EXHIBIT 43

DG Consents Sub, Inc. Modification Application FCC Form 312 July 2012

Description of Modification of License Application

With this application, DG Consents Sub, Inc. ("DigitalGlobe") requests modification of its Earth Exploration Satellite Service ("EESS") system to add a new non-geostationary satellite orbit remote-sensing satellite. The new satellite, WorldView-3, will increase the number of satellites in DigitalGlobe's constellation of satellites, licensed under Call Sign S2129, to four.¹

In support of its request for a modification of its license under Call Sign S2129, DigitalGlobe offers the information and demonstrations provided below.

I. Information Required Under Section 25.114 of the Commission's Rules

DigitalGlobe provides the following information in accordance with Section 25.114 of the Commission's rules.² DigitalGlobe provides this information only to the extent that it has changed from the information currently on file for Call Sign S2129, and hereby certifies that the remaining information has not changed.³

A. General Description of Overall Facilities, Operations and Services

As with DigitalGlobe's existing satellites, WorldView-3 will transmit high-resolution satellite images and telemetry using the 8025-8400 MHz band allocated to the EESS. DigitalGlobe's ground segment will send commands to WorldView-3 using the 2025-2110 MHz band. All radio frequency communications between WorldView-3 and the U.S. will be via the two existing Remote Ground Terminals ("RGT") in Fairbanks and Prudhoe Bay, Alaska, and two new U.S. RGTs located in Green River, Wyoming and Clewiston, Florida. The new RGTs, which have been authorized by the Commission, are planned to start WorldView-1 and WorldView-2 operations by the end of 2012.

DigitalGlobe has not finalized the orbit altitude for WorldView-3, but is certain that the altitude will be between 496 kilometers and 830 kilometers, inclusive. Thus, for purposes of

² 47 C.F.R. § 25.114.

¹ The existing satellites are QuickBird, WorldView-1 and WorldView-2. QuickBird was authorized in 1997 and launched in 2001. *See Earth Watch Incorporated*, 12 FCC Rcd 21637 (1997). The authorization has been modified several times since 1997, including to add WorldView-1 and WorldView-2 to the EESS network. The most recent modification, to increase the orbital altitude of QuickBird, was granted on January 18, 2012. *See* File No. SAT-MOD-20101122-00243.

³ See 47 C.F.R. § 25.117(d)(1).

demonstrating compliance with regulatory and technical provisions such as power flux-density limits, link budgets and predicted antenna gain contours, DigitalGlobe includes data and showings for both 496 kilometers and 830 kilometers. Although the altitude of WorldView-3 can thus be anywhere in the 496-830 kilometer range, DigitalGlobe also includes data for a representative or nominal altitude of 617 kilometers, which represents the current benchmark under review with DigitalGlobe's customer base.

DigitalGlobe anticipates launching WorldView-3 in June 2014, and has already commenced construction of the spacecraft.⁴ On June 16, 2011, DigitalGlobe received a license from the National Oceanic and Atmospheric Administration ("NOAA") to operate WorldView-3 as part of the DigitalGlobe EESS system.⁵

B. Schedule S

The technical characteristics of the proposed WorldView-3 satellite are detailed in the Schedule S portion of the FCC Form 312 of this Application, a copy of which is included as Attachment B hereto. DigitalGlobe completed the Schedule S to the best of its ability and the limitations of the Commission's software. However, certain data fields in Microsoft Access Database file would not accept DigitalGlobe's data, which, in turn, caused errors in the database. To rectify this, DigitalGlobe was forced to input generic information into the electronic database file in order to maintain the integrity of the system. For example, tabs S6 (Service Area Characteristics) and S13 (Typical Emissions) are tailored to geostationary communication satellites and are not readily applicable to DigitalGlobe's low earth orbit remote sensing satellite. Generic data (e.g., zeroes) was therefore entered. Further, footnotes and comments are necessary to provide a complete and unambiguous data suite in some areas, such as tab S4 (Orbital Information). Because the electronic database does not provide a mechanism for submitting supplementary information, footnotes and comments have been included in Attachment B hereto. Any discrepancies between the data in the electronic version of Schedule S and the version included in the print out in Attachment B should be resolved in favor of the print version in Attachment B.

C. Link Budgets and Power Flux Density Calculation

The proposed satellite's link budgets and power flux density ("PFD") limits at the surface of the Earth are included as Attachment C hereto. The PFDs at the Earth's surface produced by WorldView-3 data and telemetry transmissions satisfy the PFD limits in Table 21-4 of the ITU Radio Regulations.⁶ Tables C-1 and C-2 in Attachment C to this Exhibit 43 show that the PFDs at the Earth's surface produced by the WorldView-3 satellite's data and telemetry transmissions satisfy the PFD limits in Article 21 of the ITU Radio Regulations, under assumed free-space

⁴ DigitalGlobe's notification of commencement of space station construction is included as Attachment A to this Exhibit 43.

⁵ See Amendment dated June 16, 2011 to DigitalGlobe, Inc. License from National Oceanic and Atmospheric Administration to operate a private commercial space-based remote sensing system (issued September 29, 2003).

⁶ Section 25.208 of the Commission's Rules does not contain PFD limits at the Earth's surface produced by emissions from NGSO EESS space stations operating in the 8025-8400 MHz band.

propagation conditions, for all angles of arrival. DigitalGlobe notes that the WorldView-3 wideband (image data) and narrowband (telemetry) transmitters include internal power control, allowing the maximum output power to be attenuated by 0 to -5.5 dB in 0.5 dB increments. This enables both robust link margins and full compliance with PFD limits over the entire 496 to 830 kilometer altitude range. Figure 1 below (see Section I.I., *infra*) best demonstrates this capability. The flat part of the curves represent the regions of positive power control authority, i.e., power levels are set as needed to meet PFD limits, making PFD independent of altitude. The regions to the left and right of this are where the power output is "pegged" at its minimum and maximum level, respectively, and PFD therefore varies with altitude.

No. 22.5 of the ITU Radio Regulations specifies that in the frequency band 8025-8400 MHz, which the EESS using non-geostationary satellites shares with the fixed-satellite service (Earth-to-space) or the meteorological-satellite service (Earth-to-space), the maximum PFD produced at the geostationary satellite orbit ("GSO") by any EESS space station shall not exceed -174 dB(W/m²) in any 4 kHz band. The calculation below shows that the PFD produced by the transmissions from the proposed WorldView-3 satellite does not exceed the limit in No. 22.5, even in the worst possible hypothetical case.

The PFD at the GSO produced by the WorldView-3 transmissions are:

Wideband PFD $[dB(W/m^2/4 \text{ kHz})] = EIRP - 20log(D) - 10log(BW) - 94.97$ Narrowband PFD $[dB(W/m^2/4 \text{ kHz})] = EIRP - 20log(D) - 91.4$

Where:

- EIRP is the Maximum EIRP of the transmission, in dBW;
- D is distance between the WorldView-3 satellite and GSO, in km;
- BW is the symbol bandwidth of the transmission, in MHz.

The minimum possible distance between the WorldView-3 satellite and the GSO is 34,956 kilometers for the highest possible satellite orbit of 830 kilometers. Under a hypothetical assumption that the WorldView-3 satellite antennas are radiating at their peak EIRP toward the GSO, the wideband data downlink transmission with the peak EIRP = 34.55 dBW (peak antenna gain, 0 dB power control, maximum transmitter output power over temperature at BOL, 2 transmitters operating) and BW = 200 MHz produces a PFD at the GSO of -174 dB(W/m²) in any 4 kHz band. Under the same hypothetical assumptions, the narrowband telemetry transmission from the WorldView-3 satellite has a peak EIRP = 8.0 dBW and produces a PFD at the GSO of -174 dB(W/m²) in any 4 kHz band by setting the internal transmitter power control to -2 dB. This setting still provides positive link margin to ground stations for all normal operations.

D. Space Station Antenna Patterns

The satellite wideband downlink, narrowband downlink and command uplink antenna patterns are included as Attachment D hereto.

E. Predicted Antenna Gain Contours

Attachment E hereto shows the predicted antenna gain contours required by Section 25.114(d)(3) of the Commission's rules at the following DigitalGlobe earth station sites: Prudhoe Bay, Alaska; Fairbanks, Alaska; Green River, Wyoming; and Clewiston, Florida. *See* 47 C.F.R. § 25.114(d)(3). The gain contours are plotted for WorldView-3's nominal altitude of 617 kilometers, and at the highest (830 kilometers) and lowest (496 kilometers) points of its anticipated altitude range. The Attachment E showing depicts the contours from a 90° elevation angle.

F. Interference Analysis

1. Interference between EESS systems operating in the band 8025-8400 MHz

Interference between WorldView-3 and those of other systems is very unlikely because EESS systems operating in the 8025-8400 MHz band normally transmit only in short periods of time while visible from the dedicated receiving earth stations. For the interference to happen, satellites belonging to different systems would have to travel through the antenna beam of the receiving earth station and transmit at the same time. In such a very unlikely event, the interference can be still be avoided by coordinating the satellite transmissions so that they do not occur simultaneously.

2. Interference with the Fixed Service and the FSS in the band 8025-8400 MHz

Attachment C demonstrates that the WorldView-3 transmissions will meet the limits specified by the ITU for protection of the Fixed Service in the 8025-8400 MHz band. Likewise, Section I.C. above demonstrates that WorldView-3 transmissions will meet ITU-specified limits for the geostationary FSS satellites using this band for their uplinks.

G. Public Interest Considerations

The grant of this Modification Application will serve the public interest by permitting DigitalGlobe to launch and operate a new multi-payload, high-resolution imagery satellite system with superior spectral characteristics. The improved characteristics of WorldView-3 will enable DigitalGlobe to expand its ability to provide its Government and non-Government users with enhanced data to meet national defense, meteorology, mapping, land use, natural disaster monitoring and other critical customer demands.

H. Orbital Debris Mitigation

DigitalGlobe confirms that WorldView-3 will not undergo any planned release of debris during its normal operations. In addition, all separation and deployment mechanisms, and any other potential source of debris will be retained by the spacecraft or launch vehicle. DigitalGlobe also has assessed the probability of the spacecraft becoming a source of debris by collision with small debris or meteoroids of less than one centimeter in diameter that could cause loss of control and prevent post-mission disposal. DigitalGlobe has taken steps to limit the effects of such collisions through redundancy, shielding, separation of components, and physical characteristics.

DigitalGlobe has assessed and limited the probability of accidental explosions during and after completion of mission operations. The assessment was based on possible failure modes that could result in explosions, and operational procedures were adopted to limit the probability that they occur. As part of the satellite manufacturing process, DigitalGlobe has taken steps to ensure that debris generation will not result from the conversion of energy sources on board the satellite into energy that fragments the satellite. All sources of stored energy onboard the spacecraft will have been depleted when no longer required for mission operations or postmission disposal.

DigitalGlobe has assessed and limited the probability of the spacecraft becoming a source of debris by collisions with large debris or other operational spacecraft. DigitalGlobe does not intend to place WorldView-3 in an orbit that is identical to or very similar to an orbit used by other space stations, and, in any event, will work closely with the WorldView-3 launch provider to ensure that the satellite is deployed in such a way as to minimize the potential for collision with any other spacecraft. This specifically includes minimizing the potential for collision with manned spacecraft. To DigitalGlobe's understanding, only the International Space Station and China's Tiangong-1 Space Station module are presently or imminently inhabited orbiting objects.⁷ The operational altitude of the International Space Station is approximately 400 kilometers,⁸ and the altitude of the Tiangong-1 space module is now approximately 382 kilometers.⁹ Both facilities are significantly below the minimum possible operational orbit altitude of 496 kilometers for WorldView-3. Although there is expected to continue to be at least 96 kilometers of orbital separation between WorldView-3 and either the International Space Station or Tiangong-1, and most likely significantly greater separation if WorldView-3 is operated at its nominal altitude of 617 km, DigitalGlobe will be proactive to ensure that risks to inhabitable orbiting objects from WorldView-3 are mitigated. This will include coordinating with NASA to assure protection of the International Space Station on an ongoing basis, and with the China National Space Agency with respect to Tiangong-1 and successor vehicles. DigitalGlobe will provide both agencies with all information they need to assess risks and ensure safe flight profiles, and with contact information for DigitalGlobe personnel on a 24 hours per day/7 days per week basis. With these measures, collisions will be able to be avoided even if there is at some future point less separation in orbits than is anticipated at a minimum today.¹⁰

⁷ The Tiangong-1 spacecraft is an experimental space module that is destined to be part of a larger space complex over the next decade. It will be intermittently inhabited, with planned manned space missions to occur beginning this year.

⁸ <u>http://www.nasa.gov/mission_pages/station/expeditions/expedition26/iss_altitude.html</u> (last visited July 10, 2012).

⁹ <u>http://www.china.org.cn/china/2011-11/19/content_23957633.htm</u> (last visited July 10, 2012).

¹⁰ DigitalGlobe will take identical proactive measures with respect to any other inhabitable orbiting objects that may be introduced during the time when WorldView-3 is in orbit. In particular, DigitalGlobe notes that testing of inhabitable space objects by Bigelow Aerospace LLC may occur during the license term.

As noted above, DigitalGlobe has requested and received favorable action from NOAA on its plan for the post-mission disposal of WorldView-3. The Commission has previously determined that "[t]o the extent that a remote sensing satellite applicant has submitted its post-mission disposal plans to NOAA for review and approval, [it] will not require submission of such information" as part of its examination of the debris mitigation disclosures of remote sensing satellites.¹¹ Accordingly, no submission regarding DigitalGlobe's post-mission disposal plans is required or included with this application.

As a final measure, DigitalGlobe provides in Table 1 below the Commission with the information called for in Section 25.114(d)(14)(iii) of the Commission's Rules, and "discloses the accuracy – if any – with which the orbital parameters of [its] non-geostationary satellite orbit space stations will be maintained, including apogee, perigee, inclination, and the right ascension of the ascending node(s)."¹² While WorldView-3 is still in operational condition and propellant is still available, the orbit will be maintained to within the Table 1 accuracies.

Orbital Parameters	Maintenance Accuracy
Inclination Angle	$\pm 0.2^{\circ}$
Apogee	±2 km
Perigee	±2 km
Right Ascension of the	$\pm 5^{\circ}$
Ascending Node	

Table 1: Anticipated Ranges of Accuracy to Which WorldView-3 Orbital Parameters Will Be Maintained

To the extent that Section 25.114(d)(14)(iii) also calls for indication of the anticipated evolution over time of the satellite's orbit, DigitalGlobe notes that after orbit maintenance is no longer possible, WorldView-3's apogee and perigee altitudes will gradually decay over time due to atmospheric drag until the satellite reenters the atmosphere. During this period the inclination and right ascension of the ascending node will also drift outside of the Table 1 maintenance limits due to gravitational perturbations. Table 2 below shows predicted worst-case (shortest) propellant life and reentry times for the lowest, nominal and highest WorldView-3 operational altitudes.

Altitude	Propellant Life	Time to Reentry
496 km	18.5 years	1.4 years
617 km	35 years	11 years
830 km	50 years	60 years

Table 2:	Predicted	Pro	pellant	Life	and	Time to	Reentry
							•/

¹² 47 C.F.R. § 25.114(d)(14)(iii).

¹¹ See Mitigation of Orbital Debris, 19 FCC Rcd 11567, 11610 (2004). The Commission's decision addressed 15 U.S.C. § 5622(b)(4), which contained a licensing requirement identical to that in 51 U.S.C. § 60122(b)(4) to notify NOAA of the post-mission disposal of spacecraft. Section 60122 of Title 51 replaced Section 5622 of Title 15 effective December 18, 2010. See Pub.L. 111-314, 124 Stat. 3328 (2010).

Notes:

- 1. Propellant Life is calculated assuming 3-sigma launch dispersions are removed and all remaining propellant is used to maintain the orbit.
- 2. Time to Reentry is calculated from the point when all propulsive orbit maintenance ceases, which may occur prior to the propellant life limit.

I. Extent of Communications with WorldView-3 During Descent to the Atmosphere

DigitalGlobe intends to utilize WorldView-3 for imaging services from the point at which the satellite is placed into its operational orbit until imaging services are no longer possible. After terminating services, DigitalGlobe will prepare the satellite for eventual reentry and end all communications with it. If WorldView-3 is operating near the low end of its altitude range, it is possible that during this decommissioning phase its altitude will drop below 496 km. In this case imaging services will cease, but command and telemetry communications may continue. As depicted in Figure 1 below, the narrowband downlink remains at or below applicable PFD limits down to an altitude of 450 kilometers with the satellite in the worst-case nadir-pointed orientation. As shown in Figure 2 below, compliance with PFD limits applicable to telemetry operations can be maintained through spacecraft off-pointing from an altitude of 450 kilometers down to reentry. Final reentry prep will occur no lower than 200 to 300 kilometers, as this is where the satellite will lose positive pointing control. During decommissioning period DigitalGlobe may also use the wideband downlink as a secondary means of transmitting telemetry. Any such use of the wideband transmitters will cease when the PFD limits are reached; per Figure 1, this occurs at an altitude of 300 kilometers if both transmitters are used, and 220 kilometers if only one is used.

Figure 1. PFD at Earth's Surface versus Altitude

Figure 2. Minimum Off-Nadir Pointing For Narrowband to Meet PFD Below 450 km

A. Waiver Request of Modified Processing Round Rules

DigitalGlobe requests that this application be processed pursuant to the first-come, firstserved procedure adopted for "GSO-like satellite systems" under Section 25.158 of the Commission's rules.¹³ To the extent necessary to allow for such processing, DigitalGlobe also requests waiver of Sections 25.156 and 25.157 of the Commission's rules, which stipulate the processing of "NGSO-like satellite systems" under a modified processing round framework.¹⁴ DigitalGlobe requested similar waivers when it first modified its EESS system to add new spacecraft.¹⁵ The Commission granted that request, concluding that authorizing an EESS licensee to operate in a particular frequency does not preclude other EESS licensees from operating in that band or cause harmful interference to other EESS systems currently operating in the band.¹⁶ The waiver requested here presents similar circumstances, and warrants similar GSO-like treatment.

B. Waiver Request of Default Service Rules

DigitalGlobe requests a waiver of the default service rules under Section 25.217(b) of the Commission's rules.¹⁷ Although the Commission has not adopted band-specific rules for EESS NGSO operations in the 8025-8400 MHz band, the Commission has previously granted a waiver of the default service rules contained in Section 25.217(b) to NGSO EESS system licensees – including in the case of DigitalGlobe's existing EESS system – based on the fact that EESS operators in the 8025-8400 MHz band are required to comply with technical requirements in Part 2 of the Commission's rules and applicable ITU regulations.¹⁸ In these cases, the Commission concluded that because the cited requirements had been sufficient to prevent harmful interference in the 8025-8400 MHz band, there was no need to impose additional technical requirements on operations in that band, and therefore granted the waiver requests. For these same reasons, the Commission should here grant DigitalGlobe a waiver of the default service rules contained in Section 25.217(b).

C. Implementation Milestones

As noted above, DigitalGlobe has indicated under Section 25.113(f) of the Commission's rules that it has, at its own risk, initiated construction of WorldView-3 in the system proposed in

¹⁶ See id. at 15699.

¹⁷ 47 C.F.R. § 25.217.

¹³ 47 C.F.R. § 25.158.

¹⁴ 47 C.F.R. §§ 25.156 & 25.157.

¹⁵ See DigitalGlobe, Inc., 20 FCC Rcd 15696 (2005).

¹⁸ See DigitalGlobe, 20 FCC Rcd at 15701-02 (2005); see also Space Imaging, LLC, 20 FCC Rcd 11694, 11968 (2005).

the instant application. DigitalGlobe intends to supply the Commission with information sufficient to demonstrate that it has satisfied the first three implementation milestones under Section 25.164(b) for NGSO systems in a separate submission at a later date.¹⁹ DigitalGlobe understands that in the absence of a favorable Commission determination of milestone compliance issued with the grant of this application or within 30 days thereafter, the full amount of the bond specified in Section 25.165(a)(1) will be required.

D. ITU Advance Publication Materials and Cost Recovery

DigitalGlobe will prepare the International Telecommunication Union ("ITU") Advance Publication Information submission for WorldView-3, and will provide this information to the Commission under separate cover. DigitalGlobe will separately provide the Commission with a letter acknowledging that it is responsible for any and all cost recovery fees associated with filings for the proposed system under ITU Council Decision 482 (modified 2008), as it may be modified or succeeded in the future.

* * *

In sum, DigitalGlobe respectfully requests that the Commission grant the modification application as detailed herein.

¹⁹ 47 C.F.R. § 25.164(b).

ATTACHMENT A

NOTIFICATION OF COMMENCEMENT OF SPACE STATION CONSTRUCTION

DigitalGlobe, Inc., parent company of applicant DG Consents Sub, Inc. ("DigitalGlobe"), pursuant to Section 25.113(f) of the Commission's Rules, 47 C.F.R. § 25.113(f), hereby notifies the Commission that it has commenced construction, at its own risk, of the WorldView-3 satellite DigitalGlobe proposes to add to its non-geostationary orbit remote sensing system in the Earth Exploration Satellite Service, as detailed in the modification application to which this statement is attached.

ATTACHMENT B

FCC FORM 312, SCHEDULE S

FEDERAL COMMUNICATIONS COMMISSION SATELLITE SPACE STATION AUTHORIZATIONS (Technical and Operational Description)

Page 1: General, Frequency Bands, and GSO Orbit

S1. GENERAL INFORMATION Complete for all satellite applications.

a. Space Station or Satellite Network Name:	e. Estimated Date of Placement into Service:		i. Will the space station(s) operate on a Common	n Carrier basis?
USASAT 30A - WorldView-3	9/9/2014			X NO
b. Construction Commencement Date:	f. Estimated Lifetime of Satellite(s):		j. Number of transponders offered on a Commo	n Carrier basis:
9/1/2010	7.25	Years	0	
c. Construction Completion Date:	g. Total Number of Transponders:		k. Total Common Carrier Transponder Bandwic	lth:
4/13/2014	0		0	MHz
d. Estimated Launch Date:	h. Total Transponder Bandwidth (No. Transponders x	Bandwidth):	1. Orbit Type: Mark all boxes that apply.	
6/1/2014	0	MHz	GSO	X NGSO

S2. OPERATING FREQUENCY BANDS Identify the frequency range and transmit/receive mode for all frequency bands inwhich this station will operate. Also indicate the nature of service(s) for each frequency band.

Fre	equency I	Band Limits			
Lower Frequency (_Hz)	Upper Frequency (_	_Hz)		
a. Numeric	b. Unit (K/M/G)	c. Numeric	d. Unit (K/M/G)	e. T/R Mode	f. Nature of Service(s): List all that apply to this band
8025	М	8400	Μ	Т	Earth exploration satellite service
2085.0295	М	2086.3455	М	R	Earth exploration satellite service

S3. ORBITAL INFORMATION FOR GEOSTATIONARY SATELLITES ONLY:

a. Nominal Orbital Lo	ongitude (Degrees E/W):					b. Reason for orbital location selection:
Longitudinal Toleran	ce or E/W Station-Keeping:	e. Inclination Excursion or N/S Station-Keeping	Range of orbital arc in which a can be provided (Optional):	dequate service Degrees	E/W	
c. Toward West:	Degrees	Tolerance:	f. Westernmost:			
d. Toward East:	Degrees	Degrees	g. Easternmost:			
h. Reason for service	arc selection (Optional):					

S4d. Orbit Epoch Date:

4

S4. ORBITAL INFORMATION FOR NON-GEOSTATIONARY SATELLITES ONLY

S4a. Total Number of Satellites in Network or System:4S4b. Total Number of Orbital Planes in Network or System:

S4c. Celestial Reference Body (Earth, Sun, Moon, etc.): Earth

6/1/2014 12:00:00

For each Orbital Plane Provide:

(e)	(f)	(g) Inclination	(h)	(i)	(j)	(k) * Right Ascension	(l) Argument	Activ	e Service Arc I (Degrees)	Range
Plane No.	lites in Plane	Angle (degrees)	(Seconds)	(km)	(km)	of the Ascending Node (Deg.)	of Perigee (Degrees)	(m) Begin Angle	(n) End Angle	(o) Other
WV-3 min 1:30F	M 1	97.36	5671	521	506	272.176	90			
WV-3 nom 1:30	PM 1	97.83	5823	643	628	272.176	90			
WV-3 max 1:30	PM 1	98.70	6089	854	840	272.176	90			
WV-3 min 10:30	AM 1	97.36	5671	521	506	227.176	90			
WV-3 nom 10:3	OAM 1	97.83	5823	643	628	227.176	90			
WV-3 max 10:3	0AM 1	98.70	6089	854	840	227.176	90			
	Note: The f	inal orbit sele	ction for Worl	dView-3 has r	ot yet been m	ade. The alti	tude will be b	etween		
	the min and	d max values	shown: and th	e LMST will b	e either 10:30	AM or 1:30 I	PM. The "non	ninal" row	'S	
	represent t	he current ref	erence baseli	he orbit but is	subject to cha	nge				

S5. INITIAL SATELLITE PHASE ANGLE For each satellite in each orbital plane, provide the initial phase angle.

(a) Orbital Plane No.	(b) Satellite Number	(c) Initial Phase Angle (Degrees)									
WV-3 min 1:3	0PM 1	0									
WV-3 nom 1:	30РМ 1	0									
WV-3 max 1:	30PM 1	0									
WV-3 min 10	30AM 1	0									
WV-3 nom 10):30AM 1	0									
WV-3 max 10):30AM 1	0									

*Right ascension of ascending node values are valid for an assumed epoch time of $_{FC}$ 2014/6/1 12:00:00 UTC. The value 227.176 corresponds to a 10:30 AM local mean solar time (LMST) of the descending node; and 272.176 corresponds to a 1:30 PM LMST.

FCC 312, Schedule S - Page 2 June, 2003

S6. SERVICE AREA CHARACTERISTICS For each service area provide:

(a) Service Area ID	(b) Type of Associated Station (Earth or Space)	(c) Service Area Diagram File Name (GXT File)	(d) Service Area Description. Provide list of geographic areas (state postal codes or ITU 3-ltr codes), satellites or Figure No. of Service Area Diagram.

S7. SPACE STATION ANTENNA BEAM CHARACTERISTICS For each antenna beam provide:

	0201							1 of each and	onna o oann j								
(2)	(b)	Isoti	opic	(e)	(f)	(g)	(h)Polar-	(i)	(i)		Transmit				Receive	-	
(a) Beam	(0) T/R	Antenr	na Gain	Pointing	Rotational	Min. Cross-	Switch-	Alignment Rel	()) Service	(k) Input	(l)Effective	(m) Max.	(n) System	(o) G/T at	(p) Min.	Input Atter	nuator (dB)
ID	Mode	(c) Peak	(d) Edge	Error	Error	Polar Iso-	able?	Equatorial	Area ID	Losses	Output Bower (W)	EIRP	Noice Temp-	Max.Gain	Flux Density	(q) Max.	(r) Step
		(uBI)		(Degrees)	(Degrees)		(Y/N)	Plane (Degrees)			Fower (W)		erature (K)	rι. (uD/K)	(dBW/m2)	Value	Size
WB-L	I	27.6	26.6	1	0**	24	Y			6.2	2.4	31.4					
WB-R	T	27.6	26.6	1	0**	24	Y			6.2	2.4	31.4					
NB	Т	7	-10	0*	0*		N			5.8	2.3	10.6					
CMD	R	4	-10	0*	0*		N						580	-23.6	0***		
•=					-								000	20.0			
																	├ ── │

Page 5: Beam Diagrams

S8. ANTENNA BEAM DIAGRAMS For each beam pattern provide the reference to the graphic image and numerical data: Also provide the power flux density levels in each beam that result from the emission with the highest power flux density.

		(a) Co. or	(4) CSO		(f)	4	Max. Power Flu	x Density (dBW	/m2 per Referei	ce Bandwidth*)
(a) Beam	(b) T/R	Cross-	Ref. Orbital	NGSO Antenna Gain	GSO Antenna Gain	At Angle of	f Arrival above	horizontal (for e	mission with hi	ghest PFD)	(1) Reference Bandwidth*
ID	Mode	("C" or "X")	(Deg. E/W)	(Figure / Table / Exhibit)	(GXT File)	(g) 5 Deg	(h) 10 Deg	(i) 15 Deg	(j) 20 Deg	(k) 25 Deg	(4kHz or 1MHz)

*Use a Reference Bandwidth of 4 kHz or 1 MHz as appropriate to the FCC Rules that apply to the subject frequency band (§ 25.208). Rev 4d, June 19, 2003, 5:45 pm

S9. SPA	CE STATION	CHA	NNELS For each	frequency channe	l provide:
(a) Channel No.	(b) Assigned Bandwidth (kHz)	(c) T/R Mode	(d) Center Frequency (MHz)	(e) Polarization (H,V,L,R)	(f) TT&C or Comm Channel (T or C)
WB-L	375000	Т	8185.0*	L	С
WB-R	375000	Т	8185.0 *	R	С
NB-I	2695	Т	8380.0	L	Т
NB-Q	5800	Т	8380.0	L	Т
CMD	1316	R	2085.6875	R	Т
	* The cen	ter fred	uency in this ca	se is not the arit	nmetic mean
	between t	he low	er frequency (80	25 MHz) and the	e upper
	frequency	(8400	MHz). DigitalG	lobe employs a f	iltering process
	that ensu	res tha	t only spectrum	between 8025 a	nd 8400 MHz
	is used ar	nd that	emissions are w	ithin acceptable	levels.

S10. SPACE STATION TRANSPONDERS** For each transponder provide:

(a)	(b)	Receiv	e Band	Transm	it Band
(a) Transponder ID	Transponder Gain* (dB)	(c) Channel No.	(d) Beam ID	(e) Channel No.	(f) Beam ID

*Transponder gain between output of receiving antenna and input of transmitting antenna. **Also complete this table for half-links such as TT&C and on-board processing. In such cases, provide the receive or transmit information, as appropriate.

S11. DIGITAL MODULATION PARAMETERS For each digital emission provide:

(a) Digital Mod. ID	(b) Emission Designator	(c) Assigned Bandwidth (kHz)	(d) No. of Phases	(e) Uncoded Data Rate (kbps)	(f) FEC Error Correction Coding Rate	(g) CDMA Processing Gain (dB)	(h) Total C/N Performance Objective (dB)	(i) Single Entry C/I Objective (dB)
WB-L	375MG7D	375000	8	522600	0.871	0	24.7	26
WB-R	375MG7D	375000	8	522600	0.871	0	24.7	26
NB-I	2M70G7D	2695	2	32.768	0.5	0	11.2	32.5
NB-Q	5M80G7D	5800	2	524.8	0.5	0	11.2	32.5
CMD	1M32G1D	1316	2	64.0	1	-	18.8	(receive)

S12. ANALOG MODULATION PARAMETERS For each analog emission provide:

	T		T			M L 1	UTC 1 1							
(a) Analog Mod. ID	(b) Emission Designator	(c) Assigned Bandwidth (kHz)	(d) Signal Type* (see below)	(e) Channels per Carrier	(f) Ave. Companded Talker Level (dBm0)	(g) Bottom Baseband Freq. (MHz)	(h) Top Baseband Freq. (MHz)	(i) RMS Modulation Index	(j) Video Standard NTSC, PAL, etc.	(k) Video Noise Weight- ing (dB)	(l) Video & SCPC/FM Modulation Index	(m) SCPC/FM Compander, Preemphasis, & Noise Weight- ing (dB)	(n) Total C/N Performance Objective (dB)	(o) Single Entry C/I Objective (dB)

S13. TYPICAL EMISSIONS For each planned type of emission provide:

Assoc	ciated	Modula	tion ID	(e)	(f)	(g) Noise	(h) Energy	Receive Ban	d (Assoc.Tra	nsmit Stn)		Transmit B	and (This Spa	ace Station)	
1 ransponde	r ID Range	(c) Digital	(d) Analog	Carriers	Carrier	Budget	Dispersal Bandwidth*	(i)Assoc.Stn	Assoc.	Station	EIRP	(dBW)	Max. Power	Flux Density	Assoc. Stn
(a) Start	(b) End	(Table S11)	(Table S12)	per Transponder	(kHz)	(Table No.)	(kHz)	Gain (dBi)	(i) Min.	(k) Max.	(1) Min.	(m) Max.	(n)dBW/m2	(o)Ref. BW** (4kHz or 1MHz)	Rec. G/T (dB/K)
									() -·····	(1)	(1) 1.1.1.1	()		((uD/III)

* For those emissions using energy dispersal, provide the bandwidth of the energy dispersal. Otherwise, leave blank. **Use a Reference Bandwidth of 4 kHz or 1 MHz as appropriate to the FCC Rules that apply to the subject frequency band (§ 25.208). Rev 4d, June 19, 2003, 5:45 pm

Page 10: TT&C

FEDERAL COMMUNICATIONS COMMISSION SATELLITE SPACE STATION AUTHORIZATIONS FCC Form 312 - Schedule S: (Technical and Operational Description)

	Creek Drive, Suite 260		
S14b. City Longmont	S14c. County Boulder	S14d. State / Country	S14e. Zip Code 80503
S14f. Telephone Number 303-684-4000	S14g. Call Si None; r	gn of Control Station (if appropriate) emote controls E040264 and	E950499
S14a. Street Address			
S14b. City	S14c. County	S14d. State / Country	S14e. Zip Code
S14f. Telephone Number	S14g. Call Si	gn of Control Station (if appropriate)	
S14a. Street Address			
S14b. City	S14c. County	S14d. State / Country	S14e. Zip Code
S14f. Telephone Number	S14g. Call Si	gn of Control Station (if appropriate)	
S14a. Street Address			
S14a. Street Address			
S14a. Street Address S14b. City	S14c. County	S14d. State / Country	S14e. Zip Code
S14a. Street Address S14b. City S14f. Telephone Number	S14c. County S14g. Call Sig	gn of Control Station (if appropriate)	S14e. Zip Code
\$14a. Street Address \$14b. City \$14f. Telephone Number \$14a. Street Address	S14c. County S14g. Call Sig	gn of Control Station (if appropriate)	S14e. Zip Code
S14a. Street Address S14b. City S14f. Telephone Number S14a. Street Address S14b. City	S14c. County S14g. Call Si S14c. County	gn of Control Station (if appropriate) S14d. State / Country	S14e. Zip Code S14e. Zip Code
S14a. Street Address S14b. City S14f. Telephone Number S14a. Street Address S14b. City S14f. Telephone Number	S14c. County S14g. Call Si S14c. County S14g. Call Si	gn of Control Station (if appropriate) S14d. State / Country S14d. State / Country gn of Control Station (if appropriate)	S14e. Zip Code
S14a. Street Address S14b. City S14f. Telephone Number S14a. Street Address S14b. City S14f. Telephone Number S14a. Street Address	S14c. County S14g. Call Si S14c. County S14g. Call Si	gn of Control Station (if appropriate) S14d. State / Country S14d. State / Country gn of Control Station (if appropriate)	S14e. Zip Code

S15. SPACECRAFT PHYSICAL CHARACTERISTICS

\$15a. Mass of spacecraft without fuel (kg) 2403.4 \$15b. Mass of fuel & disposables at launch (kg) 386.5	Spacecraft Dimensions (meters)	Probability of Survival to End of Life (0.0 - 1.0)
S15c. Mass of spacecraft and fuel at launch (kg)	S15f. Length (m)	S15i. Payload
2789.9	7.118	0.932
S15d. Mass of fuel, in orbit, at beginning of life (kg)	S15g. Width (m)	S15j. Bus
386.5	3.542	0.8355
S15e. Deployed Area of Solar Array (square meters)	S15h. Height (m)	S15k. Total
13.1	5.709	0.778

S16. SPACECRAFT ELECTRICAL CHARACTERISTICS

Spacecraft	Electrical Power (Watts) At Beginning of Life					Electrical Power (Watts) At End of Life						
Subsystem	A	At Equino	ЭX	A	At Solsti	ce	A	t Equin	iox	A	At Solsti	ce
Payload (Watts)	(a)	480		(f)	480		(k)	480		(p)	480	
Bus (Watts)	(b)	2640		(g)	2640		(1)	2640)	(q)	2640	
Total (Watts)	(c)	3120		(h)	3120		(m)	3120)	(r)	3120	
Solar Array	(d)			(i)			(n)			(s)		
(Watts)		3142			3142			3142	2		3142	
Depth of Battery Discharge (%)	(e)	32	%	(j)	32	%	(0)	32	%	(t)	32	%

S17. CERTIFICATIONS

a. Are the power flux density limits of § 25.208 met?	YES		X N/A
b. Are the appropriate service area coverage requirements of § 25.143(b)(ii) and (iii), or § 25.145(c)(1) and (2) met?	YES	NO	X N/A
c. Are the frequency tolerances of § 25.202(e) and the out-of-band emission limits of § 25.202(f)(1), (2), and (3) met?	X YES		□ N/A
In addition to the information required in this Form, the space station applicant is required to provid specified in Section 25.114 of the Commission's rules, 47 C.F.R. § 25.114.	le all the in	formation	

ATTACHMENT C

LINK BUDGETS AND SUMMARY POWER FLUX DENSITY GRAPHS

WV3 600 Mbps DA			(SIS	Fairbanks,A	к
Fo = 8.185 Gł	C Hz N	98PSK Iodulation	496	km Altitude	
DOWNLINK F	ARAME	TERS:			
Fre	equency			8.185	GHz
Ort	oit height	in km		496	km
Loc Da	cal elevat ta	ion above hor.		5	degrees
rate	Э			600	Mbps
Ba	ndwidth (baseband)		145.5	MHz
Spa	acecraft a	ant. EIRP at max scan		59.0	dBm
Sla	nt range			2067.48	km
Gro	ound ant.	G/T		32.9	dB/K
BE	R			5.00E-04	
Re	quired Et	/No (without			
COC	ding)			12.7	dB
На	rdware in	np. BER loss		-2.5	dB
LINK CALCU	LATION: ER TO				
GROUND:				00 F	
Sat	tellite EIR th	P		60.5	dBm
los	s			-177.0	dB
Tot	al loss (r	ain, polarization, etc.)		-1.9	dB
RECEIVER S	ENSITIV	TY:			
Re	auired Et)/No		12.7	dB
Ava	ailable Et)/No		19.2	dB
DO	WNLINK	MARGIN		6.5	dB
ANTENNA SI Spacecraft A Segment	<u>ZES:</u> ntenna				
Spa	acecraft o	lish diameter		16.0	inches
Ар	prox. HPI	ЗW		8.4	degrees
Ga	in of space	cecraft antenna		26.6	dBic
out	nut			-6.2	dB
Tra	nsmitter	Ρο		10.0	watts
EIF	RP of sate	ellite system		60.5	dBm
Ground Ante	nna Seg	ment			
Gro	ound ante	enna			
G/1	Г			32.9	dB/K
Sys	stem nois	e temperature		120.1	K (referenced at aperture)
Dir	ectivity g	ain ground		- · ·	
ant	enna			54.1	dBIC
Gro	ound dish	diameter		7.3	meters
Ар	prox. HPI	3W		0.4	degrees

WV3 600 Mbps DAT	TA RATE D		Fairbanks,A	ικ	
Fo = 8.185 GH	D8F z Moo	PSK dulation	617	km Altitude	
DOWNLINK P	ARAMETE	RS:			
Free	quency			8.185	GHz
Orb	it height in	km		617	km
Loc	al elevation	above hor.		5	degrees
Data	а			600	Mhaa
Tale Ban	dwidth (ba	seband)		145 5	MDps MHz
Sna	cocraft ant	FIRP at may scan		60.5	dBm
Slar	t range	. LINF at max scan		2360.80	km
Gro	und ant G/	Ϋ́Τ		2009.09	dB/K
BEE	2 2			5.00E-04	
Rec	、 iuired Eb/N	o (without		0.002 01	
cod	ing)	Υ.		12.7	dB
Har	dware imp.	BER loss		-2.5	dB
LINK CALCUL TOTAL POWE GROUND:	<u>ATION:</u> R TO				
Sate Patl	ellite EIRP			60.5	dBm
loss				-178.2	dB
Tota	al loss (rain	, polarization, etc.)		-1.9	dB
RECEIVER SE	NSITIVITY	<u>'-</u>			
Rec	uired Eb/N	0		12.7	dB
Ava	ilable Eb/N	0		19.4	dB
DO		ARGIN		6.7	dB
ANTENNA SIZ Spacecraft An Segment	<u>ES:</u> tenna				
Spa	cecraft disl	n diameter		16.0	inches
Арр	rox. HPBW	1		8.4	degrees
Gai	n of spaced	raft antenna		26.6	dBic
Los	s between	HPA out and ant.			
outp	out			-6.2	an a
l rai	ISMITTER PO	o ovetem		10.0	Watts
EIK Ground Anton	r oi satellit	e system		60.5	UDIII
Gro	und antenn	ant Na			
G/T				32.9	dB/K
Svs	tem noise t	emperature		120.1	K (referenced at aperture)
Dire	ctivity gain	ground			
ante	enna			54.1	dBic
Gro	und dish di	ameter		7.3	meters
Арр	rox. HPBW	1		0.4	degrees

WV3					
600 Mbps	s DATA RA	ATE DOWNLINK ANALY	SIS	Fairbanks,	AK
Fo = 8.18	5 GHz	D8PSK Modulation	830	km Altitud	e
DOWNLI		<u>METERS:</u>			
	Frequenc	у		8.185	GHz
	Orbit heig	ht in km		830	km
	Local elev	vation above hor.		5	degrees
	Data				
	rate			600	Mbps
	Bandwidt	n (baseband)		145.5	MHZ
	Spacecra	it ant. EIRP at max scan		60.5	aBm
	Siant rang	je nt C/T		2847.85	
		ni. G/T		52.9 5 005 04	UD/N
	Required	Eb/No (without		5.00E-04	
	codina)			12.7	dB
	Hardware	imp. BER loss		-2.5	dB
LINK CA		<u>N:</u>			
TOTAL P	OWER TO				
<u>GROUND</u>	<u>):</u>				
	Satellite E	IRP		60.5	dBm
	loss			-179.8	dB
	Total loss	(rain polarization etc.)		-1.9	dB
RECEIVE		IVITY:			
	Required	Eb/No		12.7	dB
	Available	Eb/No		18.3	dB
	DOWNLI	NK MARGIN		5.7	dB
	<u>n JIZEJ:</u> Ift Antenn:	a			
Segment		<u>-</u>			
	Spacecra	ft dish diameter		16.0	inches
	Approx. H	IPBW		8.4	degrees
	Gain of s	pacecraft antenna		26.6	dBic
	Loss betv	veen HPA out and ant. or	utput	-6.2	dB
	Transmitt	er Po	•	10.0	watts
	EIRP of s	atellite system		60.5	dBm
Ground A	Antenna Se	egment			
	Ground a	ntenna			
	G/T			32.9	dB/K
	System n	oise temperature		120.1	K (referenced at aperture)
	Directivity	gain ground		E1 4	dPic
	Ground d	ish diametor		04.1 7 0	motors
				1.3	degrees
	Approx. F			0.4	uegrees

Table C-1. Maximum Wideband PFD versus Ground Elevation Angle

WV3 TELEMET				R/T PBK	/NADIR			
	FREQUENCY	8.38	GHz		WAVELENG	TH	0.04	METERS
	POWER	8.5	WATTS		RANGE		2067.48	KM
	ALTITUDE 49	96.0 JANN	KM		TE	32 768	KBDS	
	PLAYBACK DATA UQPSK Q C	HAN	NEL	DATA RA	TE	524.8	KBPS	
				R/T	31.5	dB		
				PBK	25.4	dB		
	ANTENNA: NADIR							
	PARAMETER		UNITS		VALUE			
	TOTAL TRANSMIT POWER		dBm		39.3			
	PASSIVE LOSS		dB		-7.3			
	DEG		dBic		6.0			
	FREE SPACE DISPERSION							
			dB		-1//.2			
	GROUND STATION		uБ		-1.7			
	G/T		dB/K		33.7			
	TOTAL RECEIVED POWER/T		dBm/K		-107.2			
	CONSTANT		dBm/Hz-K		-198.6			
	TOTAL RECEIVED POWER/K	Γ	dB-Hz		91.4			
	DATA CHANNEL I (real time)							
	DATA/TOTAL POWER		dB		-7.0			
	DATA POWER/KT		dB-Hz		84.4			
	INFORMATION RATE 32 KBPS	3	dB-Hz		45.2			
	AVAILABLE S/N		dB		39.2			
	REQUIRED Eb/No 1.00E-6 BE	R	dB		13.0			
	CODING GAIN		dB		5.3			
	AVAILABLE SIGNAL MARGIN		dВ		31.5			
	DATA CHANNEL Q (playback)							
	DATA/TOTAL POWER		dB		-1.0			
			dB-Hz		90.4			
		342	an-Hz		57.2			
		D	dB		33.Z			
		N	dB		13.U 5.2			
	AVAILABLE SIGNAL MARGIN		dB		5.5 25 4			
					20.4			

FREQUENCY 8.38 GHz WAVELENGTH 0.04 METERS POWER 8.5 WATTS RANGE 2369.89 KM ALTITUDE 617.0 KM RANGE 2369.89 KM REAL TIME DATA UQPSK I CHANNEL DATA RATE 32.768 KBPS PLAYBACK DATA UQPSK Q CHANNEL DATA RATE 524.8 KBPS MARGIN RT 10.3 dB PBK 4.2 dB MARGIN RT 10.3 dB PASSIVE LOSS dB -8.3 S/C ANTENNA GAIN > +/-108 DEG dBic -13.0 FREE SPACE DISPERSION LOSS dB -1.7 GROUND STATION G/T dB/K 33.7 G/T TOTAL TRANANI dBm/Hz-K -198.6 CONSTANT dB/K 33.7 -1.7 GROUND STATION GD/T dB/K 33.7 G/T OTAL TRANAN -128.4 -1.0 CONSTANT dB/K -1.7 -1.0 DATA CHANNEL I (real time) -2. -7.0 -7.	WV3 TELEME	<u>TRY DOWNLINK</u>			R/T, PBK	/NADIR			
POWER 8.5 WATTS RANCE 2369.89 KM ALTITUDE 617.0 KM 2369.89 KM REALTIME DATA UQPSK I CHANNEL DATA RATE 32.768 KBPS PLAYBACK DATA UQPSK Q CHANNEL DATA RATE 524.8 KBPS MARGIN R/T 10.3 dB RATENNA: NADIR MARGIN R/T 10.3 dB PARAMETER UNITS VALUE TOTAL TRANSMIT POWER dB -8.3 S/C ANTENNA GAIN > +/-108 DEG dBic -17.4 GROUND STATION GF GROUND STATION GG/T G/T dB/K 33.7 TOTAL RECEIVED POWER/T dB/K -128.4 BOLIZZMANN CONSTANT dBm/Hz-K -198.6 DATA CHANNEL I (real time) DATA/TOTAL POWER dB -7.0 DATA CHANNEL I (real timee)		FREQUENCY 8.38 G		GHz		WAVELENGTH			METERS
REAL TIME DATA UQPSK I CHANNEL DATA RATE 32.768 KBPS PLAYBACK DATA UQPSK Q CHANNEL DATA RATE 524.8 KBPS MARGIN R/T 10.3 dB PARAMETER UNITS VALUE TOTAL TRANSMIT POWER dBm 39.3 PASSIVE LOSS dB -8.3 S/C ANTENNA GAIN > +/-108 DEG dBic -13.0 FREE SPACE DISPERSION LOSS dB -17.8 GROUND STATION G/T dB/K 33.7 GTAL RECEIVED DOWER/T dBm/K -128.4 BOLTZMANN B/K 33.7 TOTAL RECEIVED POWER/T dBm/K -128.4 BOLTZMANN B/K 33.7 TOTAL RECEIVED POWER/T dBm/K -128.4 BOLTZMANN B/K 33.7 TOTAL RECEIVED POWER/T dB-Hz 70.2 DATA CHANNEL I (real time) DATA CHANNEL I (real time) -7.0 DATA CHANNEL I (real time) B 13.0 CODING GAIN dB 5.3 AVAILABLE S/N dB 13.0 CODING GAIN dB		POWER 8.5	WAT ⁻	VATTS	5 DEG SLANT RANGE			2369.89	KM
MARGIN R/T 10.3 dB PBK RATENNA: NADIR PARAMETER UNITS VALUE TOTAL TRANSMIT POWER dB -8.3 SZC ANTENNA GAIN > +/-108 DEG dBic -13.0 FREE SPACE DISPERSION LOSS dB -17.4 ATMOSPHERIC LOSS dB -17.4 GROUND STATION G/T dBm/K -128.4 BOLTZMANN CONSTANT dBm/Hz-K -198.6 TOTAL RECEIVED POWER/T dB-Hz -12. DATA CHANNEL I (real time) DATA CHANNEL Q (playback) CODING GAIN AVAILABLE S/N dB AVAILABLE SIGNAL MARGIN DATA CHANNEL Q (playback) DATA		ALTITUDE 617.0 REAL TIME DATA UQPSK I CHANN PLAYBACK DATA UQPSK Q CHAN			DATA RA DATA RA	TE TE	32.768 524.8	KBPS KBPS	
ANTENNA: NADIR PARAMETER UNITS VALUE TOTAL TRANSMIT POWER dBm 39.3 PASSIVE LOSS dB -8.3 S/C ANTENNA GAIN > +/-108 DEG dBic -13.0 FREE SPACE DISPERSION LOSS dB -17.6 GROUND STATION G/T dB/K 33.7 GOUND STATION G/T dB/K 33.7 TOTAL RECEIVED POWER/T dBm/K -128.4 BOLTZMANN CONSTANT dBm/Hz-K -198.6 TOTAL RECEIVED POWER/KT dB-Hz 70.2 DATA CHANNEL I (real time) DATA OTAL POWER dB -7.0 DATA POWER/KT dB-Hz 63.2 INFORMATION RATE 32 KBPS dB-Hz 45.2 AVAILABLE S/N dB 13.0 CODING GAIN dB 5.3 AVAILABLE SIGNAL MARGIN dB 10.3 DATA CHANNEL Q (playback) DATA CHANNEL Q (playback) UDATA OWER					Margin R/T PBK	10.3 4.2	dB dB		
PARAMETERUNITSVALUETOTAL TRANSMIT POWERdBm39.3PASSIVE LOSSdB-8.3S/C ANTENNA GAIN > +/-108 DEGdBic-13.0FREE SPACE DISPERSION LOSSdB-178.4ATMOSPHERIC LOSSdB-1.7GROUND STATIONG/TdB/KG/TdB/K33.7TOTAL RECEIVED POWER/TdB/K-128.4BOLTZMANNCONSTANTdBm/Hz-KCONSTANTdB/Hz70.2DATA CHANNEL I (real time)-7.0DATA POWER/KTdB-7.0DATA POWER/KTdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)-1.0DATA POWER/KTdB-Hz69.2		ANTENNA: NADIR							
TOTAL TRANSMIT POWERdBm39.3PASSIVE LOSSdB-8.3S/C ANTENNA GAIN > +/-108 DEGdBic-13.0FREE SPACE DISPERSION LOSSdB-178.4ATMOSPHERIC LOSSdB-1.7GROUND STATIONG/TdB/KG/TdB/K33.7TOTAL RECEIVED POWER/TdBm/K-128.4BOLTZMANNCONSTANTdBm/Hz-KCONSTANTdB/Hz70.2DATA CHANNEL I (real time)-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)-1.0DATA CHANNEL Q (playback)-1.0DATA POWER/KTdB-Hz69.2		PARAMETER	l	UNITS		VALUE			
PASSIVE LOSS dB -8.3 S/C ANTENNA GAIN > +/-108 DEG dBic -13.0 FREE SPACE DISPERSION LOSS dB -178.4 ATMOSPHERIC LOSS dB -1.7 GROUND STATION dB/K 33.7 G/T dB/K 33.7 TOTAL RECEIVED POWER/T dBm/K -128.4 BOLTZMANN -1000 CONSTANT dBm/Hz-K -198.6 TOTAL RECEIVED POWER/KT dB-Hz 70.2 DATA CHANNEL I (real time) DATA/TOTAL POWER dB -7.0 DATA POWER/KT dB-Hz 63.2 INFORMATION RATE 32 KBPS dB-Hz 45.2 AVAILABLE S/N dB 18.0 REQUIRED Eb/No 1.00E-6 BER dB 13.0 CODING GAIN dB 5.3 AVAILABLE SIGNAL MARGIN dB 10.3 DATA CHANNEL Q (playback) DATA CHANNEL Q (playback)		TOTAL TRANSMIT POWER	(dBm		39.3			
S/C ANTENNA GAIN > +/-108 DEGdBic-13.0FREE SPACE DISPERSION LOSSdB-178.4ATMOSPHERIC LOSSdB-1.7GROUND STATIONdB/K33.7G/TdB/K33.7TOTAL RECEIVED POWER/TdBm/K-128.4BOLTZMANNdBm/Hz-K-198.6CONSTANTdB-Hz70.2DATA CHANNEL I (real time)DATA POWER/KTdB-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA CHANNEL Q (playback)DATA CHANNEL Q (blayback)-1.0DATA CHANNEL Q (blayback)-1.0DATA POWER/KTdB-1.0		PASSIVE LOSS	(dB		-8.3			
FREE SPACE DISPERSION LOSSdB-178.4ATMOSPHERIC LOSSdB-1.7GROUND STATIONdB/K33.7GTAL RECEIVED POWER/TdBm/K-128.4BOLTZMANNCONSTANTdBm/Hz-KCONSTANTdBm/Hz-K-198.6TOTAL RECEIVED POWER/KTdB-Hz70.2DATA CHANNEL I (real time)DATA CHANNEL I (real time)DATA POWER/KTdB-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA/TOTAL POWERdB-1.0DATA CHANNEL Q (playback)DATA/TOTAL POWER69.2		S/C ANTENNA GAIN > +/-108 DEG	(dBic		-13.0			
ATMOSPHERIC LOSSdB-1.7GROUND STATIONdB/K33.7GTdB/K33.7TOTAL RECEIVED POWER/TdBm/K-128.4BOLTZMANNCONSTANTdBm/Hz-KCONSTANTdBm/Hz-K-198.6TOTAL RECEIVED POWER/KTdB-Hz70.2DATA CHANNEL I (real time)DATA A CHANNEL I (real time)DATA POWER/KTdB-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA POWER/KTdB-1.0DATA POWER/KTdB-Hz69.2		FREE SPACE DISPERSION LOSS	(dB		-178.4			
GROUND STATION G/TdB/K33.7TOTAL RECEIVED POWER/TdBm/K-128.4BOLTZMANNCONSTANTdBm/Hz-K-198.6TOTAL RECEIVED POWER/KTdB-Hz70.2DATA CHANNEL I (real time)DATA CHANNEL I (real time)DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA POWER/KTdB-1.0DATA POWER/KTdB-Hz69.2		ATMOSPHERIC LOSS	(dB		-1.7			
G/TdB/K33.7TOTAL RECEIVED POWER/TdBm/K-128.4BOLTZMANNONSTANTdBm/Hz-K-198.6CONSTANTdBm/Hz-K-198.6TOTAL RECEIVED POWER/KTdB-Hz70.2DATA CHANNEL I (real time)DATA POWER/KTdB-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)-1.0DATA POWER/KTdB-Hz69.2		GROUND STATION							
TOTAL RECEIVED POWER/TdBm/K-128.4BOLTZMANNCONSTANTdBm/Hz-K-198.6TOTAL RECEIVED POWER/KTdB-Hz70.2DATA CHANNEL I (real time)DATA/TOTAL POWERdB-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA POWER/KTdB-1.0DATA POWER/KTdB-1.0DATA POWER/KTdB69.2		G/T	(dB/K		33.7			
CONSTANTdBm/Hz-K-198.6TOTAL RECEIVED POWER/KTdB-Hz70.2DATA CHANNEL I (real time)DATA/TOTAL POWERdBDATA POWER/KTdB-HzGaz63.2INFORMATION RATE 32 KBPSdB-HzAVAILABLE S/NdBREQUIRED Eb/No 1.00E-6 BERdBCODING GAINdBAVAILABLE SIGNAL MARGINdBDATA CHANNEL Q (playback)DATA POWER/KTdBDATA POWER/KTdBCATA POWER/KTdBDATA POWER/KTdBCATA POWER/KTdBCATA POWER/KTdB-Hz69.2		TOTAL RECEIVED POWER/T BOLTZMANN	(dBm/K		-128.4			
TOTAL RECEIVED POWER/KTdB-Hz70.2DATA CHANNEL I (real time)DATA/TOTAL POWERdB-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA POWER/KTdB-1.0DATA POWER/KTdB-Hz69.2		CONSTANT	0	dBm/Hz	-K	-198.6			
DATA CHANNEL I (real time)DATA/TOTAL POWERdB-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA POWER/KTdB-1.0DATA POWER/KTdB-Hz69.2		TOTAL RECEIVED POWER/KT	(dB-Hz		70.2			
DATA/TOTAL POWERdB-7.0DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA/TOTAL POWERdB-1.0DATA POWER/KTdB-Hz69.2		DATA CHANNEL I (real time)							
DATA POWER/KTdB-Hz63.2INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA/TOTAL POWERdB-1.0DATA POWER/KTdB-Hz69.2		DATA/TOTAL POWER	(dB		-7.0			
INFORMATION RATE 32 KBPSdB-Hz45.2AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA/TOTAL POWERdB-1.0DATA POWER/KTdB-Hz69.2		DATA POWER/KT	(dB-Hz		63.2			
AVAILABLE S/NdB18.0REQUIRED Eb/No 1.00E-6 BERdB13.0CODING GAINdB5.3AVAILABLE SIGNAL MARGINdB10.3DATA CHANNEL Q (playback)DATA/TOTAL POWERdB-1.0DATA POWER/KTdB-Hz69.2		INFORMATION RATE 32 KBPS	(dB-Hz		45.2			
REQUIRED Eb/No 1.00E-6 BER dB 13.0 CODING GAIN dB 5.3 AVAILABLE SIGNAL MARGIN dB 10.3 DATA CHANNEL Q (playback) DATA/TOTAL POWER dB -1.0 DATA POWER/KT dB-Hz 69.2		AVAILABLE S/N	(dB		18.0			
CODING GAIN dB 5.3 AVAILABLE SIGNAL MARGIN dB 10.3 DATA CHANNEL Q (playback) -1.0 DATA/TOTAL POWER dB -1.0 DATA POWER/KT dB-Hz 69.2		REQUIRED Eb/No 1.00E-6 BER	(dB		13.0			
AVAILABLE SIGNAL MARGIN dB 10.3 DATA CHANNEL Q (playback)		CODING GAIN	(dB		5.3			
DATA CHANNEL Q (playback) DATA/TOTAL POWER dB -1.0 DATA POWER/KT dB-Hz 69.2		AVAILABLE SIGNAL MARGIN	(dB		10.3			
DATA/TOTAL POWERdB-1.0DATA POWER/KTdB-Hz69.2		DATA CHANNEL Q (playback)							
DATA POWER/KT dB-Hz 69.2		DATA/TOTAL POWER	(dB		-1.0			
		DATA POWER/KT	(dB-Hz		69.2			
I INFORMATION RATE 512.8 KBPS dB-Hz 57.2		INFORMATION RATE 512.8 KBPS	(dB-Hz		57.2			
AVAILABLE S/N dB 12.0		AVAILABLE S/N	(dB		12.0			
REQUIRED Eb/No 1.00E-6 BER dB 13.0		REQUIRED Eb/No 1.00E-6 BER	(dB		13.0			
CODING GAIN dB 5.3		CODING GAIN	(dB		5.3			
AVAILABLE SIGNAL MARGIN dB 4.2		AVAILABLE SIGNAL MARGIN	(dB		4.2			

WV3 TELEME			R/T, PBK	/NADIR			
		<u></u>	,				
	FREQUENCY 8.38	GHz		5 DEG SLAN	IH T	0.04	METERS
	POWER 8.5	WATTS		RANGE		2847.85	KM
	REAL TIME DATA UQPSK I CHANN		DATA RA	TE	32.768	KBPS	
	PLAYBACK DATA UQPSK Q CHAN	INEL	DATA RA	TE	524.8	KBPS	
			MARGIN				
			R/T	11.2	dB		
			PBK	5.1	dB		
	ANTENNA: NADIR						
	PARAMETER	UNITS		VALUE			
	TOTAL TRANSMIT POWER	dBm		39.3			
	PASSIVE LOSS	dB		-5.8			
	S/C ANTENNA GAIN > +/-108 DEG	dBic		-13.0			
	FREE SPACE DISPERSION LOSS	dB		-180.0			
	ATMOSPHERIC LOSS	dB		-1.7			
	GROUND STATION	-					
	G/T	dB/K		33.7			
	TOTAL RECEIVED POWER/T BOLTZMANN	dBm/K		-127.5			
	CONSTANT	dBm/Hz	<u>r</u> -Κ	-198.6			
	TOTAL RECEIVED POWER/KT	dB-Hz		71.1			
	DATA CHANNEL I (real time)						
	DATA/TOTAL POWER	dB		-7.0			
	DATA POWER/KT	dB-Hz		64.1			
	INFORMATION RATE 32 KBPS	dB-Hz		45.2			
	AVAILABLE S/N	dB		18.9			
	REQUIRED Eb/No 1.00E-6 BER	dB		13.0			
	CODING GAIN	dB		5.3			
	AVAILABLE SIGNAL MARGIN	dB		11.2			
	DATA CHANNEL Q (plavback)						
	DATA/TOTAL POWER	dB		-1.0			
	DATA POWER/KT	dB-Hz		70.1			
	INFORMATION RATE 512.8 KBPS	dB-Hz		57.2			
	AVAILABLE S/N	dB		12.9			
	REQUIRED Eb/No 1.00E-6 BER	dB		13.0			
	CODING GAIN	dB		5.3			
	AVAILABLE SIGNAL MARGIN	dB		5.1			

Table C-2. Maximum Narrowband PFD versus Ground Elevation Angle

WV3						
COMMAND						
UPLINK		O	MNI ANTENNA NO	DMINAL		
DigitalGlobe						
FREQUENCY	2.0856875	GHz				
UPLINK	53.0	dBW EIRP	WAVELE	NGTH	0.14	METERS
			3 DEG SI	ANT		
ALTITUDE	496.0	KM	RANGE		2251.6	KM
				DATA		
				RATE	64	KBPS
CMD MOD INDEX	1.57			MARGIN	7.0	dB
ANTENNA: OMNI	NOMINAL +/-	75 DEG				
		10 0 2 0				
PARAMETER			UNIT		VALLE	
			dBW		53.0	
			dB		165.0	
PREE SPACE DISPERSION LOSS			UD dD		-105.9	
			UD		-0.2	
ATMOSPHERIC LOSS 19 mm/hr			dB.		-1.6	
S/C ANTENNA GAIN $< +/-75$ DEG			dBI		-15.0	
POLARIZATION LOSS			dB		-1.0	
S/C LINE LOSS			dB		-2.3	
TOTAL S/C RECEIV	/ED		15		400.0	
POWER			dBm		-103.0	
CARRIER PERFOR	MANCE					
NET RECEIVED POWER			dBm		-103.0	
MIN CARRIER ACQUIS POWER			dBm		-110.0	
MARGIN CARRIER	dB		7.0			
COMMAND CHANN	NEL PERFOR	MANCE (MI=1.	57)			
NET RECEIVED PC	OWER	``	dBm		-103.0	
MINIMUMCMD CHANNEL POWER			dBm		-110.0	
COMMAND DESIGN MARGIN			dB		7.0	

WV3						
COMMAND						
UPLINK		0	MNI ANTENNA NO	DMINAL		
DigitalGlobe						
FREQUENCY	2.0856875	GHz				
UPLINK	53.0	dBW EIRP	WAVELE	NGTH	0.14	METERS
•• •	0010		3 DEG SL	ANT		
ALTITUDE	617.0	KM	RANGE		2558.0	KM
				DATA		
				RATE	64	KBPS
CMD MOD INDEX	1.57			MARGIN	5.9	dB
ANTENNA: OMNI	NOMINAL +/-	75 DEG				
PARAMETER			UNIT		VALUE	
UPLINK EIRP			dBW	dBW		
FREE SPACE DISPERSION LOSS			dB		-167.0	
POINTING LOSS			dB		-0.2	
ATMOSPHERIC LOSS 19 mm/br			dB		-1.6	
S/C ANTENNA GAIN $< \pm/-75$ DEG			dBi		-15.0	
			dB		-1.0	
S/C LINE LOSS			dB		-1.0	
TOTAL S/C RECEIV			uВ		-2.5	
POWER			dBm		-104 1	
1 OWER			dBill		10111	
CARRIER PERFOR						
	WFR		dBm		-104 1	
			dBm		-110.0	
			dB		-110.0	
		IN	UD		5.9	
			57)			
			.07) alDina		404.4	
		-0	(IBIII)		-104.1	
		ĸ	aBm		-110.0	
COMMAND DESIGN MARGIN			dB		5.9	

WV3						
COMMAND						
UPLINK		O	MNI ANTENNA NO	MINAL		
DigitalGlobe						
FREQUENCY	2.0856875	GHz				
UPLINK	53.0	dBW EIRP	WAVELE	NGTH	0.14	METERS
• •• - ••••	0010		3 DEG SL	ANT		
ALTITUDE	830.0	KM	RANGE		3040.8	KM
				DATA		
				RATE	64	KBPS
CMD MOD INDEX	1.57			MARGIN	4.4	dB
ANTENNA: OMNI	NOMINAL +/-	75 DEG				
PARAMETER			UNIT		VALUE	
UPLINK EIRP			dBW	dBW		
FREE SPACE DISPERSION LOSS			dB		-168.5	
POINTING LOSS			dB		-0.2	
ATMOSPHERIC LOSS 19 mm/hr			dB		-1.6	
S/C ANTENNA GAIN $< +/-75$ DEG			dBi		-15.0	
POLARIZATION LOSS			dB		-1.0	
S/C LINE LOSS			dB		-2.3	
TOTAL S/C RECEIV	/ED		äb		2.0	
POWER			dBm		-105.6	
CARRIER PERFOR	MANCE					
NET RECEIVED PC	WER		dBm		-105.6	
MIN CARRIER ACQUIS POWER			dBm		-110.0	
MARGIN CARRIER ACQUISITION			dB		4 4	
			GD			
			57)			
			dBm		-105.6	
		P	dBm		-110.0	
		-17	dD		-110.0	
COMMAND DESIGN MARGIN			aв		4.4	

ATTACHMENT D

SPACE STATION ANTENNA PATTERNS

WorldView-3 Wideband Antenna Pattern, Azimuth Cut, dBic

WorldView-3 Wideband Antenna Pattern, Elevation Cut, dBic

WorldView-3 Narrowband Antenna Pattern, dBic

WorldView-3 Command Uplink Antenna Pattern, dBic

ATTACHMENT E

PREDICTED ANTENNA GAIN CONTOURS

Prudhoe Bay and Fairbanks, AK

Wideband Downlink Contours: 830 km Altitude (2 of 2)

Wideband Downlink Contours: 617 km Altitude (1 of 2)

Prudhoe Bay and Fairbanks, AK

Wideband Downlink Contours: 617 km Altitude (2 of 2)

Wideband Downlink Contours: 496 km Altitude (1 of 2)

Prudhoe Bay and Fairbanks, AK

Wideband Downlink Contours: 496 km Altitude (2 of 2)

Narrowband Downlink Contours: 830 km Altitude (1 of 2)

Fairbanks, AK

Narrowband Downlink Contours: 830 km Altitude (2 of 2)

Clewiston, FL

Fairbanks, AK

Narrowband Downlink Contours: 617 km Altitude (2 of 2)

Clewiston, FL

Narrowband Downlink Contours: 496 km Altitude (1 of 2)

Fairbanks, AK

Clewiston, FL

TECHNICAL CERTIFICATE

I, Steve Linn, hereby certify, under penalty of perjury, that I am the technically qualified person responsible for the preparation of the engineering information contained in the technical portions of the foregoing amendment and the related attachments, that I am familiar with Part 25 of the Commission's Rules, and that the technical information is complete and accurate to the best of my knowledge and belief.

/s/ Steve Linn

Steve Linn Vice President, Space Systems DigitalGlobe, Inc.

Dated: July 10, 2012