

Exhibit C

Description of Application

Pegasus Development DBS Corporation (“Pegasus”) hereby amends its pending application, File No. SAT-LOA-20090807-00084 (Call Sign S2795), to construct, launch and operate a 17/24 GHz Broadcasting-Satellite Service (“BSS”) space station at the 95.0° W.L. orbital location with a station-keeping volume of +/- 0.05 degrees longitude. As requested by the International Bureau (“Bureau”) in a letter dated April 15, 2010,¹ Pegasus supplements its orbital debris mitigation compliance showing by providing an assessment of feasibility for the following three proposed measures for resolving physical coordination issues with SPACEWAY 3 and Galaxy 3C, both of which are located at the nominal 95° W.L. orbital location:²

1. maintaining tighter station-keeping volumes for the satellites;
2. flying the satellites in formation; and
3. operating one or more of the satellites at offset locations.

As an initial matter, Pegasus notes that nearly all of these proposed coordination measures require the cooperation of the two satellite operators at the nominal 95° W.L. orbital location. Pegasus has not initiated coordination yet with the relevant satellite operators. Given that Pegasus is not licensed to operate a satellite at this location and has not executed a contract to construct a satellite at this location, coordination negotiations at this stage would be premature and not likely be fruitful. Moreover, there is no Commission requirement to complete physical coordination at the application stage.

¹ See Letter to Bruce D. Jacobs and Tony Lin, Counsel for Pegasus, from Robert G. Nelson, Chief, Satellite Division, International Bureau (April 15, 2010) (“Bureau Letter”).

² Specifically, SPACEWAY 3 is located at 94.95° W.L. +/- 0.05 degrees longitude, and Galaxy 3C is located at 95.05° W.L. +/- 0.05 degrees longitude.

In practice, satellite operators typically coordinate physical coordination issues within one to two years prior to launch. At times, however, physical coordination issues may be initiated and resolved only months or weeks in advance.³ The Bureau’s licensing practices reflect such operational practicalities. Where an applicant seeks to deploy a satellite at a congested orbital location, the Bureau has permitted the licensee to complete physical coordination of the satellite within a reasonable period prior to launch or within a short period after completion of the critical design review milestone (i.e. more than two years after license grant).⁴ Such practices provide licensees and operators a reasonable period of time at an appropriate period in time to coordinate physical operations. Pegasus has no objections to such conditions.

Additionally, Bureau policy requires that all satellite operators at the same nominal operating locations coordinate physical operations of their systems in good faith without any one licensee having a greater burden than another.⁵ Requiring physical coordination at the application stage would be inconsistent with that policy and would drastically impair an applicant’s ability to provide service by effectively granting to existing operators at congested locations veto power over new applications.

³ One such example includes the request by SES in January 2008 to operate an additional satellite at the congested 101° W.L. orbital location (File No. SAT-MOD-20080124-00030). The proposed operations were agreed to by all the other satellite operators at that location shortly thereafter. *See Application*, File No. SAT-MOD-20080303-00055 (March 3, 2008).

⁴ *See, e.g., In the Matter of ICO Satellite Services G.P.*, 20 FCC Rcd 9797, ¶¶ 32, 38 (2005) (requiring commencement of physical coordination two years prior to system operations deadline and completion of coordination one year prior to system operations deadline); *see also* Stamp Grant, Application of Pegasus Development DBS Corporation, File Nos. SAT-LOA-20060412-00044 and SAT-AMD-20080114-00023, at 2 (Condition 4c) (December 17, 2008) (“Pegasus shall complete coordination of the physical operations of the space station with operators of space stations with overlapping station-keeping volumes within two years and two months of grant of this authorization.”); Stamp Grant, Application of Pegasus Development DBS Corporation, File Nos. SAT-LOA-20060412-00043 and SAT-AMD-20080114-00024, at 4 (Condition 6) (July 28, 2009) (same).

⁵ *See, e.g., DIRECTV Enterprises, LLC*, 21 FCC Rcd 8028, at ¶ 10 (2006) (“[P]arties licensed at a particular orbital location are expected to coordinate with other parties licensed at that same location to avoid in-orbit collisions. Thus, we will not impose the particular stationkeeping condition requested . . . regarding adjacent satellite coordination . . . and will, as is our normal practice, rely on the operators to coordinate in good faith.”).

I. Maintaining Tighter Station-Keeping Volumes

There are a number of permutations that would permit operating the three satellites in or around the nominal 95° W.L. orbital location without any overlap in station-keeping volumes, including permutations that would involve operations at one or more offset locations. One such possibility is operating each of these satellites at their currently assigned or proposed orbital locations and limiting the station-keeping volume to +/- 0.025 degrees rather than +/- 0.05 degrees longitude.

For Pegasus' satellite, which uses chemical propulsion, an east-west maneuver would be needed approximately every 33 days versus 47 days for a +/- 0.05 degrees station-keeping volume. Over an estimated 15-year satellite life, this would result in an additional 50 maneuvers for the satellite under tighter station-keeping operations. Pegasus expects no change in the total mission delta V requirement⁶ and hence no fuel penalty for the tighter station-keeping volume for its satellite. Although there are more maneuvers, the amount of delta V used for each maneuver is less.⁷

Because Pegasus does not have access to the operators' detailed orbital control plans, it has not calculated the impact of tighter station-keeping volumes on SPACEWAY 3 or Galaxy 3C.⁸ In any event, the operator is in a better position to provide a more accurate estimate. Nonetheless, Pegasus notes that SPACEWAY 3 uses bi-propellant for east-west station-keeping, and Pegasus would expect the impact to be similar to that for Pegasus' proposed satellite.

⁶ Delta-V is a scalar, which takes units of speed, that measures the amount of “effort” needed to carry out an orbital maneuver, i.e. to change from one trajectory to another.

⁷ The impact of additional cold starts for bi-propellant thrusters, while theoretically possible, is expected to be negligible.

⁸ Additionally, there are a number of factors beyond an estimate of additional fuel consumption that may be relevant to an operator's willingness to coordinate physical operations of its satellite, including, for example, the satellite operator's future deployment plans.

Galaxy 3C uses ion propulsion for east-west station-keeping, and additional information would be needed to calculate the impact of tighter station-keeping limits.

II. Flying in Formation

Flying satellites in formation is a process whereby the operator(s) of different satellites synchronize the station-keeping maneuvers of adjacent satellites so that the satellites maintain a known distance from one another while traveling within their respective station-keeping volumes. One possibility here would be for the satellites at the nominal 95° W.L. orbital location to synchronize their east-west maneuvers such that the satellites are effectively at a constant distance from one another and drifting in the same direction at essentially the same time. This would require no change in the frequency of east-west maneuvers (i.e. approximately one maneuver every 47 days for each satellite or eight times a year) but would require that the three satellite operators synchronize their satellites initially and continue to coordinate east-west station-keeping maneuvers with each other in real time. There may be a minor penalty for the initial synchronization of the satellites, but the total mission delta V requirement for east-west station-keeping should not increase.

III. Operating at Offset Orbital Locations

There are a number of permutations for operating one or more of the satellites at offset locations. The simplest is for Pegasus to operate its proposed satellite at an offset location, such as 95.15° W.L. or another neighboring location that has no overlap in station-keeping volume with other satellites at the nominal 95° W.L. orbital location.⁹ To the extent that good faith coordination efforts with the other satellites operators fail, as a default plan, Pegasus will file a modification application to operate at such an offset location.

⁹ Indeed, in 2009, the Commission approved Intelsat's proposed operation of a 17/24 GHz satellite at exactly the 95.15° W.L. orbital location. *See In the Matter of Intelsat North America LLC*, DA 09-1132 (2009). Intelsat subsequently surrendered its authorization.

Technical Certification

I, Milenko Stojkovic of W.L. Pritchard & Co., L.C., consulting engineer to Pegasus Development DBS Corporation, hereby certify under penalty of perjury that:

I am the technically qualified person responsible for preparation of the engineering information contained in this application, that I am familiar with Part 25 of the Commission's rules, that I have either prepared or reviewed the engineering information submitted in this application, and that it is complete and accurate to the best of my knowledge.

/s/

Milenko Stojkovic
Senior Engineer
W.L. Pritchard & Co., L.C.

May 28, 2010