FEDERAL COMMUNICATIONS COMMISSION SATELLITE SPACE STATION AUTHORIZATIONS (Technical and Operational Description)

S1. GENERAL INFORMATION Complete for all satellite applications.

a. Space Station or Satellite Network Name: ECHOSTAR-109W	e. Estimated Date of Placement into Service:	i Will the space station(s) operate on a Common Carrier Basis: N
b. Construction Commencement Date:	f. Estimated Lifetime of Satellite(s): Years	j. Number of transponders offered on a common carrier basis:
c. Construction Completion Date:	g. Total Number of Transponders:	k. Total Common Carrier Transponder Bandwidth: MHz
d1. Est Launch Date Begin: d2. Est Launch Date End:	h. Total Transponder Bandwidth (no. transponders x Bandwidth) MHz	I. Orbit Type: Mark all boxes that apply:

S2. OPERATING FREQUENCY BANDS Identify the frequency range and transmit/receive mode for all frequency bands in which this station will oper Also indicate the nature of service(s) for each frequency band.

	Frequency	Band Limits			
Lower Frequency	(_Hz)	Upper Frequency (_Hz)	e. T/R Mode	f. Nature of Service(s): List all that apply to this band
a. Numeric	b. Unit (K/M/G)	c. Numeric	d. Unit (K/M/G)		
13751.5	М	13752.5	М	R	Fixed Satellite Service
13997.5	М	13998.5	М	R	Fixed Satellite Service
11451.5	Μ	11452.5	М	Т	Fixed Satellite Service
11697.5	М	11698.5	М	Т	Fixed Satellite Service

S3. ORBITAL INFORMATION FOR GEOSTATIONARY SATELLITES ONLY:

a. Nominal Orbital Longitude (109 W	Degrees E/W):	b. Alternate Orbital Longi	ude (Degrees E/W):	c. Reason for orbital location selection:		
Longitudinal Tolerance or E/W d. Toward West: e. Toward East:	VStation-Keeping: 0.05 Degrees 0.05 Degrees	f. Inclination Excursion or N/S Station-Keeping Tolerance: 0.05 Degrees	Range of orbital are in whi provided (Optional): g. Westernmost: h. Easternmost:	ch adequate serv Degrees	rice can be <u>E/W</u>	
i. Reason for service are s	election (Option	al):				

Page 2: NGSO Orbits

S4. ORBITAL INFORMATION FOR NON-GEOSTATIONARY SATELLITES ONLY

S4a. Total Number of Satellites in Network or System:

S4b. Total Number of Orbital Planes in Network or System:

S4c. Celestial Reference Body (Earth, Sun, Moon, etc.):

S4d. Orbit Epoch Date:

For each Orbital Plane Provide:

ſ	(e) Orbital	(f) No. of	(g) Inclination	(h) Orbital	(i) Apogee (km)	(j) Perigee (km)	(k) Right Ascension	(I) Argument of	Active Se	rvice Arc Rang	e (Degrees)
	Plane No.	Satellites in	Angle (degrees)	Period			of the Ascending	Perigee	(m) Begin	(n) End	(o) Other
		Plane		(Seconds)			Node (Deg.)	(Degrees)	Angle	Angle	

S5. INITIAL SATELLITE PHASE ANGLE For each satellite in each orbital plane, provide the intital phase angle.

(a) Orbital	(b) Satellite	(c) Initial
Plane No.	Number	Phase Angle
		(Degrees)

NO NGSO DATA FILED

S6. SERVICE AREA CHARACTERISTICS for each service area provide:

(b) Type of Associated	(c) Service Area Diagram	(d) Service Area Description. Provide list of geographic areas (state postal codes or ITU 3-ltr codes), satellites or Figure No. of
Station (Earth or	File Name (GXT File)	Service Area Diagram.
Space)		
0		Visible Earth
3		VISIDIE Earth
S		CONUS
	Station (Earth or	Station (Earth or File Name (GXT File)

Page 3: Service Areas

Page 4: Antenna Beams

S7. SPACE STATION ANTENNA BEAM CHARACTERISTICS For each antenna beam provide:

Isotropic	Antenna	(e)	(f)	(g) Min.	(h) Polar-	(i) Polarization	(j) Service		Transmit				Receive		
				Cross-	ization	Alignment Rel.	Area ID	(k)	()	(m)		. ,		Input Atten	uator (dB)
(C) 1 Cak			-					Input						(q) Max.	(r) Step
(dBI)	(dBI)	(Degrees)	(Degrees)		(Y/N)	Tiane (Degrees)		(dB)	Fower (W)				(dBW/m2)	Value	Size
33.5	27.5	0.15		30	N		SA2	6	0.028	18	,	. ,	. ,		
							SA1					-27.5	-80		
2.5							SA1	3	1 1	3		1.10			
	Ga (c) Peak (dBi) 33.5 2.5	(dBi) (dBi) 33.5 27.5 2.5 -0.5	GainPointing(c) Peak (dBi)(d) Edge (dBi)Error (Degrees)33.527.50.152.5-0.5	GainPointing Error (dBi)Rotational Error (Degrees)33.527.50.152.5-0.5	GainPointing Error (DBi)Rotational Error (Degrees)Cross- Polar Iso- lation (dB)33.527.50.15302.5-0.530	GainPointing Error (Degrees)Rotational Error (Degrees)Cross- Polar Iso- Iation (dB)ization Switch- able? (Y/N)33.527.50.1530N2.5-0.530N	GainPointing Error (DBi)Rotational Error (Degrees)Cross- Polar Iso- Polar Iso- lation (dB)Tation Switch- able? (Y/N)Alignment Rel. Equatorial Plane (Degrees)33.527.50.1530N2.5-0.530N	GainPointing Error (dBi)Rotational Error (Degrees)Öross- Polar Iso- Patron (dB)Älignment Rel. Equatorial Plar Iso- (Y/N)Area ID33.527.50.1530NSA22.5-0.530NSA1	GainPointing (C) Peak (dBi)Pointing Error (Degrees)Rotational Error (Degrees)Öross- Polar Iso- Iation (dB)ization Switch- able? (Y/N)Älignment Rel. Equatorial Plane (Degrees)Area ID(k) Input Losses (dB)33.527.50.1530NSA262.5-0.530NSA1	GainPointing (C) Peak (dBi)Pointing Error (Degrees)Rotational Error (Degrees)Cross- Polar Iso- lation (dB)Älignment Rel. Switch- able? (Y/N)Ärea ID(k) Input Losses (dB)(l) Effective Output Power (W)33.527.50.1530NSA260.0282.5-0.530NSA1	GainPointing (C) Peak (dBi)Pointing Error (Degrees)Rotational Error (Degrees)Öross- Polar Iso- lation (dB)Älignment Rel. Switch- able? (Y/N)Area ID(k) Input Losses (dB)(l) Effective Output Power (W)(m) Max. EIRP (dBW)33.527.50.1530NSA260.028182.5-0.530NSA1	GainPointing (C) Peak (dBi)Pointing Error (Degrees)Rotational Error (Degrees)Cross- Polar Iso- lation (dB)ization Switch- able? (Y/N)Älignment Rel. Equatorial Plane (Degrees)Area ID(k) (k) (I) Effective Output Power (W)(m) Max, System Noice Temp (k)(n) System Noice Temp (k)33.527.50.1530NSA260.028182.5-0.530NSA1	GainPointing (dBi)Rotational Error (Degrees)Cross- Polar Iso- Polar Iso- lation (dB)Alignment Rel. Switch- able?Area ID(k) Input (Losses (dB)(l) Effective Output Power (W)(m) Max. System (dBW)(n) System Noice (db// (db//))(o) G/T Max. Gain Pt. (db// (db//))33.527.50.1530NSA260.028182.5-0.530NSA1	GainPointing (dBi)Rotational Error (Degrees)Cross- Polar Iso- lation (dB)ization Switch- able? (Y/N)Alignment Rel. Equatorial Plane (Degrees)(k) (lnput Losses (dB)(l) Effective Output Power (W)(m) Max. Output Power (W)(n) Max. EIRP (dBW)(o) G/T Max. Gin Pt. Gin Pt. (dB/K)(p) Min. Saturation Flux Density (dB/M)33.527.50.1530 NSA260.028182.5-0.530 NSA1II-27.5-80	Gain Pointing (dBi) Rotational (dBi) Rotational (dBi) Rotational (dBi) Cross- Polar Iso- (Degrees) ization Polar Iso- Iation (dB) Alignment Rel. Switch- able? Area ID (H) (k) Input (dB) (l) Effective Output (dB) (m) Max. EIRP (dB) (n) Max. EIRP (dBW) (o) G/T Max. (dBW) (p) Min. Max. (dBW/m2) Input Attent (dBW/m2) 33.5 27.5 0.15 30 N SA2 6 0.028 18 C -27.5 -80

S8. ANTENNA BEAM DIAGRAMS For each beam pattern provide the reference to the graphic image and numerical data: Also provide the power flux density levels in each beam that result from the emission with the highest power flux density.

(a)	(b)	(c) Co-or	()	(e) NGSO Antenna Gain	(f) GSO Antenna		Max. Power F	Iux Density (dB	W/M2/Hz)	
Beam	T/R	Cross	Ref.	Contour Description	Gain Contour Data	At Angle of	Arrival above ho	orizontal (for em	ission with high	hest PFD)
ID	Mode	Polar Mode ("C" or" X")	Orbital Longitude (Deg. E/W)	(Figure/Table/ Exhibit)	(GXT File)	(g) 5 Deg	(h) 10 Deg	(i) 15 Deg	(j) 20 Deg	(k) 25 Deg
COM	Т	С	-109		COM.gxt	-151	-151	-151	-151	-151

Page 5: Beam Diagrams

Page 6: Channels and Transponders

(a) Channel No.	(B) Assigned Bandwidth (kHz)	(c) T/R Mode	(d) Center Frequency (MHz)	(e) Polarization (H, V, L, R)	(f) TTC or Comm Channel (T or C)
C1	1000	R	13752	L	Т
C2	1000	R	13998	L	Т
TMO1	1000	Т	11452	R	Т
TMO2	1000	Т	11698	R	Т
TMC1	1000	Т	11452	Н	Т
TMC2	1000	Т	11698	V	Т

S9. SPACE STATION CHANNELS For each frequency channel provide: S10. SPACE STATION TRANSPONDERS For each transponder provide:

(a)	(b)	Receive	Band	Transmit Band			
Transponder ID	Transponder Gain (dB)	(c) Channel No.	(d) Beam ID	(e) Channel No.	(f) Beam ID		
C001		C1	OMNU				
C002		C2	OMNU				
T001A				TMO1	OMND		
T002A				TMO2	OMND		
T001B				TMC1	COM		
T002B				TMC2	COM		

S11. DIGITAL MODULATION PARAMETERS For each digital emission provide:

ſ	(a) Digital Mod. ID	(b) Emission Designator	Bandwidth	(d) No. of Phases	Data Rate	(f) FEC Error Correction Coding Rate	Processing	(h) Total C/N Performance Objective (dB)	C/I Objective
			(kHz)		(kbps)	Coding Rate	Gain (dB)	Objective (dB)	(dB

Page 7: Digital Modulation

Page 8: Analog Modulation

S12. ANALOG MODULATION PARAMETERS For each analog emission provide:

(a)	(b) Emission	(C)	(d) Signal	(e)		Multi-channe	I Telephony		(j) Video	(k) Video	(I) Video	(m) SCPC/FM		
Analog Mod. ID	Designator	Assigned Bandwidth (kHz)	Туре	Channels per Carrier	(f) Ave. Companded Talker Level (dBm0)	(g) Bottom Baseband Freq. (MHz)	(h) Top Baseband Freq. (MHz)	(i) RMS Modulation Index	Standard NTSC, PAL, etc.	Noise- Weighting (dB)	and SCPC/FM Modulation Index	Compander, Preemphasis, and Noise Weighting (dB)	Performance Objective (dB)	Entry C/I Objective (dB)
CMD1	1M00F2D	1000		1									10	22.2
TLM1	1M00G2D	1000		1									9	21.2
TLM2	1M00G2D	1000		1									9	21.2

Page 9: Typical Emissions

S13. TYPICAL EMISSIONS For each planned type of emission provide:

Associated Transponder ID Range (a) Start (b) End					(f) Carrier	(3)	(h) Energy	Receive Band (Assoc. Transmit Stn)			Tra	nsmit Band	(This Space Station)	
		(Table	(Table (Table S12)		Spacing (kHz)	g Reference (Table No.)	Dispersal Bandwidth (kHz)	(i)Assoc. Stn. Max.	Assoc. Station Transmit Power (dBW)		EIRP (dBW)		Power Flux	(o)Assoc. Stn
	(a) Start (b) End S11)	511)	511)				× ,	Antenna Gain (dBi)	(j) Min.	(k) Max.	(I) Min.	(m) Max.	Density (dBW/m2/Hz)	Rec. G/T (dB/K)
C001	C002		CMD1	1		LB1.doc		63.9	19	39.4				-30.5
T001A	T002A		TLM1	1		LB2.doc					0	3	-170	48
T001B	T002B		TLM2	1		LB3.doc					12	18	-151	37

Page 10: TT and C

S14. Is the space station(s) controlled and monitored remotely? If Yes, provide the location and telephone number of the TT and C control point(s): Yes

Remote Control (TT C) Location(s):

S14a: Street Address: 530 Echostar Drive				
S14b. City: Cheyenne	S14c. County: Laramie		S14d. State/Country WY	S14e. Zip Code:
S14f. Telephone Number:		S14g. Call Sign of Control S	tation (if appropriate):	
Remote Control (TT C) Location(s):				
S14a: Street Address: 801 North American Sky Boulavard				

S14b. City: Gibert	S14c. County: Maricopa		S14d. State/Country AZ	S14e. Zip Code:		
S14f. Telephone Number:		S14g. Call Sign of Control Station (if appropriate):				

Page 11: Characteristics and Certifications

S15. SPACECRAFT PHYSICAL CHARACTERISTICS:

S16. SPACECRAFT ELECTRICAL CHARACTERISTICS:

S17. CERTIFICATIONS:

a. Are the power flux density limits of § 25.208 met?:	X	YES		NO		N/A			
b. Are the appropriate service area coverage requirements of § 25.143(b)(ii) and (iii), or § 25.145(c)(1) and (2) m	et?	YES		NO	X	N/A			
c. Are the frequency tolerances of § 25.202(e) and the out-of-band emission limits of § 25.202(f)(1), (2) and (3) n	et? X	YES		NO		N/A			
In addition to the information required in this Form, the space station applicant is required to provide	all the in	formati	ion speci	ified in	Sectio	n 25.114 of the			
Commission's rules, 47 C.F.R § 25.114.									