

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-4634/22-01-08-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Roche Diagnostics GmbH

Sandhofer Str. 116

68305 Mannheim / GERMANY Phone: +49 621 759-3409 Contact: Bernhard Lieske

e-mail: <u>bernhard.lieske@roche.com</u>

Manufacturer

Roche Diagnostics GmbH

Sandhofer Str. 116

68305 Mannheim / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Blood measuring instrument

Model name: cobas h 232 FCC ID: VO9-H232 ISED certification number: 3100B-H232

Frequency: 2400 MHz to 2483.5 MHz

Technology tested: IEEE 802.11 (W-LAN), Module integration

Antenna: Integrated antenna

Power supply: 3.7 V DC via Li-lon battery

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Michael Dorongovski	David Lang
Lab Manager	Lab Manager
Radio Communications	Radio Communications

1 Table of contents 1 Table of contents2 2 Notes and disclaimer3 2.1 Application details3 2.2 2.3 Test laboratories sub-contracted3 Test standard/s, references and accreditations......4 3 Reporting statements of conformity - decision rule5 4 5 Test environment6 6 Test item ______6 General description6 6.1 Additional information6 6.2 7.1 Shielded semi anechoic chamber8 Shielded fully anechoic chamber......10 7.2 7.3 Radiated measurements > 18 GHz......11 AC conducted12 7.4 7.5 Conducted measurements with peak power meter & spectrum analyzer......13 Sequence of testing14 Sequence of testing radiated spurious 9 kHz to 30 MHz14 8.1 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz15 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz16 Sequence of testing radiated spurious above 18 GHz17 8.4 9 10 Additional information and comments20 11 12 Additional EUT parameter......21 13 Testability check.......22 13.1 13.2 Antenna gain.......23 13.3 Band edge compliance radiated24 13.4 Spurious emissions radiated below 30 MHz......28 13.5 13.6 Spurious emissions radiated 30 MHz to 1 GHz35 13.7 Spurious emissions radiated above 1 GHz39 Spurious emissions conducted below 30 MHz (AC conducted).......47 13.8 14 Observations50 15 Glossary50 Document history......51 16 Accreditation Certificate - D-PL-12076-01-0451 17 Accreditation Certificate - D-PL-12076-01-0552 18

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4634/22-01-08 and dated 2023-03-31.

2.2 Application details

Date of receipt of order: 2022-07-29
Date of receipt of test item: 2022-08-01
Start of test:* 2022-08-30
End of test:*

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 52

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

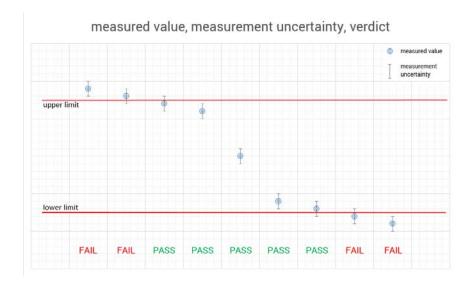
3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and
ANSI C63.10-2013 KDB 996369 D04	-/- v02	Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices MODULAR TRANSMITTERINTEGRATION GUIDEGUIDANCE FOR HOSTPRODUCTMANUFACTURERS

© CTC advanced GmbH Page 4 of 52

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	DAKKS Deutsche Akkrediterungsstelle D-PL-12076-01-05


ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 52

5 Test environment

		T_{nom}	+20 °C during room temperature tests
Temperature	:	T_{max}	No testing under extreme temperature conditions performed
		T_{min}	No testing under extreme temperature conditions performed
Relative humidity content	:		45 %
Barometric pressure	:		not relevant for this kind of testing
		V_{nom}	3.7 V DC via Li-lon battery
Power supply	:	V_{max}	No testing under extreme voltage conditions required
		V_{min}	No testing under extreme voltage conditions required

6 Test item

6.1 General description

Kind of test item :	Blood measuring instrument			
Model name :	cobas h 232			
HMN :	-/-			
PMN :	cobas h 232			
HVIN :	H232-HBM 4.5			
FVIN :	-/-			
	Rad. marked #1			
S/N serial number :	marked #3			
	Cond. marked #2			
Hardware status :	HBM 4.50			
Software status :	WiFi-TestApp			
Frequency band :	2400 MHz to 2483.5 MHz			
Type of radio transmission:	Dece Ofdia			
Use of frequency spectrum :	DSSS, OFDM			
Type of modulation :	CCK, (D)BPSK, (D)QPSK, 16 - QAM, 64 - QAM			
Number of channels :	11			
Antenna :	Integrated antenna			
Power supply :	3.7 V DC via Li-lon battery			

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-4634/22-01-01_AnnexA

1-4634/22-01-01_AnnexB 1-4634/22-01-01_AnnexD

© CTC advanced GmbH Page 6 of 52

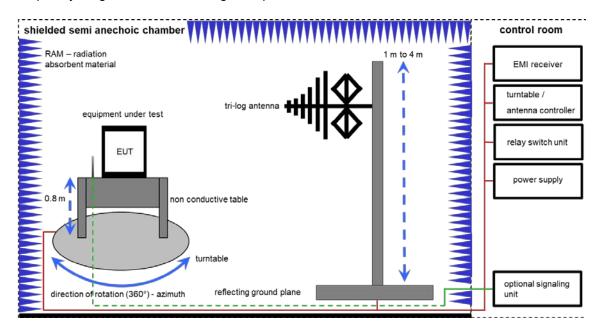
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


calibration / calibrated	EK	limited calibration
not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
		maintenance)
periodic self verification	izw	internal cyclical maintenance
long-term stability recognized	g	blocked for accredited testing
Attention: extended calibration interval		
Attention: not calibrated	*)	next calibration ordered / currently in progress
	not required (k, ev, izw, zw not required) periodic self verification long-term stability recognized Attention: extended calibration interval	not required (k, ev, izw, zw not required) zw periodic self verification izw long-term stability recognized g Attention: extended calibration interval

© CTC advanced GmbH Page 7 of 52

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

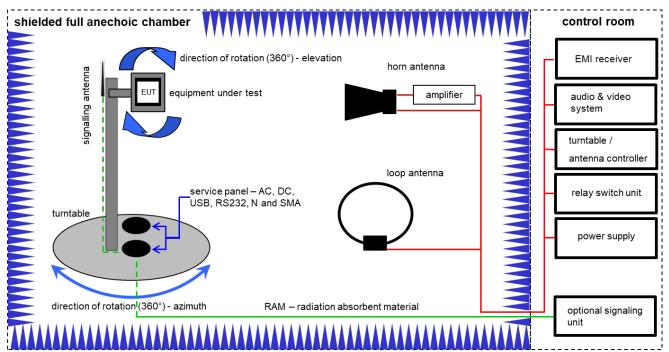
Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-

© CTC advanced GmbH Page 8 of 52



6	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	12.04.2021	30.04.2023
7	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
8	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
9	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	19.05.2023

© CTC advanced GmbH Page 9 of 52

7.2 Shielded fully anechoic chamber

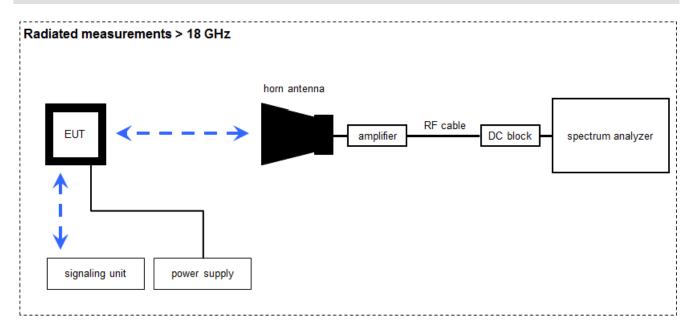
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	01.07.2021	31.07.2023
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	B, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vlKI!	11.02.2022	29.02.2024
5	В	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	31.12.2022
7	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A, B, C	NEXIO EMV- Software	BAT EMC V3.21.0.32	EMCO		300004682	ne	-/-	-/-
11	A, B, C	PC	ExOne	F+W		300004703	ne	-/-	-/-
12	С	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-
13	С	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 52

7.3 Radiated measurements > 18 GHz

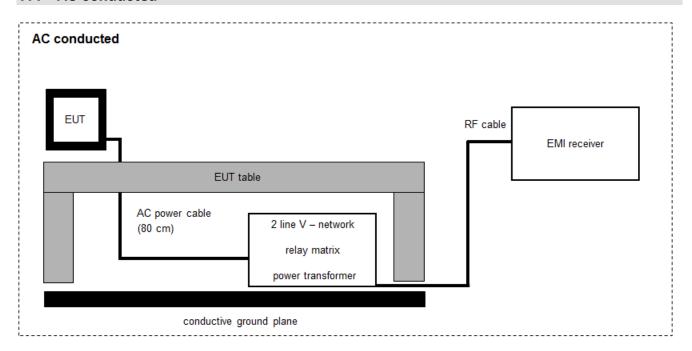
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKI!	17.01.2022	31.01.2024
3	Α	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
4	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	25.01.2022	31.01.2023

© CTC advanced GmbH Page 11 of 52

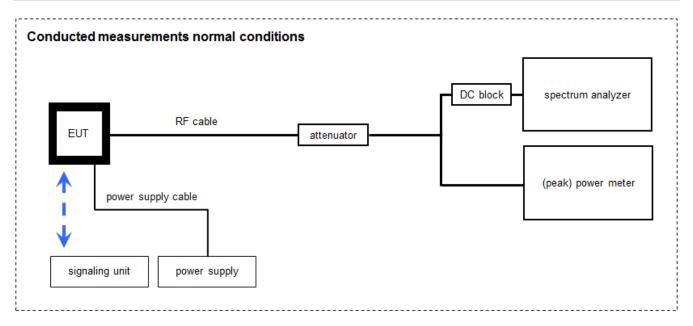
7.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKI!	14.12.2021	31.12.2023
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	g	-/-	-/-
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	29.12.2021	31.12.2023
5	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
6	Α	PC	TecLine	F+W		300003532	ne	-/-	-/-

© CTC advanced GmbH Page 12 of 52

7.5 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A45 23	300004589	ne	-/-	-/-
2	А	RF-Cable	ST18/SMAm/SMAm /60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
3	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	-/-
4	Α	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10-2W44+	Mini Circuits		400001186	ev	-/-	-/-
5	А	USB Wideband Power Sensor (50MHz - 18GHz)	U2021XA	Keysight	MY591900010	300005802	k	14.12.2021	31.12.2022

© CTC advanced GmbH Page 13 of 52

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 14 of 52

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 52

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 52

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 17 of 52

9 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3	dB					
Power spectral density	± 1.5	6 dB					
DTS bandwidth	± 100 kHz (depends	s on the used RBW)					
Occupied bandwidth	± 100 kHz (depends	s on the used RBW)					
Maximum output power conducted	± 1.5	6 dB					
Detailed spurious emissions @ the band edge - conducted	± 1.56 dB						
Band edge compliance radiated	± 3 dB						
	> 3.6 GHz	± 1.56 dB					
Spurious emissions conducted	> 7 GHz	± 1.56 dB					
Spurious emissions conducted	> 18 GHz	± 2.31 dB					
	≥ 40 GHz	± 2.97 dB					
Spurious emissions radiated below 30 MHz	± 3	dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3	dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7	7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB						

© CTC advanced GmbH Page 18 of 52

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
IXI	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark	
RF-Testing	CFR Part 15 / RSS - 247, Issue 2	See table!	2023-06-19	Reduced test plan for module integration	

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nominal	Nominal	DSSS		-/	/_		-/-
§15.35	Duty cycle	-/-	Nominal	Nominal	DSSS OFDM		-,	/-		-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 8.4	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth	KDB 558074 DTS clause: 8.2	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	KDB 558074 DTS clause: 8.3.1.3	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge – cond.	-/-	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance cond. & rad.	KDB 558074 DTS clause: 8.7.3	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions cond.	KDB 558074 DTS clause: 8.5	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.209(a) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-

Notes:

	4						
С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

© CTC advanced GmbH Page 19 of 52

11 Additional information and comments

Reference documents: WM PAN9026 Product Specification V1.3.pdf

Module report: G0M-1810-7783-TFC247WF-V01

Co-applicable documents: 1-4643_22-01-08_log1_conducted.pdf

Special test descriptions: None

Configuration descriptions: For measurements in continuous transmit or receive mode the DUT was

configured via the GUI.

Settings used for measurements stated in section 13.3

EUT selection:

Only one device available

☐ Devices selected by the customer

□ Devices selected by the laboratory (Randomly)

Provided channels:

Channels with 20 MHz channel bandwidth:

	channel number & center frequency												
channel	1	2	3	4	5	6	7	8	9	10	11	12	13
f _c / MHz	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472

Channels with 40 MHz channel bandwidth:

	channel number & center frequency												
channel	-/-	-/-	3	4	5	6	7	8	9	10	11	-/-	-/-
f _c / MHz	-/-	-/-	2422	2427	2432	2437	2442	2447	2452	2457	2462	-/-	-/-

Note: The channels used for the tests are marked in bold in the list.

© CTC advanced GmbH Page 20 of 52

12 Additional EUT p	arameter	
Test mode:		No test mode available Iperf was used to ping another device with the largest support packe size
		Test mode available Special software is used. EUT is transmitting pseudo random data by itself
Modulation types:	\boxtimes	Wide Band Modulation (None Hopping – e.g. DSSS, OFDM)
		Frequency Hopping Spread Spectrum (FHSS)
Antennas and transmit operating modes:		Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 21 of 52

13 Measurement results

13.1 Testability check

Description:

Comparison of the first assessment with the current product based on the performance and decision of the test ability.

Measurement:

Measurement parameters						
Peak Power Sensor						
Test setup	See chapter 7.4 – A					
Measurement uncertainty	See chapter 9					

Limits:

Results:

T_nom	V_{nom}	lowest channel	middle channel	highest channel	
		DSSS mode			
•	oower / dBm 10-7783-TFC247WF- 01	15.3	15.7	14.1	
•	oower / dBm k – delta sample	15.1	15.4	13.7	
	OFDM mode	(20 MHz nominal char	nel bandwidth)		
•	oower / dBm 10-7783-TFC247WF- 01	22.6	22.8	22.3	
Conducted power / dBm Test ability check – delta sample		23.6	24.2	21.8	

© CTC advanced GmbH Page 22 of 52

13.2 Antenna gain

2.1 dBi as declared by the manufacturer (see referenced documents).

13.3 Identify worst case data rate

Modulation scheme / bandwidth							
DSSS / b - mode	11 Mbit/s						
OFDM / g - mode	12 Mbit/s						
OFDM / n HT20 – mode	MCS2						
OFDM / n HT40 – mode	MCS0						

^{*} Worst case data rate or modulation scheme as per referenced module report.

© CTC advanced GmbH Page 23 of 52

13.4 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3 meter.

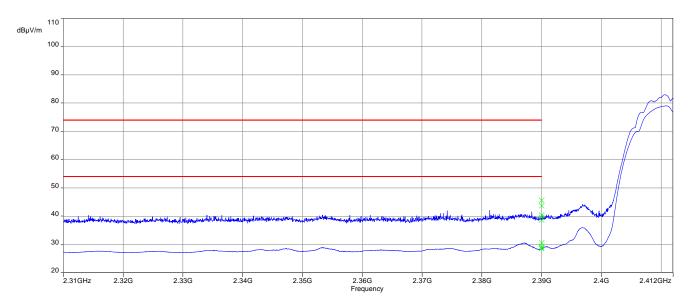
Measurement:

	Measurement parameter for peak	Measurement parameter for average measurements			
	measurements	According to DTS clause: 8.7.3			
Detector	Peak	RMS			
Sweep time	Auto	Auto			
Resolution bandwidth	1 MHz	100 kHz			
Video bandwidth	3 MHz	300 kHz 2 MHz RMS Average over 101 sweeps			
Span	See plot				
Trace mode	Max. hold				
Analyzer function	-/-	Band power function (Compute the power by integrating the spectrum over 1 MHz)			
Test setup	See chapter 7.2 – B				
Measurement uncertainty	See chapter 9				

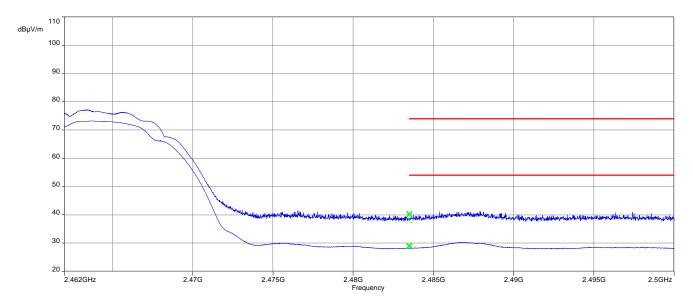
Limits:

FCC	ISED			
74 dBμV/m @ 3 m (Peak) 54 dBμV/m @ 3 m (AVG)				

Results:


band edge compliance radiated / (dBμV / m) @ 3 m						
		OFDM	OFDM			
	DSSS	(20 MHz nominal channel	(40 MHz nominal channel			
		bandwidth)	bandwidth)			
Lower	>20 dB below limit (Peak)	64.6 (Peak)	62.4 (Peak)			
band edge	>20 dB below limit (AVG)	42.1 (AVG)	41.0 (AVG)			
Upper	>20 dB below limit (Peak)	60.0 (Peak)	61.7 (Peak)			
band edge	>20 dB below limit (AVG)	39.5 (AVG)	41.5 (AVG)			

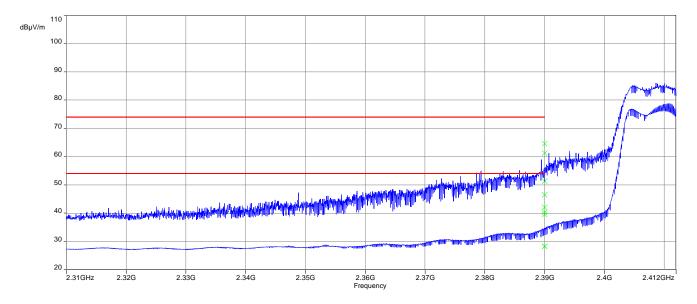
© CTC advanced GmbH Page 24 of 52



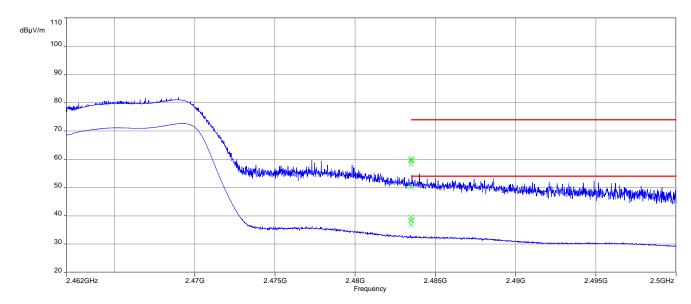
Plots: DSSS - peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization



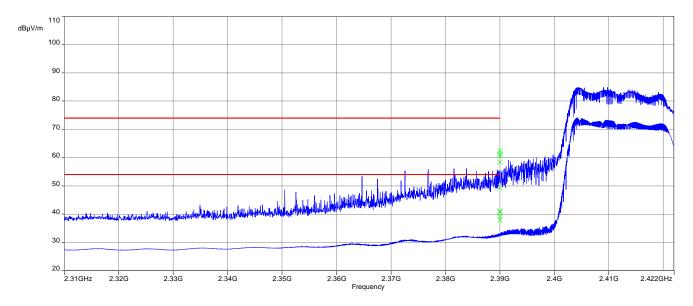
© CTC advanced GmbH Page 25 of 52



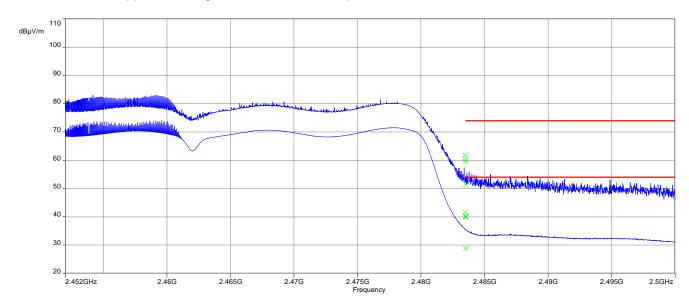
Plots: OFDM (20 MHz bandwidth) - peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization



© CTC advanced GmbH Page 26 of 52



Plots: OFDM (40 MHz bandwidth) - mode peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

© CTC advanced GmbH Page 27 of 52

13.5 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

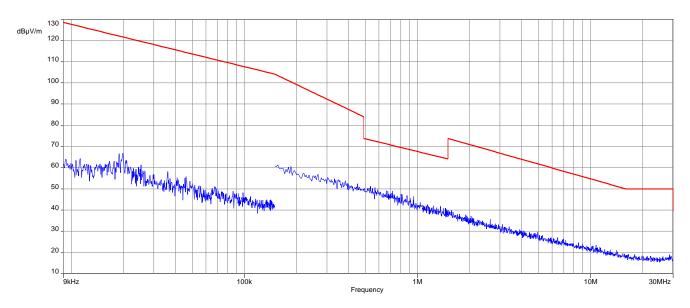
Measurement:

Measurement parameter					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max Hold				
Measured modulation	 ☑ DSSS b – mode ☑ OFDM g – mode ☑ OFDM n HT20 – mode ☑ OFDM n HT40 – mode 				
Test setup	See chapter 7.2 – A				
Measurement uncertainty See chapter 9					

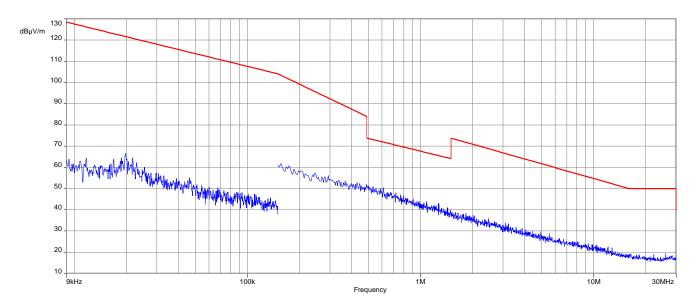
Limits:

FCC		ISED		
Frequency / MHz	Field Strength / (dBµV / m)		Measurement distance / m	
0.009 - 0.490	2400/	F(kHz)	300	
0.490 - 1.705	24000/F(kHz)		30	
1.705 – 30.0	30		30	

Results:

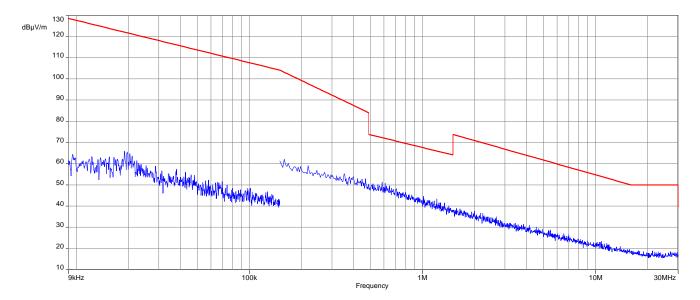

TX spurious emissions radiated < 30 MHz / (dBμV / m) @ 3 m							
Frequency / MHz Detector Level / (dBµV / m)							
All detected peaks are more than 20 dB below the limit.							

© CTC advanced GmbH Page 28 of 52



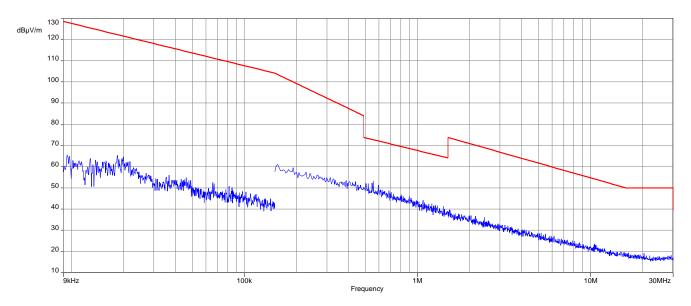
Plots: DSSS

Plot 1: 9 kHz to 30 MHz, lowest channel

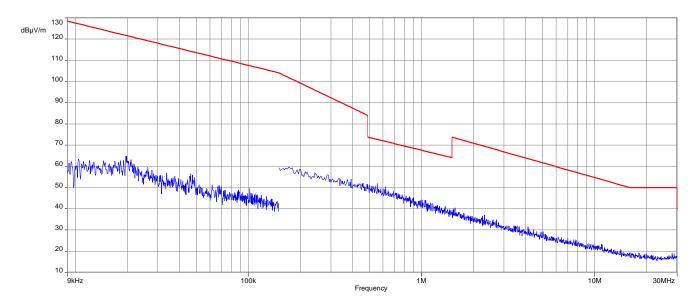

Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 29 of 52

Plot 3: 9 kHz to 30 MHz, highest channel

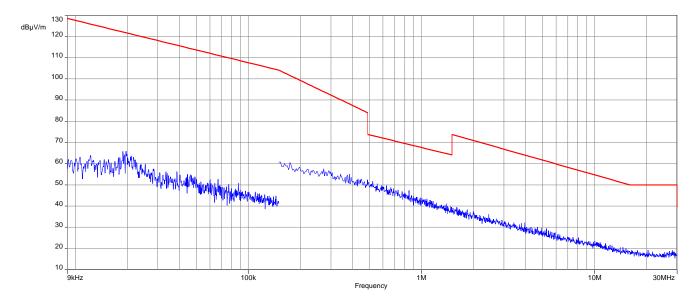


© CTC advanced GmbH Page 30 of 52



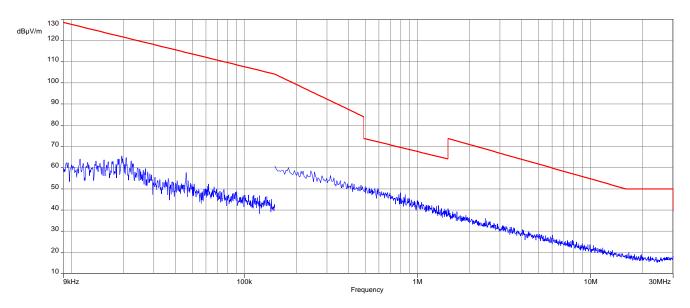
Plots: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel

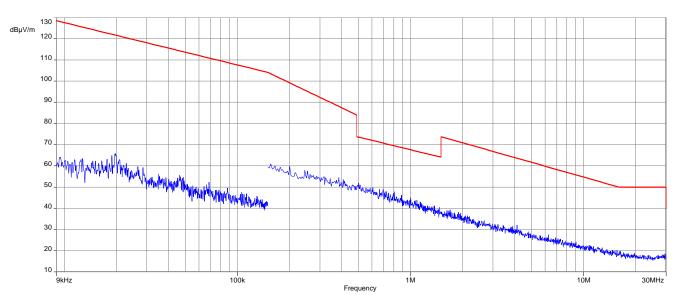

Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 31 of 52

Plot 3: 9 kHz to 30 MHz, highest channel

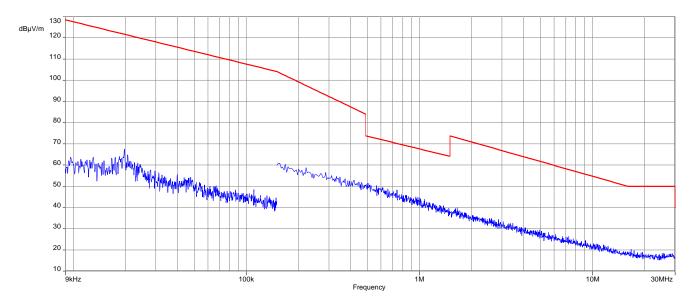


© CTC advanced GmbH Page 32 of 52



Plots: OFDM (40 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel


Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 33 of 52

Plot 3: 9 kHz to 30 MHz, highest channel

© CTC advanced GmbH Page 34 of 52

13.6 Spurious emissions radiated 30 MHz to 1 GHz

Description:

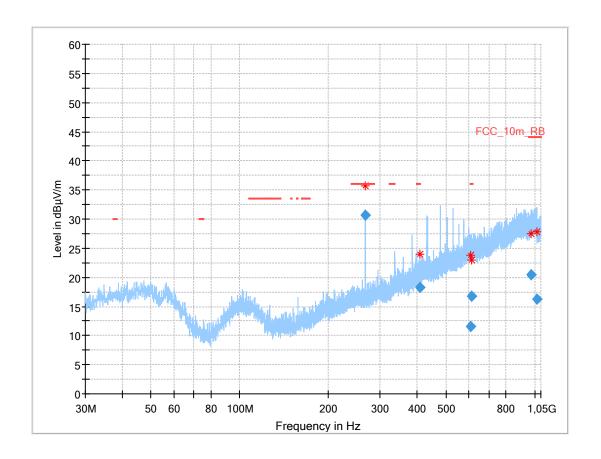
Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measurement parameter					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	120 kHz				
Video bandwidth	3 x RBW				
Span	30 MHz to 1 GHz				
Trace mode	Max Hold				
Measured modulation	 ✓ DSSS b – mode ✓ OFDM g – mode ✓ OFDM n HT20 – mode ✓ OFDM n HT40 – mode 				
Test setup	See chapter 7.1 - A				
Measurement uncertainty	See chapter 9				

Limits:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

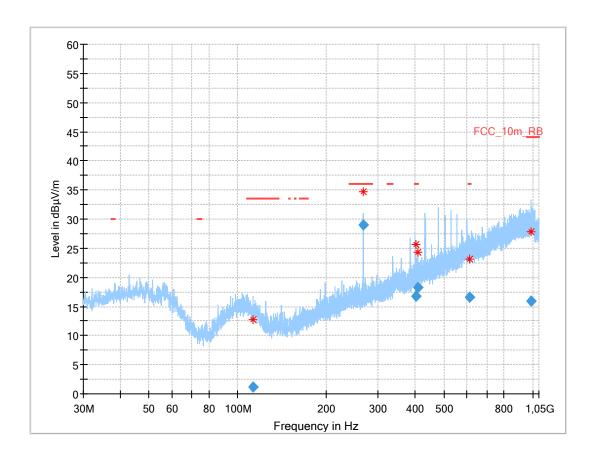

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m		
30 – 88	30.0	10		
88 – 216	33.5	10		
216 – 960	36.0	10		

© CTC advanced GmbH Page 35 of 52

Plot: DSSS

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization (Max hold channel 1, 6 & 11)

Final results:

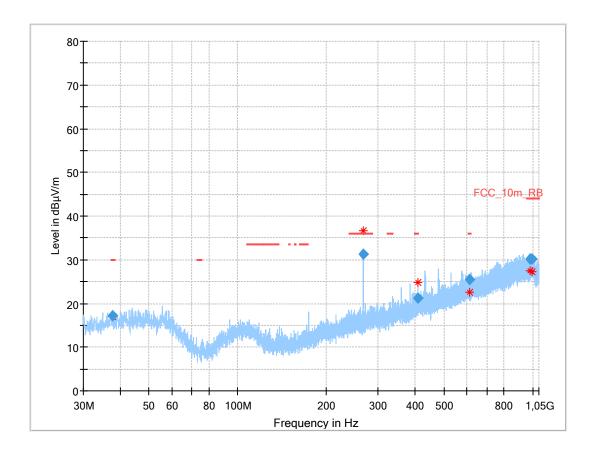

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
265.990	30.70	36.0	5.3	1000	120.0	112.0	V	27	14
408.026	18.29	36.0	17.7	1000	120.0	104.0	V	47	18
608.496	11.53	36.0	24.5	1000	120.0	329.0	Н	319	22
612.229	16.70	36.0	19.3	1000	120.0	127.0	٧	225	22
974.054	20.53	44.0	23.5	1000	120.0	400.0	٧	245	26
1016.270	16.34	44.0	27.7	1000	120.0	200.0	Н	28	26

© CTC advanced GmbH Page 36 of 52

Plot: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization (Max hold channel 1, 6 & 11)

Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
112.780	1.12	33.5	32.4	1000	120.0	400.0	V	190	13
266.029	29.07	36.0	6.9	1000	120.0	106.0	V	344	14
403.068	16.74	36.0	19.3	1000	120.0	378.0	V	-19	18
407.984	18.30	36.0	17.7	1000	120.0	100.0	V	270	18
610.539	16.51	36.0	19.5	1000	120.0	393.0	V	90	22
988.614	15.97	44.0	28.0	1000	120.0	389.0	Н	256	26

© CTC advanced GmbH Page 37 of 52

Plot: OFDM (40 MHz nominal channel bandwidth)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, (Max hold channel 3, 6 & 9)

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.567	17.12	30.0	12.9	1000	120.0	107.0	V	67	15
265.997	31.31	36.0	4.7	1000	120.0	101.0	V	-19	14
408.017	21.21	36.0	14.8	1000	120.0	107.0	V	247	18
612.539	25.38	36.0	10.6	1000	120.0	170.0	V	247	22
982.108	30.09	44.0	13.9	1000	120.0	170.0	Н	67	26
993.194	30.20	44.0	13.8	1000	120.0	170.0	V	292	26

© CTC advanced GmbH Page 38 of 52

13.7 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measurement parameter						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max Hold					
Measured modulation	 □ DSSS b – mode □ OFDM g – mode □ OFDM n HT20 – mode □ OFDM n HT40 – mode 					
Test setup	See chapter 7.2 - & 7.3 - A					
Measurement uncertainty	See chapter 9					

Limits:

FCC ISED

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m
Above 960	54.0 (AVG)	2
Above 900	74.0 (peak)	3

© CTC advanced GmbH Page 39 of 52

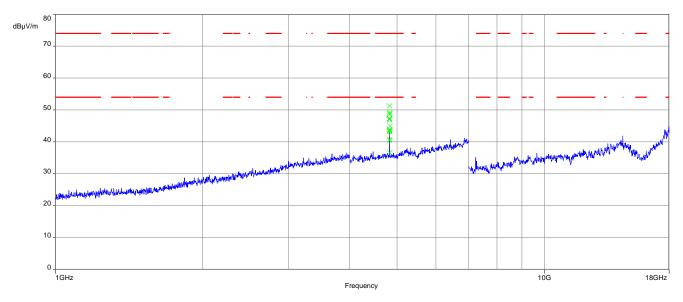
Results: DSSS

	TX spurious emissions radiated / dBμV/m @ 3 m											
lowest channel			middle channel highest channel				el					
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m				
4004	Peak	51.3	7200	Peak	45.0	,	Peak	-/-				
4824	AVG	47.4	7309	AVG	38.6	-/-	AVG	-/-				

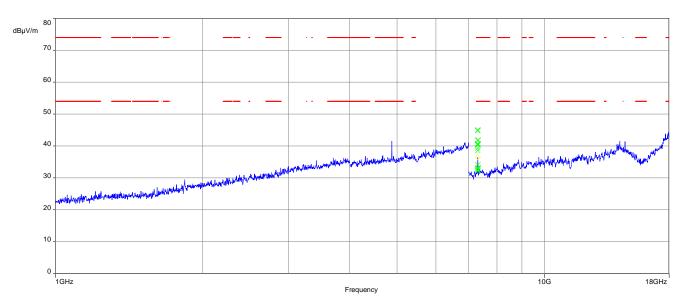
Results: OFDM (20 MHz nominal channel bandwidth)

	TX spurious emissions radiated / dBμV/m @ 3 m											
lowest channel middle channel highest chan					ghest chann	iel						
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m				
2375	Peak	50.2	-/-	Peak	-/-	,	Peak	-/-				
2375	AVG	35.8	-/-	AVG	-/-	-/-	AVG	-/-				

Results: OFDM (40 MHz nominal channel bandwidth)


	TX spurious emissions radiated / dBμV/m @ 3 m											
lowest channel middle channel highest chann						iel						
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m				
	Peak	50.2	1000	Peak	47.7	,	Peak	-/-				
	AVG	35.8	1202	AVG	41.5	-/-	AVG	-/-				

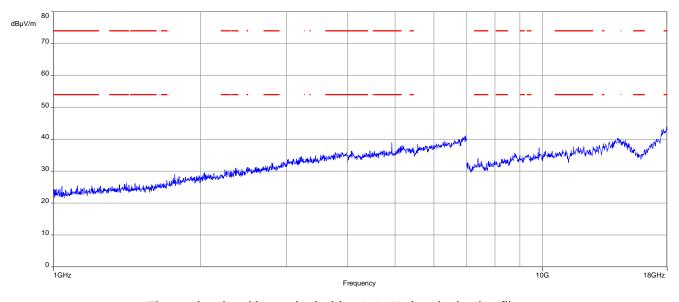
© CTC advanced GmbH Page 40 of 52


Plots: DSSS

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

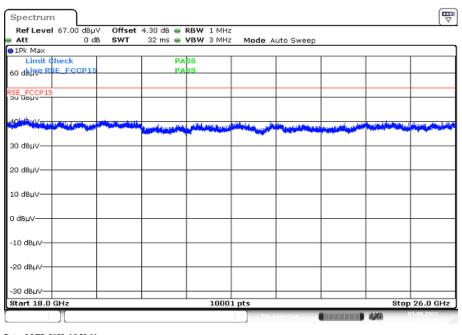
The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

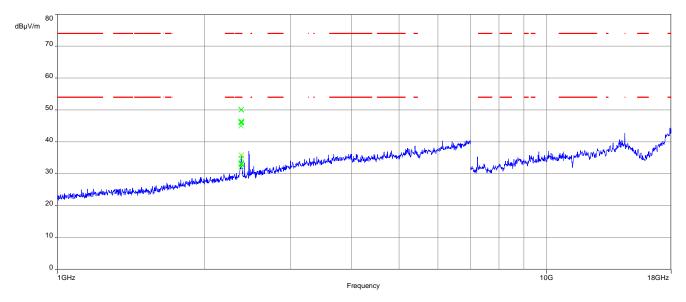
© CTC advanced GmbH Page 41 of 52



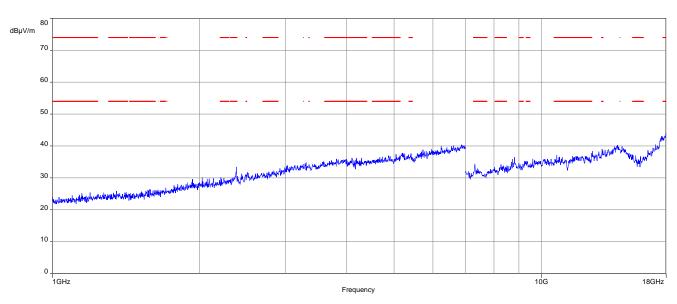
Plot 3: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: All channels, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 3 AUG 2022 13:53:41

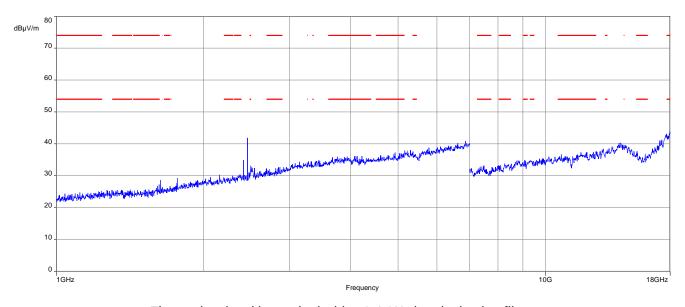
© CTC advanced GmbH Page 42 of 52


Plots: OFDM (20 MHz bandwidth)

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

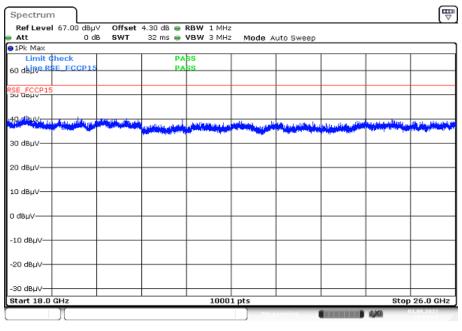
The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

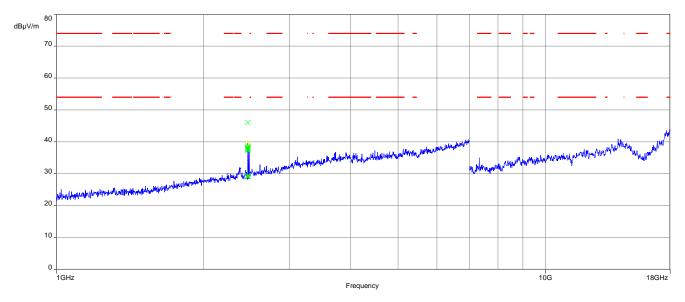
© CTC advanced GmbH Page 43 of 52



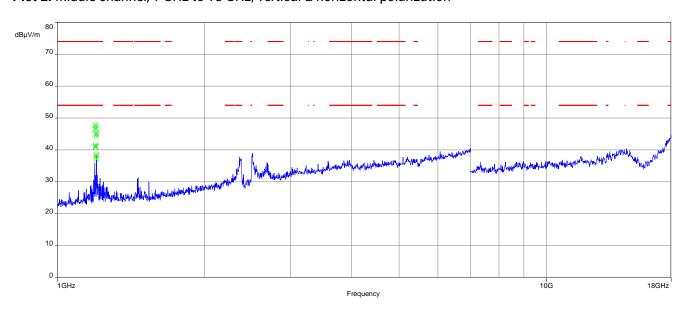
Plot 3: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: All channels, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 3 AUG 2022 13:54:33

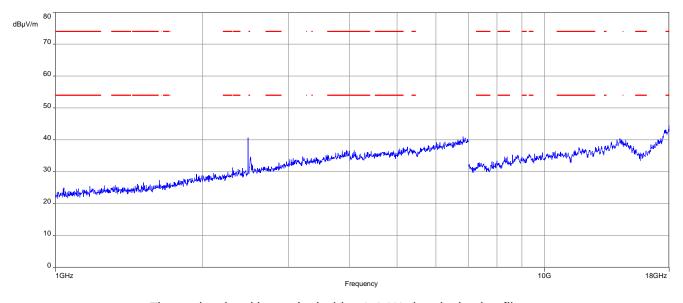
© CTC advanced GmbH Page 44 of 52


Plots: OFDM (40 MHz bandwidth)

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

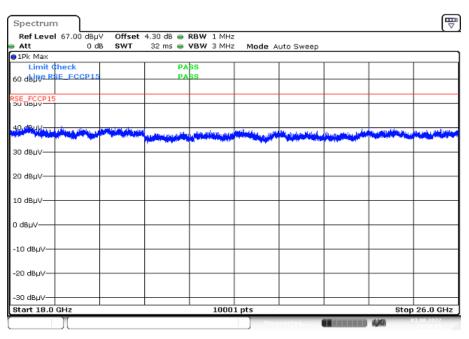
The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

© CTC advanced GmbH Page 45 of 52



Plot 3: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: All channels, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 3 AUG 2022 13:55:26

© CTC advanced GmbH Page 46 of 52

13.8 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter								
Detector	Peak - Quasi Peak / Average							
Sweep time	Auto							
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span	9 kHz to 30 MHz							
Trace mode	Max. hold							
Test setup	See chapter 7.							
Measurement uncertainty	See chapter 9							

Limits:

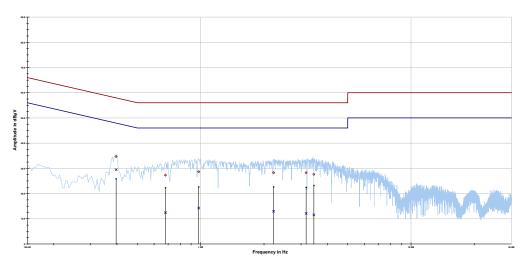
FCC			ISED
Frequency / MHz)	Quasi-Peak	/ (dBµV / m)	Average / (dBμV / m)
0.15 - 0.5	66 to	56*	56 to 46*
0.5 - 5	5	6	46
5 - 30.0	6	0	50

^{*}Decreases with the logarithm of the frequency

© CTC advanced GmbH Page 47 of 52

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Project ID: 4634

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.743269	28.17	27.83	56.000	11.75	34.25	46.000
0.877594	28.59	27.41	56.000	11.18	34.82	46.000
1.030575	27.97	28.03	56.000	13.15	32.85	46.000
3.082762	27.97	28.03	56.000	12.17	33.83	46.000
3.463350	27.31	28.69	56.000	12.62	33.38	46.000

© CTC advanced GmbH Page 48 of 52

Plot 2: 150 kHz to 30 MHz, neutral line

Project ID: 4634

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.396263	34.67	23.26	57.931	29.45	19.51	48.964
0.679837	27.32	28.68	56.000	12.42	33.58	46.000
0.978337	28.64	27.36	56.000	14.24	31.76	46.000
2.220844	28.27	27.73	56.000	12.95	33.05	46.000
3.172312	28.26	27.74	56.000	12.12	33.88	46.000
3.452156	27.62	28.38	56.000	11.52	34.48	46.000

© CTC advanced GmbH Page 49 of 52

14 Observations

No observations except those reported with the single test cases have been made.

15 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

© CTC advanced GmbH Page 50 of 52

16 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-03-31
Α	HW and SW status updated	2023-06-19

17 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Brandfurt am Main Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-Pt-12076-01-04 Frankfurt am Main, 09.06.2020 by order [Pgl. ing. (*Pg. Ring (*Pg. R	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overheaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation stretsed by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AASStelleG) of 31 July 2009 (Federal Law Gazette). P. 2525 and the Regulation (EC) No 765/2008 of the European Palmament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Include). 1238 of 91 July 2009, p. 30). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.lac.org ILAC: www.lac.org ILAC: www.lac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

© CTC advanced GmbH Page 51 of 52

18 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 10117 Berlin G0327 Frankfurt am Main 38118 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation unmber D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by order Total-ong, (Prificate Eigner Need of Division) The certificate tagether with its onnex reflects the status at the time of the date of issue. The current status of the scape of excenditation can be found in the database of excentive bodies of Deviation Astronomyzantele Grabit. Majors/Frank. Addits. de/ev/content/accredited-bodies datas.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DA&S). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation assessment body mentioned overleaf. The accreditation was granted gursanat to the Act on the Accreditation Body (A&Scelled) of 3.1 July 2009 (featent but Geater) in 2.5 July 2009 (featent but Geater) in 2.5 July 2009 (featent but Geater) in 2.6 July 2008 setting out the equirements for accreditation and market surveillance relating to the transferring of products Official Journal of the European Livol 1.28 of 9 July 2008, 8.0 July 2008 is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation and Accreditation Cooperation (II.AC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of memberahip can be retrieved from the following websites: EA: www.lac.org IAAC: www.lac.org IAAC: www.lac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf