

0659

FCC Radio Test Report

FCC ID: XSG865697

Report No. : BTL-FCCP-1-2201T051

Equipment : control pad

Model Name : BM-RC015-xx

Brand Name : VELUX Touch

Applicant : VELUX America Inc.

Address : PO Box 5001, Greenwood, SC 29648-5001, Greenwood, South Carolina,

United States, 29648

Manufacturer : TAIWAN GREEN POINT ENTERPRISES CO LTD JABIL DESIGN

SERVICES BRANCH

Address : 7F., No. 413, RuiGuang Rd,

Neihu District, TAIPEI 11492, TAIWAN

Factory : Jabil Circuit Ukraine LLC

Address : KONTSIVSKA ST 40, ROZIVKA VILLAGE,

UZHGOROD DISTRICT, ZAKARPATSKA OBLAST, UZHGOROD 89424, UKRAINE

Radio Function : Bluetooth Low Energy 5.0

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2022/1/17

Date of Test : 2022/1/17 ~ 2022/2/25

Issued Date : 2022/5/5

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : Eric Lee, Engineer

Approved by : Jerry Chuang, Supervisor

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2201T051 Page 1 of 51 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2201T051 Page 2 of 51 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 7 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 **DESCRIPTION OF EUT** 9 2.1 2.2 **TEST MODES** 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 11 3 RADIATED EMISSIONS TEST 12 3.1 LIMIT 12 **TEST PROCEDURE** 13 3.2 3.3 **DEVIATION FROM TEST STANDARD** 13 **TEST SETUP** 14 3.4 **EUT OPERATING CONDITIONS** 3.5 15 3.6 TEST RESULT - BELOW 30 MHZ 15 3.7 TEST RESULT - 30 MHZ TO 1 GHZ 15 TEST RESULT - ABOVE 1 GHZ 3.8 15 4 **BANDWIDTH TEST** 16 4.1 APPLIED PROCEDURES / LIMIT 16 **TEST PROCEDURE** 4.2 16 4.3 **DEVIATION FROM STANDARD** 16 4.4 **TEST SETUP** 16 4.5 **EUT OPERATION CONDITIONS** 16 4.6 **TEST RESULTS** 16 **OUTPUT POWER TEST** 5 17 5.1 APPLIED PROCEDURES / LIMIT 17 5.2 **TEST PROCEDURE** 17 **DEVIATION FROM STANDARD** 17 5.3 5.4 **TEST SETUP** 17 5.5 **EUT OPERATION CONDITIONS** 17 5.6 **TEST RESULTS** 17 POWER SPECTRAL DENSITY TEST 18 6 APPLIED PROCEDURES / LIMIT 6.1 18 6.2 **TEST PROCEDURE** 18 6.3 **DEVIATION FROM STANDARD** 18 **TEST SETUP** 6.4 18 6.5 **EUT OPERATION CONDITIONS** 18 **TEST RESULTS** 6.6 18 7 ANTENNA CONDUCTED SPURIOUS EMISSION 19 7.1 APPLIED PROCEDURES / LIMIT 19 **TEST PROCEDURE** 7.2 19 7.3 **DEVIATION FROM STANDARD** 19 **TEST SETUP** 7.4 19

7.5	EUT C	PERATION CONDITIONS	19
7.6	TEST	RESULTS	19
8	LIST OF	MEASURING EQUIPMENTS	20
9	EUT TES	ST PHOTO	21
10	EUT PHO	DTOS	21
APPEND	IX A	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	22
APPEND	IX B	RADIATED EMISSIONS - ABOVE 1 GHZ	25
APPEND	IX C	BANDWIDTH	42
APPEND	IX D	OUTPUT POWER	45
APPEND	IX E	POWER SPECTRAL DENSITY TEST	47
APPEND	IX F	ANTENNA CONDUCTED SPURIOUS EMISSION	49

Project No.: 2201T051 Page 4 of 51 Report Version: R00

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2201T051	R00	Original Report.	2022/5/5	Valid

Project No.: 2201T051 Page 5 of 51 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC CFR Title 47, Part 15, Subpart C (15.247)							
Standard(s) Section	Description	Test Result	Judgement	Remark			
15.207	AC Power Line Conducted Emissions		N/A				
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX A APPENDIX B	Pass				
15.247(a)(2)	Bandwidth	APPENDIX C	Pass				
15.247(b)(3)	Output Power	APPENDIX D	Pass				
15.247(e)	Power Spectral Density	APPENDIX E	Pass				
15.247(d)	Antenna conducted Spurious Emission	APPENDIX F	Pass				
15.203	Antenna Requirement		Pass				

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2201T051 Page 6 of 51 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ C05 □ CB08 □ CB11 □ CB15 □ CB16

⊠ SR05

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

B. Conducted test:

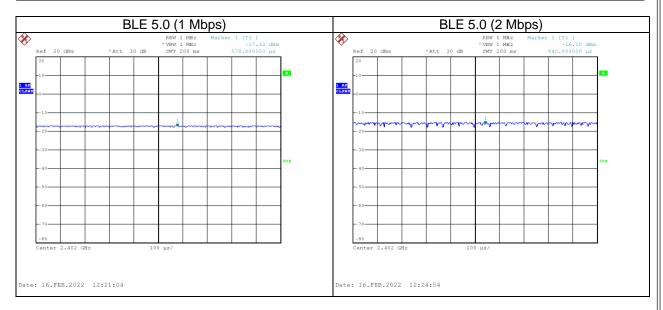
1 1001 :				
Test Item	U,(dB)			
Occupied Bandwidth	0.5334			
Output power	0.3669			
Power Spectral Density	0.6591			
Conducted Spurious emissions	0.5416			
Conducted Band edges	0.5348			

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	21 °C, 68 %	DC 3V	Vincent Lee
Radiated emissions above 1 GHz	20 °C, 62 %	DC 3V	Vincent Lee
Bandwidth	22.8 °C, 52 %	DC 3V	Angela Wang
Output Power	22.8 °C, 52 %	DC 3V	Angela Wang
Power Spectral Density	22.8 °C, 52 %	DC 3V	Angela Wang
Antenna conducted Spurious Emission	22.8 °C, 52 %	DC 3V	Angela Wang


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software		CN	ИD	
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate
BLE 5.0	109	113	117	1 Mbps
BLE 5.0	110	114	70	2 Mbps

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
iviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE 5.0 (1 Mbps)	1.000	1	1.000	1.000	100.00%	0.00
BLE 5.0 (2 Mbps)	1.000	1	1.000	1.000	100.00%	0.00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	control pad
Model Name	BM-RC015-xx
Brand Name	VELUX Touch
Model Difference	The last 2 digits "xx" in the model number, this is used internally in VELUX to describe the version of the device: 01 – 99
Power Source	Battery supplied.
Power Rating	DC 3.2-1.8V
Products Covered	N/A
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Technology	GFSK
Transfer Rate	1/2 Mbps
Output Power Max.	1 Mbps: 10.10 dBm (0.0102 W) 2 Mbps: 10.07 dBm (0.0102 W)
Test Model	BM-RC015-01
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

(3) Table for Filed Antenna:

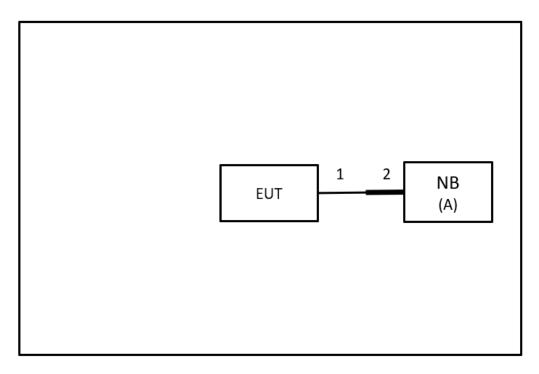
Antenna	Brand name	Model name	Type	Connector	Gain (dBi)
1	Jabil	2G4_ANT	PIFA	I-PEX	-0.38

Project No.: 2201T051 Page 9 of 51 Report Version: R00

2.2 TEST MODES

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	2 Mbps	39	-
Transmitter Radiated Emissions	1, 2 Mbps	00/39	Bandedge
(above 1GHz)	1, 2 Mbps	00/19/39	Harmonic
Bandwidth	1 Mbps	00/19/39	-
Output Power	1 Mbps	00/19/39	-
Power Spectral Density	1 Mbps	00/19/39	-
Antenna conducted Spurious Emission	1 Mbps	00/19/39	-

NOTE:


- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

Project No.: 2201T051 Page 10 of 51 Report Version: R00

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	0.35m	Fixture Cable	Supplied by test requester.
2	N/A	N/A	3m	USB extension Cable	Furnished by test lab.

Project No.: 2201T051 Page 11 of 51 Report Version: R00

3 RADIATED EMISSIONS TEST

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVITZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	=	33.55

Measurement Value		Limit Value		Margin Level
33.55	•	43.50	=	-9.95

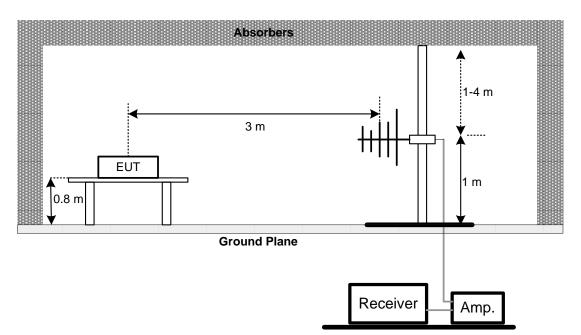
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

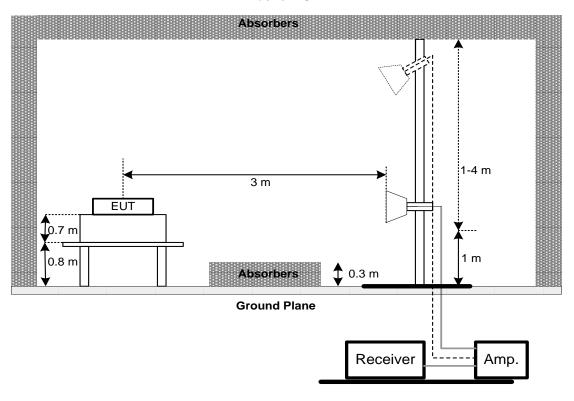
Project No.: 2201T051 Page 12 of 51 Report Version: R00

3.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)


		neet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode dign't perform. above 1GHz)
	i. È	For the actual test configuration, please refer to the related Item – EUT TEST PHOTO.
	3.3	DEVIATION FROM TEST STANDARD
	No d	eviation.
П	1	

Project No.: 2201T051 Page 13 of 51 Report Version: R00



3.4 TEST SETUP

30 MHz to 1 GHz

Above 1 GHz

3.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

3.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX A.

3.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX B.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2201T051 Page 15 of 51 Report Version: R00

4 BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

4.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

Please refer to the APPENDIX C.

Project No.: 2201T051 Page 16 of 51 Report Version: R00

5 OUTPUT POWER TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section Test Item		Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	Power Meter
	1 ower weter

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section Test Item		Limit	Frequency Range (MHz)	Result				
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS				

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2201T051 Page 18 of 51 Report Version: R00

7 ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2201T051 Page 19 of 51 Report Version: R00

8 LIST OF MEASURING EQUIPMENTS

	Radiated Emissions									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Preamplifier	EMCI	EMC02325	980217	2021/4/8	2022/4/7				
2	Preamplifier	EMCI	EMC012645SE	980737	2021/12/6	2022/12/5				
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7				
4	Test Cable	EMCI	EMC104-SM-100 0	180809	2021/4/8	2022/4/7				
5	Test Cable	Test Cable EMCI EMC104-SM-SM- 3000 151205		151205	2021/4/8	2022/4/7				
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7				
7	MXE EMI Receiver	Agilent	N9038A	MY56400087	2021/5/27	2022/5/26				
8	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24				
9	Loop Ant	Electro-Metrics			2021/6/1	2022/5/31				
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1				
11	Horn Ant	Schwarzbeck	BBHA 9170	340	2021/7/9	2022/7/8				
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-352	2021/8/11	2022/8/10				
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10				
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				

	Bandwidth									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP38	101139	2021/3/5	2022/3/4				

	Output Power									
Item Kind of Equipment Manufactor		Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Power Meter	Anritsu	ML2495A	1128008	2021/5/26	2022/5/25				
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25				

	Power Spectral Density									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP38	101139	2021/3/5	2022/3/4				

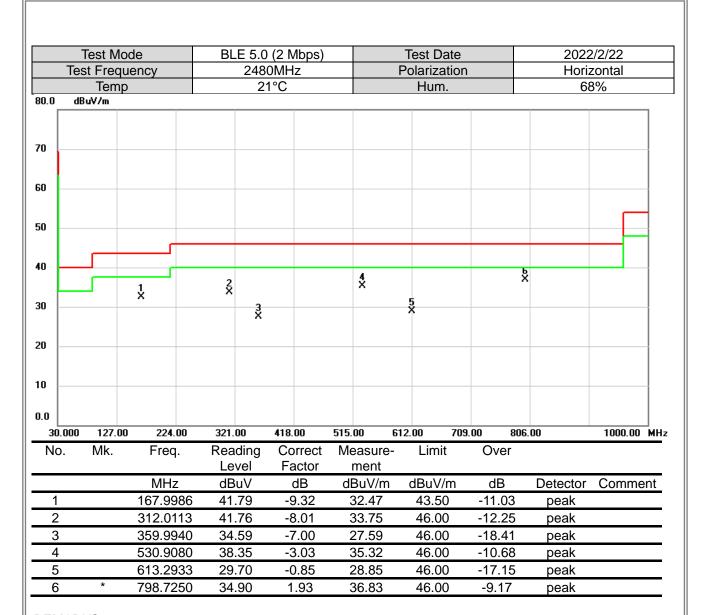
	Antenna conducted Spurious Emission									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP38	101139	2021/3/5	2022/3/4				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2201T051 Page 20 of 51 Report Version: R00

9 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2201T051-FCCP-1 (APPENDIX-TEST PHOTOS).
10 EUT PHOTOS
Please refer to document Appendix No.: EP-2201T051-2 (APPENDIX-EUT PHOTOS).

RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2201T051 Page 22 of 51 Report Version: R00

Test Mode			BLE 5.0 (2 Mbps)				Test Date				2022/2/22		
Tes	t Frequ	iency	2480MHz					Polarizati	on		Vertical		
	Temp	219		21°C				Hum.			68	3%	
80.0 dB	uV/m												7
70													
60													
50													
40										Б X			
30	_	1 × 2 ×	3 X		**	:		5 X					
20													
10													-
0.0													
30.000	127.00		321.00	418		515.0			709.00	806.	.00	1000.00	MH
No.	Mk.	Freq.	Readii Leve		orrect actor		easure- ment	Limit	Ove	er			
		MHz	dBu\	/	dB	dE	BuV/m	dBuV/m	n dE	3	Detector	Comme	ent
1		167.9986	38.38	3 -	9.32	2	29.06	43.50	-14.	44	peak		
2		225.6811	37.87	7 -	2.10	2	25.77	46.00	-20.2	23	peak		
3		312.0113	35.5°	1 -	8.01	2	27.50	46.00	-18.	50	peak		
4		467.6315	36.54	4 -	4.12	3	32.42	46.00	-13.	58	peak		
5		669.6503	29.40) -	0.15	2	9.25	46.00	-16.	75	peak		
6	*	797.5932	34.69	9	1.92	3	86.61	46.00	-9.3	9	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2201T051 Page 25 of 51 Report Version: R00

	Test Mod	40	D	E 6 0) (1 Mbp	c)		Test D	ato	20)22/2/22	
	st Frequ		Ы		2MHz	s)		Polariza			orizontal	
10.	Temp	Orioy			0°C			Hum		110	62%	
130.0 dE	3uV/m											
120												
120												
110							•					-
100												
.00												
90												-
80												_
70												\dashv
70												T
60		وريامه المعلى الوص				1 X//	W.			golfafin, de beneren en opravis.	5 4 X	
50 Adress	A comprehensive	and the state of t	Antographic Policy Page	JAMAN AN			"TANA	the market and make	kung/kontekun-teknen/eki	Na Jelonings and the control of the	(Kife-Madelake) and - and stead an	***
					:	2 X						
40											6 X	
30											^	_
20												
10.0												
	00 2322.00	2342.0	10 236	2.00	2382.00	240	2 00	2422.00	2442.00	2462.00	2502.0	 N MH2
No.	Mk.	Freq.		ading	Corre		easure-					
				vel	Facto		ment					
		MHz	dE	₿uV	dB	d	BuV/m	dBuV/	/m dB	Detect	or Comm	nent
1		2389.68		.45	31.21		57.66	74.0				
2		2389.68		.03	31.21		44.24	54.0				
3	X *	2402.00		.95	31.26		06.21	74.0				
4	*	2402.00		.30	31.26		05.56	54.0			NoLir	mit
5		2493.88		.74	31.55		57.29	74.0				
6		2493.88	υ 2	94	31.55) ;	34.49	54.0	0 -19.5	51 AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode	BLE 5.0	(1 Mbps)		Test Date		2022	2/2/22
Te	st Frequ	iency	248	0MHz		Polarization)	Horiz	zontal
	Temp)	2	0°C		Hum.		62	2%
130.0 di	BuV/m								
20									
10									
00					ň				
30					-				
30									
70									
so	_				√ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
	وكياستهار وساوان	May be with the first	<u>ئېلىپىنالىلىك كارىم چىدى دېرالىم خىر</u>	esselphene colorestell	<u>ννα 6 ναμανα</u> Χ	enter despressiones	knowashiyahal/bayanay	war was been been been been been been been bee	Lyhan manhan
50					^				
40	2								
30	×								
20									
10.0									
	00 2400.0		2440.00	2460.00				0.00	2580.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Dotootor	Commont
1		2390.000	23.41	31.21	54.62	74.00	-19.38	Detector peak	Comment
2		2390.000	2.57	31.21	33.78	54.00	-20.22	AVG	
3	Χ	2480.000	74.45	31.51	105.96	74.00	31.96	peak	NoLimit
4	*	2480.000	73.96	31.51	105.47	54.00	51.47	AVG	NoLimit
5		2484.207	29.90	31.52	61.42	74.00	-12.58	peak	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BLE 5.0) (2 Mbps)		Test Date		2022	2/2/22
Tes	st Frequ	ency		2MHz		Polarization	า	Horiz	zontal
	Temp		2	0°C		Hum.		62	2%
130.0 dB	uV/m								
120									
120									
110					3				
100					Ä				
					[]				
90									
во									
70									
70									
60				helm many mention and	Market Market	Maynennye			5
50 ******		the grand the	AND THE PARTY OF T	77-7-1	Array.	Mayounterrytte	Marin Sandard	Marin Samuel Same	haprodum Mana Marante
				2 X					
40									6
30									X
20									
20									
10.0	0 2322.00	0 2342.00	2362.00	2382.00	2402.00 2	2422.00 24	42.00 246	62.00	2502.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	42.00 246 Over	52.00	2302.00 MH
140.	IVIK.	i ieq.	Level	Factor	ment	LIIIII	Ovei		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2387.407		31.21	57.76	74.00	-16.24	peak	
2		2387.407	13.89	31.21	45.10	54.00	-8.90	AVG	
3	Χ	2402.000	74.63	31.26	105.89	74.00	31.89	peak	NoLimit
4	*	2402.000	72.83	31.26	104.09	54.00	50.09	AVG	NoLimit
5		2495.873	25.08	31.56	56.64	74.00	-17.36	peak	
6		2495.873	2.88	31.56	34.44	54.00	-19.56	AVG	·

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

-	Test Mod	de	BLE 5.0	(2 Mbps)		Test Date		2022	2/2/22	
Tes	st Frequ	ency	248	0MHz		Polarization	ı	Horiz	zontal	
	Temp		2	0°C		Hum.		62	2%	
130.0 dB	uV/m									_
120										1
110										
					3					
100					$ \mathbb{N}$					1
90										
80										1
70										1
					/ 5					
60 1 X.,,	and the sale	an the property had Mill South	A. A. A. A. Mariaki, a	and the bridge and	6 Martingan		med meaning where	yndretieliand/partente	nikishandhaan	الم
50	HIN HIN MAN	NA ALLE TRANSCENSION	AN TOTAL VINE AND AN AND AND		X				III III VIII III	7
40										
2 X										1
30 ^										-
20										
2200.00	0 2400.00	0 2420.00	2440.00	2460.00	2480.00 2	500.00 25 <i>i</i>	20.00 254	10.00	2580.00	
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	10.00	2300.00	MII
140.	IVIIX.	1104.	Level	Factor	ment	Liiiii	OVCI			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt
1		2382.207	25.48	31.18	56.66	74.00	-17.34	peak	2 2	
2		2382.207	2.98	31.18	34.16	54.00	-19.84	AVG		
3	Χ	2480.000	71.27	31.51	102.78	74.00	28.78	peak	NoLim	it
4	*	2480.000	69.74	31.51	101.25	54.00	47.25	AVG	NoLim	
5		2483.500	30.61	31.52	62.13	74.00	-11.87	peak		
6		2483.500	20.25	31.52	51.77	54.00	-2.23	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1 Mbps)		Test Date			2/2/22
	Test Frequ			2MHz		Polarization	n		tical
100.0	Temp		2	0°C		Hum.		62	2%
130.0	dBuV/m								
120									
110 _									
100									
90 _									
80									
70									
60 _									
50		1 2							
40		X							
30 _									
20 —									
10.0									
	0.000 3550.0		8650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	58.51	-9.84	48.67	74.00	-25.33	peak	
2	*	4804.000	52.13	-9.84	42.29	54.00	-11.71	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1 Mbps)		Test Date			2/2/22
Ţ	est Frequ			2MHz		Polarizatio	n		zontal
100.0	Temp)	2	0°C		Hum.		62	2%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X 2 X							
40		×							
30									
20									
10.0									
	000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000		-9.84	47.53	74.00	-26.47	peak	
2	*	4804.000	50.11	-9.84	40.27	54.00	-13.73	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo) (1 Mbps)		Test Date			2/2/22
Te	est Frequ			0MHz		Polarization)		tical
100.0	Temp)	2	0°C		Hum.		62	2%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		×							
40		2 X							
30									
20									
10.0									
	000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	58.98	-9.77	49.21	74.00	-24.79	peak	
2	*	4880.000	50.16	-9.77	40.39	54.00	-13.61	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1 Mbps)		Test Date			2/2/22
1	Test Frequ			0MHz		Polarization	1		zontal
130.0	Temp dBuV/m)	2	0°C		Hum.		62	2%
JU.U	ubu*/iii								
120									
10									
00									
0									
80									
o									
o									
io		1 ×							
0		2 X							
io									
20									
0.0									
	.000 3550.0			11200.00				00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	57.32	-9.77	47.55	74.00	-26.45	peak	
2	*	4880.000	49.18	-9.77	39.41	54.00	-14.59	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			5.0 (1					est Dat				2/2/22
Te	est Frequ		- 2	2480M				Po	larizati	ion			tical
100.0	Temp)		20°C					Hum.			62	2%
130.0	dBuV/m												
120													
110													
100													
90													
80													
70													
60													
50		1											
40		1 X 2 X											
30													
20													
10.0													
	000 3550.0				200.00	1375				18850.00		00.00	26500.00 MH
No.	Mk.	Freq.	Readi Leve		orrect actor		asure nent	-	Limit	Ov	er		
		MHz	dBu\		dB		3uV/m	(dBuV/m	n dE	3	Detector	Comment
1		4960.000	57.1	6 -	-9.68		7.48		74.00	-26.	52	peak	
2	*	4960.000	49.9	3	-9.68	4	0.30		54.00	-13.	70	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo			5.0 (1 Mbps)		Test Date			2/2/22
Т	est Frequ		2	480MHz		Polarization	1		zontal
100.0	Temp dBuV/m)		20°C		Hum.		62	2%
130.0	dBu√/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40		2 X							
30		^							
20									
10.0									
	000 3550.0							00.00	26500.00 MHz
No.	Mk.	Freq.	Readin Level		Measure- ment	- Limit	Over		
		MHz	dBuV		dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	55.84	-9.68	46.16	74.00	-27.84	peak	
2	*	4960.000	46.16	-9.68	36.48	54.00	-17.52	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			BL	E 5.0						Test D					2/2/22
			iency				2MHz	<u>-</u>			F	<u>Polariza</u>					tical
30.0	dBu∖	Temp)			20	O°C					Hum	1.			62	2%
130.0	aBuv	//m															
120																	
10																	
100																	
90																	
BO																	
~																	
io																	
io			X														
10 <u> </u>			2 X														
io																	
20																	
10.0																	
		3550.0			8650		1120		1375			300.00		50.00		00.00	26500.00 M
No.	[Mk.	Freq		Rea Le			rect ctor		asur ment	e-	Limi	t	Ove	er		
			MHz		dB	uV	O	ΙB	dE	3uV/r	n	dBuV	/m	dB		Detector	Commen
1			4804.0	00	58.	99	-9	.84	4	19.15		74.0	0	-24.8	35	peak	
2		*	4804.0	000	48.	84	-9	.84	3	39.00		54.0	0	-15.0	00	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			(2 Mbps)		Test Date			2/2/22	
	Test Frequ			2MHz		Polarization	n	Horizontal		
	Temp)	2	0°C		Hum.	62%			
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60 _										
50		1 X								
40		2 X								
30 _										
20 _										
10.0										
1000).000 3550.0		8650.00	11200.00				00.00	26500.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4804.000		-9.84	47.85	74.00	-26.15	peak		
2	*	4804.000	47.21	-9.84	37.37	54.00	-16.63	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test N	Node)		BL	E 5.0						Test D				2022	2/2/22	
T	est Fre		псу				0MHz	<u>z</u>			Р	olariza					tical	
	Ter	np				2	0°C					Hum	١.			62	2%	
130.0	dBuV/m																	_
120																		4
10																		-
00																		\perp
0																		4
:0																		\perp
0																		
0																		+
0			X															
0			2 X															+
0																		+
:o																		4
0.0																		
1000.	.000 355		6100	.00	8650	0.00	1120	0.00	1375	0.00	163	00.00		50.00	2140	00.00	26500.0	10 MI
No.	Mk.		Freq	•		ding vel		rrect ctor		easur ment	9-	Limi	t	Ove	er			
			MHz	<u>'</u>		uV		IB		3uV/n	n	dBuV	/m	dB		Detector	Comm	ent
1		4	1880.0	00	58	.94	-9	.77		19.17		74.0	0	-24.8	33	peak		
2	*		1880.0	00	47	.57	-9	.77	3	37.80		54.0	0	-16.2	20	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			BL		(2 M					Test D					2/2/22	
			iency			2440MHz 20°C				Polarization					zontal			
30.0	dBuV.	Гетр ′т				20	0°C					Hum	۱.			62	2%	
30.0	ubuy.	7111																l
20																		
110 —																		
100																		
30																		
30																		
o																		
io																		
io			1 X															
10			1 X 2 X															
30 <u> </u>																		
20																		
10.0																		
		3550.0 			8650		1120			0.00		300.00		50.00		00.00	26500.00	МН
No.	Ν	1k.	Freq	•	Rea Le			rrect ctor		easur ment	e-	Limi	t	Ove	er			
			MHz	<u>.</u>	dB	uV	C	lΒ	dl	3uV/r	n	dBuV	/m	dE	3	Detector	Comme	nt
1			4880.0	00	57.	12	-9	.77		17.35		74.0	0	-26.	65	peak		
2		*	4880.0	000	49.	87	-9	.77		10.10		54.0	0	-13.	90	AVG		

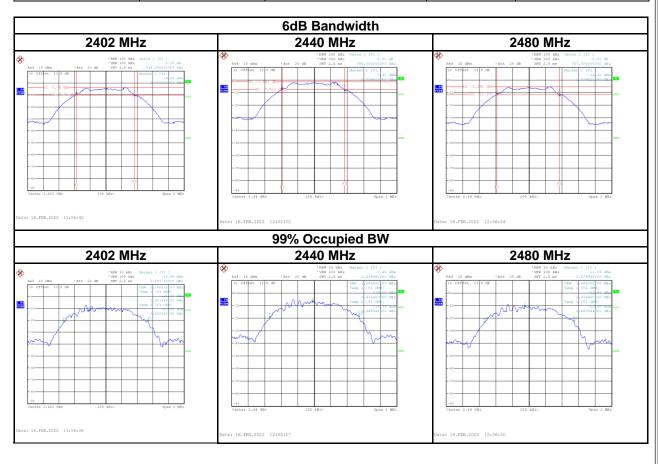
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo			(2 Mbps)		Test Date			2/2/22
Te	est Frequ			0MHz		Polarization	n		tical
130.0	Temp		2	0°C		Hum.		62	2%
130.0	ubu¥7III								
120									
110									
100									
90									
80									
70									
60									
50									
		1 2 X							
40		X							
30									
20									
10.0	000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 21 4	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure		Over		20300.00 MII2
0.	IVIIV.	04.	Level	Factor	ment		O VOI		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	54.90	-9.68	45.22	74.00	-28.78	peak	
2	*	4960.000	47.80	-9.68	38.12	54.00	-15.88	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

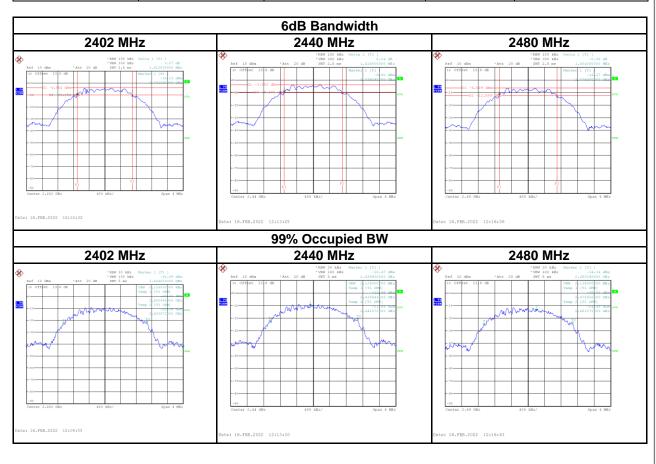
	Test Mo			(2 Mbps)		Test Date			2/2/22	
	Test Frequ			0MHz		Polarization	1	Horizontal		
400.0	Temp		2	0°C		Hum.			2%	
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50		1 ×								
40		2 X								
30		^								
20 _										
10.0										
1000).000 3550.0	0 6100.00	8650.00	11200.00	13750.00		850.00 214	00.00	26500.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4960.000		-9.68	46.33	74.00	-27.67	peak		
2	*	4960.000	45.80	-9.68	36.12	54.00	-17.88	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


3 L L		Report No.: BTL-FCCP-1-2201T051
		<u>.</u>
	APPENDIX C	BANDWIDTH

Project No.: 2201T051 Page 42 of 51 Report Version: R00

Test Mode: 1Mbps


Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	0.74	1.08	500	Pass
2440	0.76	1.08	500	Pass
2480	0.76	1.08	500	Pass

Test Mode: 2Mbps

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	1.41	2.13	500	Pass
2440	1.42	2.13	500	Pass
2480	1.40	2.14	500	Pass

APPENDIX D	OUTPUT POWER
	APPENDIX D

Project No.: 2201T051 Page 45 of 51 Report Version: R00

Report No.: BTL-FCCP-1-2201T051

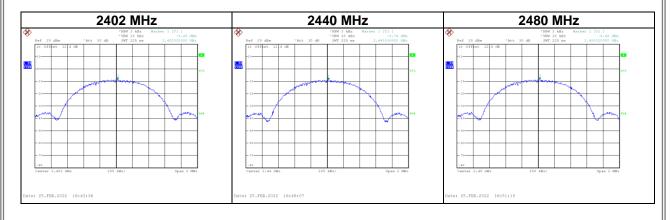
Test Mode :	1Mbps	Tested Date	2022/2/16
-------------	-------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.05	0.0101	30.00	1.0000	Pass
2440	10.07	0.0102	30.00	1.0000	Pass
2480	10.10	0.0102	30.00	1.0000	Pass

Test Mode :	2Mbps	Toctod Data	2022/2/16
rest mode.	21/10/05	Tested Date	2022/2/10

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.07	0.0102	30.00	1.0000	Pass
2440	10.04	0.0101	30.00	1.0000	Pass
2480	6.59	0.0046	30.00	1.0000	Pass

Project No.: 2201T051 Page 46 of 51 Report Version: R00


APPENDIX E POWER SPECTRAL DENSITY TEST

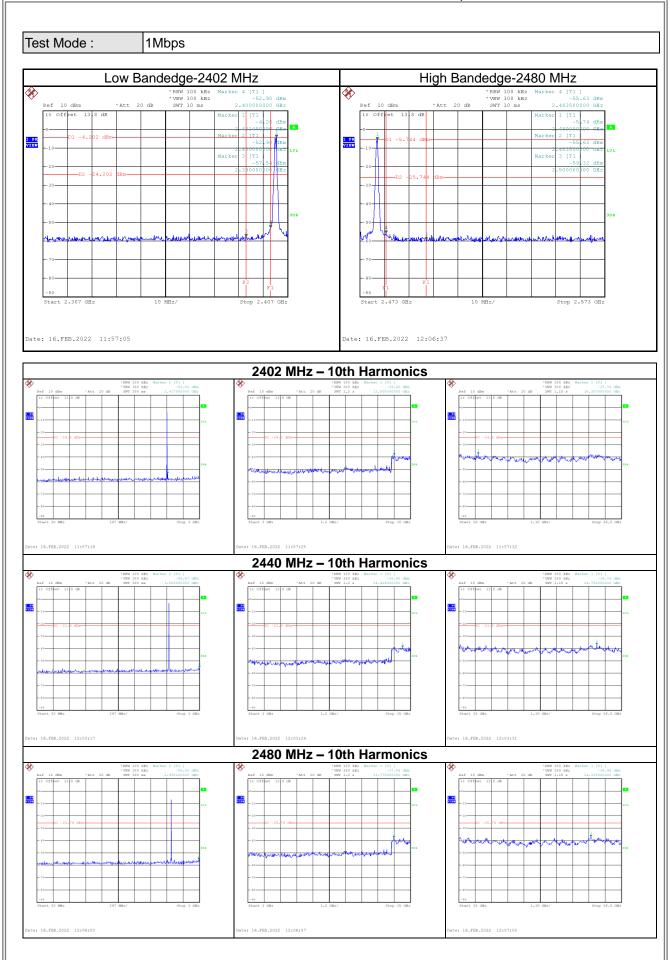
Project No.: 2201T051 Page 47 of 51 Report Version: R00

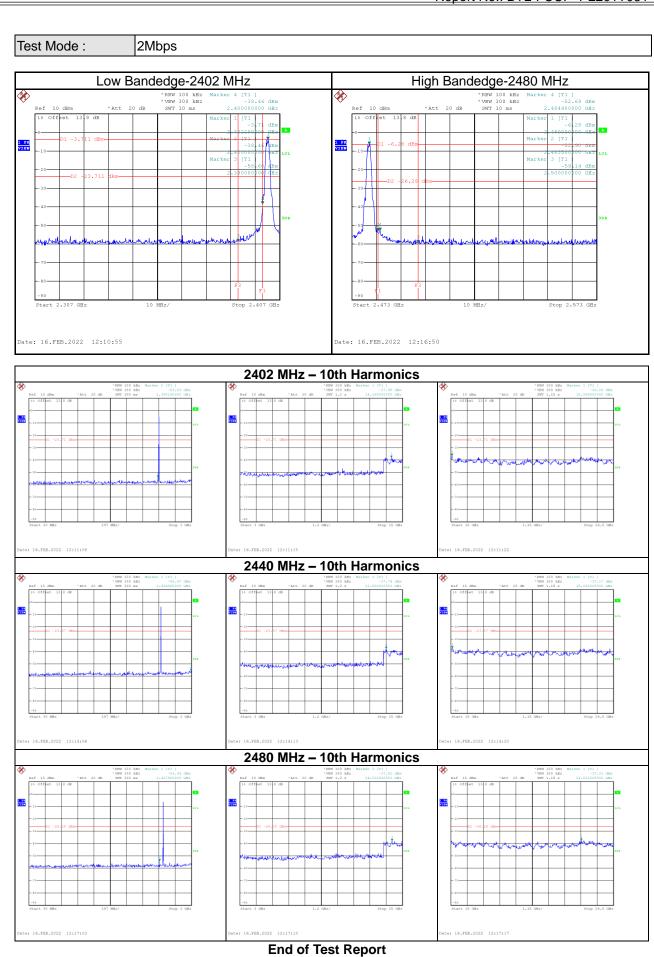
Test Mode : 1Mbps

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-8.49	8	Pass
2440	-8.74	8	Pass
2480	-8.46	8	Pass

Test Mode: 2Mbps

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-10.75	8	Pass
2440	-11.05	8	Pass
2480	-14.24	8	Pass




APPENDIX F	ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2201T051 Page 49 of 51 Report Version: R00

