7	19.7	19.7	19.7		
Data rate, kbps	59901.5	8000.0	100000.0	73000.0	1200.0		
Modulation phases	8.0	4.0	4.0	8.0	4.0		
FEC	2/3	3/4	2/3	2/3	1/2		
Outer coding	188/204	188/204	188/204	188/204	0.95		
IF bandwidth, kHz	32499.8	5787.2	81383.0	39606.4	1263.2		
Carrier EIRP, dBW	50.3	42.6	59.1	52.3	17.6		
Minimum spreading							
loss, dB/m2	162.1	162.1	162.1	162.1	162.1		
PFD, dBW/m2/1 MHz	-126.9	-127.1	-122.1	-125.8	-145.5		

FCC 25.208 PFD limit, dBW/m2/1 MHz	-115.0	-115.0	-115.0	-115.0	-115.0
Margin	11.9	12.1	7.1	10.8	30.5
FCC 25.138 PFD					
limit, dBW/m2/1 MHz	-118.0	-118.0	-118.0	-118.0	-118.0
Margin	8.91	9.14	4.12	7.85	27.53

Table C-3b. PFD calculations for Sample Link budgets								
	QPSK	8PSK				QPSK		
	3/4	2/3	16APSK	QPSK	8PSK	3/4		
	DVB S2	DVB S2	3/4 DVB	3/4	2/3	DVB S2	BPSK 2/3	
	52	70	S2 100	DVB S2	DVB S2	380	DVB S2	
Carrier type	Mbps	Mbps	Mbps	3 Mbps	4 Mbps	kbps	20 kbps	
Frequency, GHz	19.7	19.7	19.7	19.7	19.7	19.7	19.7	
Data rate, kbps	52119.5	69502.4	104231.7	3069.0	4092.6	383.7	21.3	
Modulation phases	4.0	8.0	16.0	4.0	8.0	4.0	2.0	
FEC	3/4	2/3	3/4	3/4	2/3	3/4	2/3	
IF bandwidth, kHz	34746.3	34751.2	34743.9	2046.0	2046.3	255.8	32.0	
Carrier EIRP, dBW	53.0	53.0	53.0	36.2	36.2	30.2	21.2	
Minimum spreading								
loss, dB/m2	162.1	162.1	162.1	162.1	162.1	162.1	162.1	
PFD, dBW/m2/1 MHz	-124.5	-124.5	-124.5	-129.0	-129.0	-126.0	-126.0	
FCC 25.208 PFD								
limit, dBW/m2/1 MHz	-115.0	-115.0	-115.0	-115.0	-115.0	-114.0	-113.0	
Margin	9.5	9.5	9.5	14.0	14.0	12.0	13.0	
FCC 25.138 PFD								
limit, dBW/m2/1 MHz	-118.0	-118.0	-118.0	-118.0	-118.0	-117.0	-116.0	
Margin	6.53	6.53	6.53	11.05	11.05	9.02	9.99	

Engineering Declaration

DECLARATION OF ROGER LECLAIR

I, Roger LeClair, hereby certify under penalty of perjury that I am the technically qualified person responsible for preparation of the technical information contained in the foregoing exhibit; that I am familiar with the technical requirements of Part 25; and that I either prepared or reviewed the technical information contained in the exhibit and that it is complete and accurate to the best of my knowledge, information and belief.

<u>/s/____</u>

Roger LeClair President, LeClair Telecom

Dated: December 24, 2012