FEDERAL COMMUNICATIONS COMMISSION SATELLITE SPACE STATION AUTHORIZATIONS (Technical and Operational Description)

S1. GENERAL INFORMATION Complete for all satellite applications.

a. Space Station or Satellite N AFRISTAR-2	etwork Name:	e. Estimated Date of Placement into Service: 11/1/2006		i Will the space station(s) operate on a C N	ommon Carrier Basis:
b. Construction Commenceme 1/10/2005	ent Date:	f. Estimated Lifetime of Satellite(s): 15	Years	j. Number of transponders offered on a co 0	ommon carrier basis:
c. Construction Completion Da 6/1/2006	ate:	g. Total Number of Transponders: 2		k. Total Common Carrier Transponder Ba	andwidth: MHz
d1. Est Launch Date Begin: 8/1/2006	d2. Est Launch Date End: 10/1/2006	h. Total Transponder Bandwidth (no. transponde 5.2	ers x Bandwidth) MHz	I. Orbit Type: Mark all boxes that apply:	NGSO

S2. OPERATING FREQUENCY BANDS Identify the frequency range and transmit/receive mode for all frequency bands in which this station will oper Also indicate the nature of service(s) for each frequency band.

	Frequency	Band Limits						
Lower Frequency (_Hz)	Upper Frequency (_Hz)	e. T/R Mode	f. Nature of Service(s): List all that apply to this band			
a. Numeric	b. Unit (K/M/G)	c. Numeric	d. Unit (K/M/G)					
1452	М	1492	М	Т	Broadcasting Satellite Service - Sound			
7025	М	7075	М	R	Feeder Link for Broadcasting Satellite Service in FSS			

S3. ORBITAL INFORMATION FOR GEOSTATIONARY SATELLITES ONLY:

a. Nominal Orbital Longitude (Degrees E/W):	b. Alternate Orbital Longitude (Degrees E/W):	c. Reason for orbital location selection:
21 E Longitudinal Tolerance or E/W Station-Keeping:	f. Inclination Excursion or Range of orbital are in which adequate service can be	Co-Location with AfriStar-1 satellite launched in
d. Toward West: 0.05 Degrees e. Toward East: 0.05 Degrees	f. Inclination Excursion or N/S Station-Keeping Tolerance: Range of orbital are in which adequate service can be provided (Optional): Degrees E/W g. Westernmost: b. Easternmost:	October 1998
i. Reason for service are selection (Optional		

Page 2: NGSO Orbits

S4. ORBITAL INFORMATION FOR NON-GEOSTATIONARY SATELLITES ONLY

S4a. Total Number of Satellites in Network or System:

S4b. Total Number of Orbital Planes in Network or System:

S4c. Celestial Reference Body (Earth, Sun, Moon, etc.):

S4d. Orbit Epoch Date:

For each Orbital Plane Provide:

ſ	(e) Orbital	(f) No. of	(g) Inclination	(h) Orbital	(i) Apogee (km)	(j) Perigee (km)	(k) Right Ascension	(I) Argument of	Active Se	rvice Arc Rang	e (Degrees)
	Plane No.	Satellites in	Angle (degrees)	Period			of the Ascending	Perigee	(m) Begin	(n) End	(o) Other
		Plane		(Seconds)			Node (Deg.)	(Degrees)	Angle	Angle	

S5. INITIAL SATELLITE PHASE ANGLE For each satellite in each orbital plane, provide the intital phase angle.

(a) Orbital	(b) Satellite	(c) Initial
Plane No.	Number	Phase Angle
		(Degrees)

NO NGSO DATA FILED

Page 3: Service Areas

S6. SERVICE AREA CHARACTERISTICS for each service area provide:

(a) Service Area ID	(b) Type of Associated Station (Earth or Space)	(d) Service Area Description. Provide list of geographic areas (state postal codes or ITU 3-ltr codes), satellites or Figure No. of Service Area Diagram.
1	E	Figure 1: Uplink Service Area
2	S	Figure 2: Downlink Service Area
3	S	Figure 3: Downlink Telemetry Service Area

Page 4: Antenna Beams

S7. SPACE STATION ANTENNA BEAM CHARACTERISTICS For each antenna beam provide:

(a)	(b)	Isotropic	Antenna	(e)	(f)	(g) Min.	(h) Polar-	(i) Polarization	(j) Service		Transmit				Receive		
Beam	T/R	Ga			Rotational	Cross-	ization	Alignment Rel.	Area ID	(k)	(I) Effective	(m)		(o) G/T		Input Atten	uator (dB)
ID	Mode		(d) Edge	Error	Error (Degrees)	Polar Iso-	Switch- able?	Equatorial		Input	Output	Max.	System	Max.	Saturation	(q) Max.	(r) Step
		(dBi)	(dBi)	(Degrees)	(Degrees)		(Y/N)	Plane (Degrees)		Losses (dB)	Power (W)	EIRP (dBW)	Noice Temp (k)		Flux Density (dBW/m2)	Value	Size
							()			(ub)		(ubw)	Temp (it)	(00/10)	(dDW/mz)		
AU2	R	20	16	0.15		30	Y		1				600	-10	-102	9	1
SD1	Т	30	22	0.15		23	Y		2	1	950	59.8					
DD2	Т	12	9	0.15		23	Y		3	1	25	-2					

(a) (b) (c) Co-or (d) GSO e) NGSO Antenna Gain (f) GSO Antenna Max. Power Flux Density (dBW/M2/Hz) Beam Ť/Ŕ Cross Ref. Contour Description Gain Contour Data At Angle of Arrival above horizontal (for emission with highest PFD) ID Mode Polar Orbital (Figure/Table/ Exhibit) (GXT File) (g) 5 Deg (h) 10 Deg (i) 15 Deg (j) 20 Deg (k) 25 Deg Mode ("C" Longitude (Deg. E/W) or" X") AU2 С 21 AU2.gxt R SD1 С 21 SD1R.gxt -133 -132 -132 -131 -131 DD2 21 DD2.gxt -158 -157 -156 С AU2 AU2.gxt R С 21 SD1 21 SD1R.gxt -131 С -133 -132 -132 -131 DD2 С 21 DD2.gxt -158 -157 -156

S8. ANTENNA BEAM DIAGRAMS For each beam pattern provide the reference to the graphic image and numerical data: Also provide the power flux density levels in each beam that result from the emission with the highest power flux density.

Page 6: Channels and Transponders

53. 51 F				sinnequency	channel pro
(a) Channel No.	(B) Assigned Bandwidth (kHz)	(c) T/R Mode	(d) Center Frequency (MHz)	(e) Polarization (H, V, L, R)	(f) TTC or Comm Channel (T or C)
TDM1	2600	Т	1479.5	L	С
TDM2	2600	Т	1479.5	R	С
ТМ	500	Т	1491.7	R	Т
TC1	1000	R	7073	L	Т
TC2	1000	R	7074	L	Т

S9. SPACE STATION CHANNELS For each frequency channel provide: S10. SPACE STATION TRANSPONDERS For each transponder provide:

(a)	(b)	Receive	Band	Transmi	t Band
Transponder ID	Transponder Gain (dB)	(c) Channel No.	(d) Beam ID	(e) Channel No.	(f) Beam ID
TR1	145	0001	AU2	TDM1	SD1R
TR2	145	0002	AU2	TDM2	SD1R
ТМ				TM	DD2

S11. DIGITAL MODULATION PARAMETERS For each digital emission provide:

(a) Digital Mod. ID	(b) Emission Designator	(c) Assigned Bandwidth (kHz)	(d) No. of Phases	(e)Uncoded Data Rate (kbps)	(f) FEC Error Correction Coding Rate	(g) CDMA Processing Gain (dB)	(h) Total C/N Performance Objective (dB)	(i) Single Entry C/I Objective (dB)
1	2M60G7E	2600	4	1536	0.42		4.4	16.6
2	500KG7D	500	4				-8	13

Page 7: Digital Modulation

Page 8: Analog Modulation

S12. ANALOG MODULATION PARAMETERS For each analog emission provide:

(a)	(b) Emission	(c)	(d) Signal	(e)	Multi-channel Telephony				(j) Video	(k) Video	(I) Video	(m) SCPC/FM	()	() 0
Analog Mod. II		Assigned Bandwidth (kHz)	Туре	Channels per Carrier	(f) Ave. Companded Talker Level (dBm0)	(g) Bottom Baseband Freq. (MHz)	(h) Top Baseband Freq. (MHz)	(i) RMS Modulation Index	Standard NTSC, PAL, etc.	Noise- Weighting (dB)	and SCPC/FM Modulation Index	Compander, Preemphasis, and Noise Weighting (dB)	Performance Objective (dB)	Entry C/I Objective (dB)

Page 9: Typical Emissions

S13. TYPICAL EMISSIONS For each planned type of emission provide:

	ciated	Modu	Ilation ID	(e) Carriers	(f) Carrier	(g)Noise Budget	(h) Energy	Receive Ba	and (Assoc. Ti	ransmit Stn)	Trai	nsmit Band	(This Space Stat	tion)
Transpond (a) Start	er ID Range (b) End	(c) Digital (Table	(d) Analog (Table S12)	per Transponder		Reference (Table No.)	Dispersal Bandwidth (kHz)	(i)Assoc. Stn. Max.	Assoc. Statio Power		EIRP	(dBW)	Power Flux	(o)Assoc. Stn
(u) oluri	(5) End	S11)					(((12)	Antenna Gain (dBi)	(j) Min.	(k) Max.	(I) Min.	(m) Max.	Density (dBW/m2/Hz)	Rec. G/T (dB/K)
TR1	TR1	1		1		AfriStar-2 Refer		30	17.1	29.8	47.1	59.8	-130	-22.5
TR2	TR2	1		1		AfriStar-2 Refer		30	17.1	29.8	47.1	59.8	-130	-22.5
ТМ	ТМ	2		1				12	-12	-2	0	10	-154	
TC1	TC1		1	1				51.5	26	19.4	70.9	77.5	-86	-8.3
TC2	TC2		1	1				51.5	26	19.4	70.9	77.5	-86	-8.3

Page 10: TT and C

S14. Is the space station(s) controlled and monitored remotely? If Yes, provide the location and telephone number of the TT and C control point(s): Yes

Remote Control (TT C) Location(s):

S14a: Street Address: Cassis Earth Station				
S14b. City: Cassis	S14c. County: Mauritius		S14d. State/Country	S14e. Zip Code:
S14f. Telephone Number: +230 211 8026	L	S14g. Call Sign of Contr	ol Station (if appropriate):	
Remote Control (TT C) Location(s):		-		
S14a: Street Address: A1-6, Peenya Industrial Estate				
S14b. City:	S14c. County:		S14d, State/Country	S14e. Zip Code:

S14b. City: Bangalore	S14c. County: India		S14d. State/Country	S14e. Zip Code:
S14f. Telephone Number: +91 802 809 4125		S14g. Call Sign of Control Stat	ion (if appropriate):	<u>.</u>

Page 11: Characteristics and Certifications

S15. SPACECRAFT PHYSICAL CHARACTERISTICS:

S15a: Mass of spacecraft without fuel (kg): 1237	Spacecraft Dimensions (meters)	Probability of Survival to End of Life (0.0 - 1.0)		
S15b. Mass of fuel and disposables at launch (kg): 1496				
S15c. Mass of spacecraft and fuel at launch (kg): 2715	S15f. Length (m): 28	S15i. Payload: 0.9999		
S15d. Mass of fuel, in orbit, at beginning of life (kg): 475	S15g. Width (m): 8.32	S15j. Bus: 0.9999		
S15e. Deployed Area of Solar Array (square meters): 49.25	S15h. Height (m): 4.26	S15k. Total: 0.9998		

S16. SPACECRAFT ELECTRICAL CHARACTERISTICS:

Spacecraft Subsystem	Electrical Pov Beginnir	ver (Watts) At ng of Life	Electrical Power (Watts) At End of Life			
	At Equinox	At Solstice	At Equinox	At Solstice		
Payload (Watts):	^{(a):} 3792	^{(f):} 3792	^{(k):} 3792	^{(p):} 3792		
Bus (Watts):	^{(b):} 566	^{(g):} 544	^{(I):} 566	^{(q):} 544		
Total (Watts):	^{(c):} 4358	^{(h):} 4336	^(m) 4358	^{(r):} 4336		
Solar Array (Watts):	^{(d):} 5706	^{(i):} 5784	^{(n):} 5160	^{(s):} 5230		
Depth of Battery Discharge (%):	^(e) 60.75 %	^(j) 60.75 %	⁽⁰⁾ 60.75 %	^(t) 60.75 %		

S17. CERTIFICATIONS:

a. Are the power flux density limits of § 25.208 met?:		YES		NO	X	N/A
b. Are the appropriate service area coverage requirements of § 25.143(b)(ii) and (iii), or § 25.145(c)(1) and (2) met	?	YES		NO	Х	N/A
c. Are the frequency tolerances of § 25.202(e) and the out-of-band emission limits of § 25.202(f)(1), (2) and (3) me	t? X	YES		NO		N/A
In addition to the information required in this Form, the space station applicant is required to provide all the information specified in Section 25.114 of the						
Commission's rules, 47 C.F.R § 25.114.						