FCC SAR Test Report

APPLICANT : ZTE CORPORATION

EQUIPMENT : LTE/WCDMA/GSM (GPRS) Multi-Mode

Digital Mobile Phone

BRAND NAME : ZTE

MODEL NAME : Z320

FCC ID : SRQ-Z320

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

We, SPORTON INTERNATIONAL (XI'AN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (XI'AN) INC., the test report shall not be reproduced except in full.

Prepared by: Mark Qu / Manager

Mark Qu

Approved by: Jones Tsai / Manager

Report No. : FA622402

SPORTON INTERNATIONAL (XI'AN) INC.

1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P. R. China

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date: Jul. 15, 2016 Form version.: 160427 FCC ID: SRQ-Z320 Page 1 of 52

Table of Contents

1. Statement of Compliance	4
2. Administration Data	
3. Guidance Standard	5
4. Equipment Under Test (EUT) Information	
4.1 General Information	6
4.2 General LTE SAR Test and Reporting Considerations	
5. RF Exposure Limits	8
5.1 Uncontrolled Environment	8
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	
6.1 Introduction	
6.2 SAR Definition	
7. System Description and Setup	
7.1 E-Field Probe	11
7.2 Data Acquisition Electronics (DAE)	
7.3 Phantom	12
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	
10.1 Tissue Verification	
10.2 System Performance Check Results	19
11. RF Exposure Positions	20
11.1 Ear and handset reference point	20
11.2 Definition of the cheek position	21
11.3 Definition of the tilt position	
11.4 Body Worn Accessory	
12. Conducted RF Output Power (Unit: dBm)	
13. Bluetooth Exclusions Applied	
14. Antenna Location	
15. SAR Test Results	
15.1 Head SAR	
15.2 Body Worn Accessory SAR	
16. Simultaneous Transmission Analysis	48
16.1 Body-Worn Accessory Exposure Conditions	49
17. Uncertainty Assessment	
18. References	52
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Revision History

Report No.: FA622402

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA622402	Rev. 01		
FA022402	nev. u i	Initial issue of report	Jul. 15, 2016

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for ZTE CORPORATION, LTE/WCDMA/GSM (GPRS) Multi-Mode Digital Mobile Phone, Z320 are as follows.

Report No.: FA622402

			Highest 1g SA	Highest						
Equipment Class		uency and	Head (Separation 0mm)	Body-worn (Separation 15mm)	Simultaneous Transmission					
			1g SAR	(W/kg)	1g SAR (W/kg)					
	GSM	GSM850	0.65	0.83						
	GSIVI	GSM1900	0.54	0.48						
	WCDMA	Band V	0.61	0.57						
Licensed		WCDMA	WCDMA	WCDMA	WCDMA	WCDMA	Band IV	0.34	0.56	
Licensed		Band II	0.72	0.57	0.96					
		Band 12	0.24	0.17						
	LTE	Band 4	0.31	0.63						
		Band 2	0.75	0.58						
DSS	Bluetooth									
Date of Testing:			20	016/06/26 ~ 2016/07/01						

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date: Jul. 15, 2016 FCC ID: SRQ-Z320 Form version.: 160427 Page 4 of 52

2. Administration Data

Testing Laboratory				
Test Site	SPORTON INTERNATIONAL (XI'AN) INC.			
Test Site Location	1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P. R. C. TEL: +86-029-8860-8767 FAX: +86-029-8860-8791			

Report No.: FA622402

Applicant Applicant				
Company Name	ZTE CORPORATION			
Address	ZTE Plaza, Keji Road South, Hi-Tech Industrial Park,			
	Nanshan District, Shenzhen, Guangdong, 518057, P.R.China			

Manufacturer				
Company Name ZTE CORPORATION				
Address	ZTE Plaza, Keji Road South, Hi-Tech Industrial Park,			
	Nanshan District, Shenzhen, Guangdong, 518057, P.R.China			

3. Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification
Equipment Name	LTE/WCDMA/GSM (GPRS) Multi-Mode Digital Mobile Phone
Brand Name	ZTE
Model Name	Z320
FCC ID	SRQ-Z320
IMEI Code	860550030009149
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 12: 699 MHz ~ 716 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink is not supported) LTE: QPSK, 16QAM Bluetooth v3.0+EDR, Bluetooth v4.0 LE
HW Version	u79B
SW Version	Z320_MPCSV1.0.0B06
GSM / (E)GPRS Transfer mode	Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.
EUT Stage	Production Unit
Remark:	

Report No. : FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 15, 2016 Form version.: 160427 FCC ID: SRQ-Z320 Page 6 of 52

^{1.} This device supported VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. 3rd party VoIP).

^{2.} This device supports GRPS/EGPRS mode up to multi-slot class 12 and does not support DTM operation.

4.2 General LTE SAR Test and Reporting Considerations

Summarized r	nec	essary items	address	sed in KI	DB 941	225 D05	v02r05		
FCC ID	SR	SRQ-Z320							
Equipment Name	LTE	LTE/WCDMA/GSM (GPRS) Multi-Mode Digital Mobile Phone							
Operating Frequency Range of each LTE transmission band	LTE	LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 12: 699 MHz ~ 716 MHz							
Channel Bandwidth	LTE	E Band 2:1.4 E Band 4:1.4 E Band 12:1.4	MHz, 3MH	Hz, 5MHz	z, 10MH	lz, 15M⊦			
uplink modulations used	QP	SK, and 16Q	AM						
LTE Voice / Data requirements	Voi	ce and Data							
		Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3 Modulation Channel bandwidth / Transmission bandwidth (RB) MPR (dB)							
LTE MPR permanently built-in by design			1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
		QPSK	>5	>4	>8	> 12	> 16	> 18	≤1
		16 QAM 16 QAM	≤5 >5	≤ 4 > 4	≤8 >8	≤ 12 > 12	≤ 16 > 16	≤ 18 > 18	≤ 1 ≤ 2
LTE A-MPR	In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI)								
Spectrum plots for RB configuration	A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report.								
LTE Release Version	R1	0, Cat 4							
CA Support	NC								

Report No.: FA622402

	Transmission (H, M, L) channel numbers and frequencies in each LTE band												
	LTE Band 2												
		idth 1.4 Hz	Bandwid	th 3 MHz	Banc	dwidth 5 MHz	Bandwidt	h 10 l	MHz	Bandwidtl	n 15 MHz	Bandwid	th 20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch.	# Freq. (MHz)	Ch. #	Fre (MH		Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	18607	1850.7	18615	1851.5	186	25 1852.5	18650	18	55	18675	1857.5	18700	1860
M	18900	1880	18900	1880	1890	00 1880	18900	18	80	18900	1880	18900	1880
Н	19193	1909.3	19185	1908.5	191	75 1907.5	19150	19	05	19125	1902.5	19100	1900
						LTE Ba	and 4						
	Bandwidth 1.4 Bandwidth 3 MHz		th 3 MHz	Bandwidth 5 MHz		Bandwidth 10 MHz Bandwidth		h 15 MHz Bandwidth 20		th 20 MHz			
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch.	# Freq. (MHz)	Ch. #	Fre (Mh		Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	19957	1710.7	19965	1711.5	199	75 1712.5	20000	17	15	20025	1717.5	20050	1720
M	20175	1732.5	20175	1732.5	201	75 1732.5	20175	173	2.5	20175	1732.5	20175	1732.5
Н	20393	1754.3	20385	1753.5	203	75 1752.5	20350	17	50	20325	1747.5	20300	1745
						LTE Ba	nd 12						
	Band	dwidth 1.4	MHz	Ban	idwidth	n 3 MHz	Ban	idwidt	h 5 I	MHz	Band	dwidth 10	MHz
	Ch. #	ŧ Fr€	eq. (MHz)	Ch. #	ŧ	Freq. (MHz)	Ch. #	ŧ	Fre	q. (MHz)	Ch. #	ŧ Fre	eq. (MHz)
L	23017	7	699.7	2302	5	700.5	23035	5		701.5	23060	כ ד	704
M	2309	5	707.5	2309	5	707.5	2309	5		707.5	2309	5	707.5
Н	23170	3	715.3	2316	5	714.5	23155	5		713.5	23130)	711

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 15, 2016

FCC ID : SRQ-Z320 Page 7 of 52 Form version. : 160427

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA622402

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA622402

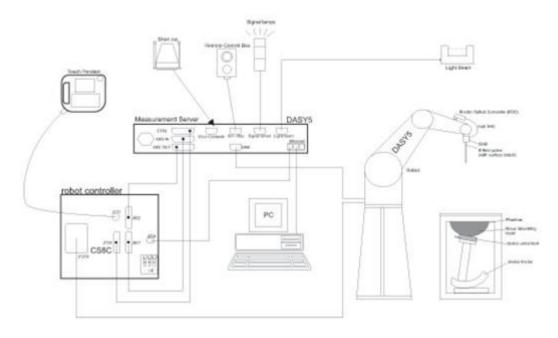
6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date: Jul. 15, 2016 Form version.: 160427 FCC ID: SRQ-Z320 Page 9 of 52

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA622402

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps,
- The phantom, the device holder and other accessories according to the targeted measurement.

FCC ID : SRQ-Z320 Page 10 of 52 Form version. : 160427

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Frequency	10 MHz – >6 GHz	
	Linearity: ±0.2 dB (30 MHz – 6 GHz)	
Directivity	±0.3 dB in TSL (rotation around probe axis)	
	±0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g – >100 mW/g	
	Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm)	
	Tip diameter: 2.5 mm (body: 12 mm)	
	Typical distance from probe tip to dipole centers: 1	
	mm	

Report No. : FA622402

7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 **Photo of DAE**

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date: Jul. 15, 2016 FCC ID: SRQ-Z320 Form version.: 160427 Page 11 of 52

7.3 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	j
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height:	
	adjustable feet	S
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
		1

Report No. : FA622402

Form version.: 160427

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

1==::::::a:::::::::::::::::::::::::::::		
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

FCC ID: SRQ-Z320

Page 12 of 52

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No. : FA622402

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date: Jul. 15, 2016 Form version.: 160427 FCC ID: SRQ-Z320 Page 13 of 52

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA622402

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For BT power measurement, use engineering software to configure EUT BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA622402

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz: } \le 12 \text{ mm}$ $4 - 6 \text{ GHz: } \le 10 \text{ mm}$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test.	on, is smaller than the above, must be \leq the corresponding levice with at least one

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date: Jul. 15, 2016 Form version.: 160427 FCC ID: SRQ-Z320 Page 15 of 52

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA622402

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz		
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$		
	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	X V 7		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

FCC ID : SRQ-Z320 Page 16 of 52 Form version. : 160427

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufactures	Name of Empirement	Turno (Mandal	Carial Number	Calib	Calibration			
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date			
SPEAG	750MHz System Validation Kit	D750V3	1087	2016/3/16	2017/3/15			
SPEAG	835MHz System Validation Kit	D835V2	4d151	2016/3/16	2017/3/15			
SPEAG	1750MHz System Validation Kit	D1750V2	1090	2016/3/22	2017/3/21			
SPEAG	1900MHz System Validation Kit	D1900V2	5d170	2016/3/21	2017/3/20			
SPEAG	Data Acquisition Electronics	DAE4	1358	2015/8/27	2016/8/26			
SPEAG	Dosimetric E-Field Probe	EX3DV4	3935	2015/11/27	2016/11/26			
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR			
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1753	NCR	NCR			
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1754	NCR	NCR			
Agilent	Wireless Communication Test Set	E5515C	MY52102600	2015/12/8	2016/12/7			
Anritus	Radio communication analyzer	MT8820C	6201074235	2015/10/15	2016/10/14			
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	2015/12/8	2016/12/7			
Agilent	Dielectric Probe Kit	85070E	MY44300751	NCR	NCR			
Anritsu	Power Senor	MA2411B	0917070	2016/1/20	2017/1/19			
Anritsu	Power Meter	ML2495A	1005002	2016/1/20	2017/1/19			
Anritsu	Power Sensor	MA2411B	1339206	2016/1/20	2017/1/19			
Anritsu	Power Meter	ML2495A	1438004	2016/1/20	2017/1/19			
R&S	Signal Generator	N5182A	MY50145381	2016/1/12	2017/1/11			
R&S	Spectrum Analyzer	FSV 7	101632	2015/12/8	2016/12/7			
ARRA	Power Divider	A3200-2	NA	No	te1			
Agilent	Dual Directional Coupler	778D	50422	No	te1			
Woken	Attenuation1	WK0602-XX	N/A	No	te1			
PE	Attenuation2	PE7005-10	N/A	No	te1			
PE	Attenuation3	PE7005-3	N/A	No	te1			
AR	Amplifier	5S1G4	342137	No	te1			

Report No. : FA622402

General Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 FCC ID: SRQ-Z320 Form version.: 160427

10. System Verification

10.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target

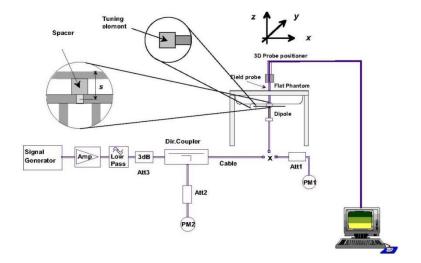
Report No. : FA622402

tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)				
For Head												
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9				
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5				
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0				
				For Body								
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2				
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3				

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	Head	22.5	0.891	42.417	0.89	41.90	0.11	1.23	±5	2016/6/27
835	Head	22.4	0.900	41.959	0.90	41.50	0.00	1.11	±5	2016/7/1
1750	Head	22.3	1.352	40.879	1.37	40.10	-1.31	1.94	±5	2016/6/26
1900	Head	22.5	1.445	40.117	1.40	40.00	3.21	0.29	±5	2016/6/30
750	Body	22.5	0.977	53.884	0.96	55.50	1.77	-2.91	±5	2016/6/26
835	Body	22.5	0.994	54.412	0.97	55.20	2.47	-1.43	±5	2016/6/26
1750	Body	22.6	1.517	53.127	1.49	53.40	1.81	-0.51	±5	2016/6/26
1900	Body	22.6	1.575	52.001	1.52	53.30	3.62	-2.44	±5	2016/6/26


TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 FCC ID: SRQ-Z320 Form version.: 160427 Page 18 of 52

10.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2016/6/27	750	Head	250	D750V3- 1087	EX3DV4 – SN3935	DAE4 Sn1358	2.03	8.30	8.12	-2.17
2016/7/1	835	Head	250	D835V2- 4d151	EX3DV4 – SN3935	DAE4 Sn1358	2.43	9.26	9.72	4.97
2016/6/26	1750	Head	250	D1750V2- 1090	EX3DV4 – SN3935	DAE4 Sn1358	9.02	35.10	36.08	2.79
2016/6/30	1900	Head	250	D1900V2- 5d170	EX3DV4 – SN3935	DAE4 Sn1358	9.59	38.10	38.36	0.68
2016/6/26	750	Body	250	D750V3- 1087	EX3DV4 – SN3935	DAE4 Sn1358	2.37	8.64	9.48	9.72
2016/6/26	835	Body	250	D835V2- 4d151	EX3DV4 – SN3935	DAE4 Sn1358	2.51	9.52	10.04	5.46
2016/6/26	1750	Body	250	D1750V2- 1090	EX3DV4 – SN3935	DAE4 Sn1358	9.80	35.90	39.2	9.19
2016/6/26	1900	Body	250	D1900V2- 5d170	EX3DV4 – SN3935	DAE4 Sn1358	10.50	38.90	42	7.97

Report No. : FA622402

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 19 of 52

11. RF Exposure Positions

11.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

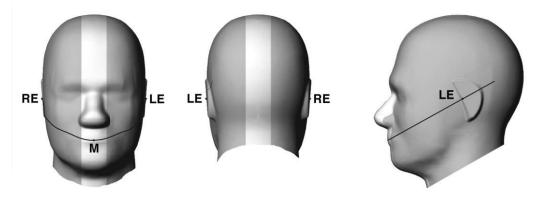


Fig 9.1.1 Front, back, and side views of SAM twin phantom

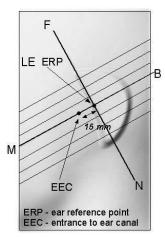
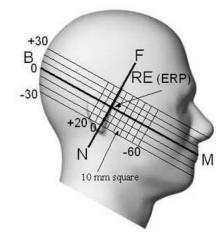



Fig 9.1.2 Close-up side view of phantom showing the ear region.

Report No.: FA622402

Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version.: 160427 FCC ID: SRQ-Z320 Page 20 of 52

11.2 Definition of the cheek position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line.
- 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

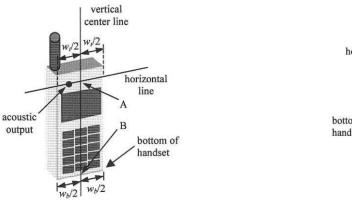
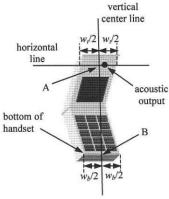
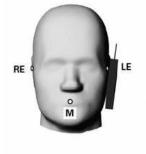




Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

Report No.: FA622402

Fig 9.2.2 Handset vertical and horizontal reference lines—"clam-shell case"

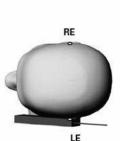


Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

SPORTON INTERNATIONAL (XI'AN) INC.TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

11.3 Definition of the tilt position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

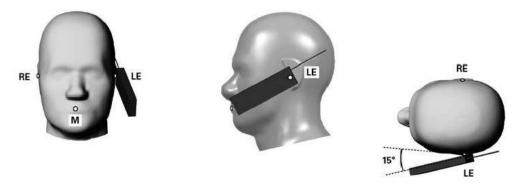
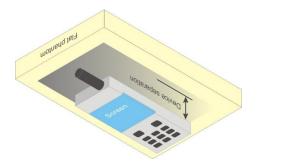


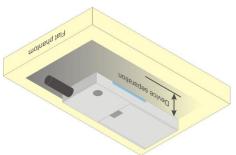
Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

Page 22 of 52

FCC ID: SRQ-Z320

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791


Issued Date: Jul. 15, 2016 Form version: 160427


Report No.: FA622402

11.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Report No.: FA622402

Fig 9.4 Body Worn Position

FCC ID : SRQ-Z320 Page 23 of 52 Form version. : 160427

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Report No. : FA622402

- 2. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (2Tx slots) for GSM850 and GPRS (3Tx slots) for GSM1900 are considered as the primary mode.
- 3. Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode

GSM850	Burst A	verage Powe	er (dBm)	Tune-up	Frame-A	verage Pow	er (dBm)	Tune-up
TX Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GSM 1 Tx slot	32.63	32.73	<mark>32.88</mark>	33.00	23.63	23.73	23.88	24.00
GPRS 1 Tx slot	32.62	32.68	32.84	33.00	23.62	23.68	23.84	24.00
GPRS 2 Tx slots	30.70	30.67	30.45	31.00	24.70	24.67	24.45	25.00
GPRS 3 Tx slots	28.41	28.29	28.46	29.00	24.15	24.03	24.20	24.74
GPRS 4 Tx slots	26.46	26.06	26.16	27.00	23.46	23.06	23.16	24.00
EDGE 1 Tx slot	26.56	26.62	26.52	27.00	17.56	17.62	17.52	18.00
EDGE 2 Tx slots	26.52	26.44	26.47	27.00	20.52	20.44	20.47	21.00
EDGE 3 Tx slots	26.38	26.40	26.30	26.50	22.12	22.14	22.04	22.24
EDGE 4 Tx slots	25.27	25.20	25.17	25.50	22.27	22.20	22.17	22.50

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

GSM1900	Burst Av	erage Pow	er (dBm)	Tune-up	Tune-up Frame-Average Power (dBm)			Tune-up	
TX Channel	512	661	810	Limit	512	661	810	Limit	
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)	
GSM 1 Tx slot	29.83	29.76	<mark>29.84</mark>	30.00	20.83	20.76	20.84	21.00	
GPRS 1 Tx slot	29.67	29.74	29.74	30.00	20.67	20.74	20.74	21.00	
GPRS 2 Tx slots	27.63	27.73	27.78	28.00	21.63	21.73	21.78	22.00	
GPRS 3 Tx slots	26.57	26.62	26.73	27.00	22.31	22.36	<mark>22.47</mark>	22.74	
GPRS 4 Tx slots	24.58	24.67	24.64	25.00	21.58	21.67	21.64	22.00	
EDGE 1 Tx slot	24.77	24.83	24.85	25.00	15.77	15.83	15.85	16.00	
EDGE 2 Tx slots	24.70	24.67	24.72	25.00	18.70	18.67	18.72	19.00	
EDGE 3 Tx slots	23.70	23.76	23.69	24.00	19.44	19.50	19.43	19.74	
EDGE 4 Tx slots	21.61	21.62	21.64	22.00	18.61	18.62	18.64	19.00	

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

SPORTON INTERNATIONAL (XI'AN) INC.TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA622402

3. For DC-HSDPA, the device was configured according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1, with the primary and the secondary serving HS-DSCH Cell enabled during the power measurement.

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	βd (SF)	β₀/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for $\beta_{\text{e}}/\beta_{\text{d}}$ =12/15, $\beta_{\text{hs}}/\beta_{\text{e}}$ =24/15. For all other combinations of DPDCH, DPCCH and HSDPCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_o/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_o = 11/15 and β_d = 15/15.

Setup Configuration

SPORTON INTERNATIONAL (XI'AN) INC.

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting *:
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA622402

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βε	βa	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: $\Delta_{\rm ACK}$, $\Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with β_{hs} = 30/15 * β_c .
- CM = 1 for β_c/β_d =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH Note 2: and E-DPCCH the MPR is based on the relative CM difference.
- For subtest 1 the β_C/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by Note 3: setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by Note 4: setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

FCC ID: SRQ-Z320 Page 26 of 52

SPORTON INTERNATIONAL (XI'AN) INC.

DC-HSDPA 3GPP release 8 Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting: C.
 - Set RMC 12.2Kbps + HSDPA mode.
 - ii. Set Cell Power = -25 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii.
 - Select HSDPA Uplink Parameters iv.
 - Set Gain Factors $(\beta_c$ and $\beta_d)$ and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121

Report No.: FA622402

- a). Subtest 1: $\beta_c/\beta_d=2/15$ b). Subtest 2: $\beta_c/\beta_d=12/15$
- c). Subtest 3: $\beta_c/\beta_d=15/8$
- d). Subtest 4: $\beta_c/\beta_d=15/4$ Set Delta ACK, Delta NACK and Delta CQI = 8 vi.
- vii. Set Ack-Nack Repetition Factor to 3
- Set CQI Feedback Cycle (k) to 4 ms
- Set CQI Repetition Factor to 2 ix.
- Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

C.8.1.12 Fixed Reference Channel Definition H-Set 12

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value
Nominal A	Avg. Inf. Bit Rate	kbps	60
Inter-TTI	Distance	TTľs	1
Number of	of HARQ Processes	Proces	6
		ses	0
Information	on Bit Payload (N_{INF})	Bits	120
Number (Code Blocks	Blocks	1
Binary Ch	nannel Bits Per TTI	Bits	960
Total Ava	ilable SML's in UE	SML's	19200
Number of	of SML's per HARQ Proc.	SML's	3200
Coding R	ate		0.15
Number of	of Physical Channel Codes	Codes	1
Modulatio	on		QPSK
Note 1:	The RMC is intended to be used for	or DC-HSD	PA
	mode and both cells shall transmit	with identi	cal
	parameters as listed in the table.		
Note 2:	Maximum number of transmission	is limited to	o 1, i.e.,
	retransmission is not allowed. The		cy and
	constellation version 0 shall be use	ed.	

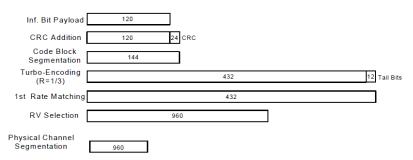


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

Setup Configuration

Form version.: 160427 FCC ID: SRQ-Z320 Page 27 of 52

<WCDMA Conducted Power>

General Note:

Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

Report No.: FA622402

Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is $\leq \frac{1}{4}$ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA.

	Band	WCDMA Band II				WCDMA Band IV				WCDMA Band V			T
T.	TX Channel		9400	9538	Tune-up Limit	1312	1413	1513	Tune-up Limit	4132	4182	4233	Tune-up
R	Rx Channel		9800	9938	(dBm)	1537	1638	1738	(dBm)	4357	4407	4458	Limit (dBm)
Freq	quency (MHz)	1852.4	1880	1907.6		1712.4	1732.6	1752.6	,	826.4	836.4	846.6	
3GPP Rel 99	AMR 12.2Kbps	23.78	23.76	23.85	24.00	23.80	23.97	23.84	24.00	23.24	23.39	23.30	24.00
3GPP Rel 99	RMC 12.2Kbps	23.81	23.80	23.86	24.00	23.81	23.98	23.85	24.00	23.25	23.41	23.31	24.00
3GPP Rel 6	HSDPA Subtest-1	22.92	22.90	22.95	23.50	22.87	22.95	22.91	23.50	22.21	22.38	22.39	23.00
3GPP Rel 6	HSDPA Subtest-2	22.96	22.91	22.99	23.50	22.89	23.00	22.94	23.50	22.20	22.39	22.44	23.00
3GPP Rel 6	HSDPA Subtest-3	22.54	22.39	22.48	23.00	22.41	22.44	22.53	23.00	21.74	21.88	21.79	22.50
3GPP Rel 6	HSDPA Subtest-4	22.57	22.43	22.51	23.00	22.43	22.46	22.60	23.00	21.75	21.92	21.87	22.50
3GPP Rel 8	DC-HSDPA Subtest-1	22.47	22.59	22.71	23.00	22.33	22.31	22.33	23.00	22.68	22.71	22.64	23.00
3GPP Rel 8	DC-HSDPA Subtest-2	22.38	22.57	22.28	23.00	22.35	22.36	22.34	23.00	22.65	22.66	22.59	23.00
3GPP Rel 8	DC-HSDPA Subtest-3	21.93	22.06	22.39	22.50	21.91	21.87	21.89	22.50	21.66	22.11	22.06	22.50
3GPP Rel 8	DC-HSDPA Subtest-4	21.98	22.10	22.40	22.50	21.96	21.83	21.82	22.50	22.25	22.16	22.06	22.50
3GPP Rel 6	HSUPA Subtest-1	22.21	22.25	22.31	22.50	22.85	22.70	22.76	23.00	21.29	21.42	21.35	22.00
3GPP Rel 6	HSUPA Subtest-2	21.86	21.88	21.99	22.50	21.42	21.31	21.40	22.00	20.60	20.76	20.65	21.00
3GPP Rel 6	HSUPA Subtest-3	20.91	20.95	20.98	21.50	21.92	21.81	21.85	22.00	20.55	20.62	20.60	21.00
3GPP Rel 6	HSUPA Subtest-4	21.16	21.18	21.25	21.50	21.70	21.64	21.66	22.00	20.35	21.46	20.43	22.00
3GPP Rel 6	HSUPA Subtest-5	21.44	21.47	21.62	22.00	21.91	21.82	21.85	22.50	21.06	21.13	21.10	22.00

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date: Jul. 15, 2016 FCC ID: SRQ-Z320 Form version.: 160427 Page 28 of 52

<LTE Conducted Power>

General Note:

 Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.

Report No. : FA622402

- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. For LTE B12 / B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

<LTE Band 2>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		18700	18900	19100	(dBm)	(dB)
	Frequenc	cy (MHz)		1860	1880	1900		
20	QPSK	1	0	22.79	22.55	22.67		
20	QPSK	1	49	22.86	22.96	22.83	23.50	0
20	QPSK	1	99	22.34	22.75	22.66		
20	QPSK	50	0	21.79	21.80	21.75		
20	QPSK	50	24	21.67	21.77	21.67	22.50	1
20	QPSK	50	50	21.61	21.68	21.74		'
20	QPSK	100	0	21.70	21.75	21.64		
20	16QAM	1	0	22.24	21.97	22.13		_
20	16QAM	1	49	21.83	22.01	21.79	22.50	1
20	16QAM	1	99	21.73	22.02	21.91		
20	16QAM	50	0	20.83	20.57	20.78		2
20	16QAM	50	24	20.58	20.66	20.67	21.50	
20	16QAM	50	50	20.63	20.58	20.70		
20	16QAM	100	0	20.66	20.55	20.68		
	Cha	nnel		18675	18900	19125	Tune-up	MPR
	Frequenc	cy (MHz)		1857.5	1880	1902.5	limit (dBm)	(dB)
15	QPSK	1	0	22.71	22.68	22.70		
15	QPSK	1	37	22.94	22.71	22.43	23.50	0
15	QPSK	1	74	22.65	22.62	22.49		
15	QPSK	36	0	21.83	21.72	21.58		
15	QPSK	36	20	21.68	21.78	21.62	00.50	_
15	QPSK	36	39	21.60	21.62	21.64	22.50	1
15	QPSK	75	0	21.67	21.63	21.57		
15	16QAM	1	0	21.97	21.96	22.13		
15	16QAM	1	37	21.76	21.86	21.94	22.50	1
15	16QAM	1	74	21.52	21.92	22.06		
15	16QAM	36	0	20.58	20.65	20.58		
15	16QAM	36	20	20.42	20.77	20.61	04.50	
15	16QAM	36	39	20.52	20.63	20.74	21.50	2
15	16QAM	75	0	20.68	20.55	20.57		

Report No.: FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 30 of 52

	Cha	nnel		18650	18900	19150	Tune-up	MPR
	Frequenc	cy (MHz)		1855	1880	1905	limit (dBm)	(dB)
10	QPSK	1	0	22.74	22.37	22.70		
10	QPSK	1	25	22.88	22.66	22.80	23.50	0
10	QPSK	1	49	22.58	22.56	22.56		
10	QPSK	25	0	21.75	21.76	21.62		
10	QPSK	25	12	21.83	21.81	21.75	00.50	4
10	QPSK	25	25	21.71	21.75	21.64	22.50	1
10	QPSK	50	0	21.83	21.72	21.68		
10	16QAM	1	0	22.04	21.87	21.97		
10	16QAM	1	25	22.11	21.97	22.07	22.50	1
10	16QAM	1	49	21.79	21.86	22.05		
10	16QAM	25	0	20.71	20.58	20.62		
10	16QAM	25	12	20.79	20.62	20.78	21.50	2
10	16QAM	25	25	20.65	20.57	20.67	21.50	۷
10	16QAM	50	0	20.76	20.61	20.69		
	Cha	nnel		18625	18900	19175	Tune-up limit	MPR
	Frequenc	cy (MHz)		1852.5	1880	1907.5	(dBm)	(dB)
5	QPSK	1	0	22.67	22.57	22.69		
5	QPSK	1	12	23.00	22.89	22.83	23.50	0
5	QPSK	1	24	22.77	22.59	22.62		
5	QPSK	12	0	21.70	21.64	21.65		
5	QPSK	12	7	21.63	21.71	21.64	22.50	1
5	QPSK	12	13	21.69	21.80	21.70	22.30	'
5	QPSK	25	0	21.69	21.71	21.67		
5	16QAM	1	0	22.07	21.84	22.03		
5	16QAM	1	12	22.08	21.98	21.95	22.50	1
5	16QAM	1	24	22.06	21.90	21.97		
5	16QAM	12	0	20.69	20.59	20.67		
5	16QAM	12	7	20.63	20.64	20.74	21.50	2
5	16QAM	12	13	20.67	20.71	20.74	21.50	2
5	16QAM	25	0	20.74	20.70	20.84		

Report No. : FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 31 of 52

	Cha	nnel		18615	18900	19185	Tune-up	MPR
	Frequen	cy (MHz)		1851.5	1880	1908.5	limit (dBm)	(dB)
3	QPSK	1	0	22.84	22.82	22.66		
3	QPSK	1	8	22.74	22.70	22.50	23.50	0
3	QPSK	1	14	22.78	22.51	22.56		
3	QPSK	8	0	21.83	21.78	21.67		
3	QPSK	8	4	21.82	21.73	21.74	22.50	1
3	QPSK	8	7	21.83	21.79	21.71	22.50	
3	QPSK	15	0	21.74	21.63	21.65		
3	16QAM	1	0	22.08	22.03	22.01		
3	16QAM	1	8	21.82	21.95	21.94	22.50	1
3	16QAM	1	14	22.07	22.03	21.99		
3	16QAM	8	0	20.83	20.89	20.74		
3	16QAM	8	4	20.85	20.69	20.73	01.50	2
3	16QAM	8	7	20.84	20.64	20.89	21.50	2
3	16QAM	15	0	20.77	20.65	20.78		
	Cha	nnel		18607	18900	19193	Tune-up	MPR
	Frequen	cy (MHz)		1850.7	1880	1909.3	limit (dBm)	(dB)
1.4	QPSK	1	0	22.70	22.59	22.58		
1.4	QPSK	1	3	22.75	22.66	22.54		
1.4	QPSK	1	5	22.71	22.64	22.41	23.50	0
1.4	QPSK	3	0	22.67	22.66	22.66	23.50	0
1.4	QPSK	3	1	22.71	22.61	22.64		
1.4	QPSK	3	3	22.69	22.71	22.56		
1.4	QPSK	6	0	21.66	21.63	21.66	22.50	1
1.4	16QAM	1	0	22.05	22.00	21.72		
1.4	16QAM	1	3	22.03	22.09	22.10		
1.4	16QAM	1	5	22.06	21.98	21.73	22.50	1
1.4	16QAM	3	0	22.01	21.99	22.05	22.50	
1.4	16QAM	3	1	22.03	22.04	21.89		
1.4	16QAM	3	3	21.98	22.03	22.02		
1.4	16QAM	6	0	20.73	20.71	20.58	21.50	2

Report No.: FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 32 of 52

<LTE Band 4>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20050	20175	20300	(dBm)	(dB)
	Frequen	cy (MHz)		1720	1732.5	1745		
20	QPSK	1	0	23.35	23.36	23.24		
20	QPSK	1	49	22.91	22.95	22.91	24.00	0
20	QPSK	1	99	22.94	23.08	23.05		
20	QPSK	50	0	21.94	22.02	21.96		
20	QPSK	50	24	21.85	21.93	21.75	23.00	
20	QPSK	50	50	21.85	21.93	21.78	23.00	1
20	QPSK	100	0	21.90	21.92	21.91		
20	16QAM	1	0	22.97	22.63	22.48		
20	16QAM	1	49	21.83	21.73	21.77	23.00	1
20	16QAM	1	99	22.19	22.19	22.18		
20	16QAM	50	0	20.87	21.06	20.90		2
20	16QAM	50	24	20.79	20.86	20.71	22.00	
20	16QAM	50	50	20.81	20.84	20.73		
20	16QAM	100	0	20.98	20.96	20.90		
	Cha	nnel		20025	20175	20325	Tune-up	MPR
	Frequen	cy (MHz)		1717.5	1732.5	1747.5	limit (dBm)	(dB)
15	QPSK	1	0	23.32	23.27	23.20		
15	QPSK	1	37	22.82	22.92	22.74	24.00	0
15	QPSK	1	74	22.91	23.06	22.96		
15	QPSK	36	0	21.95	22.01	22.05		
15	QPSK	36	20	21.89	21.92	21.76	00.00	
15	QPSK	36	39	21.98	21.94	21.78	23.00	1
15	QPSK	75	0	21.95	22.01	21.83		
15	16QAM	1	0	22.58	22.56	22.59		
15	16QAM	1	37	22.00	21.69	21.52	23.00	1
15	16QAM	1	74	22.35	22.26	22.34		
15	16QAM	36	0	20.98	21.05	20.99		
15	16QAM	36	20	20.75	20.97	20.80	22.00	0
15	16QAM	36	39	20.95	20.91	20.81	22.00	2
15	16QAM	75	0	20.89	21.05	20.77		

Report No. : FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 33 of 52

	Cha	nnel		20000	20175	20350	Tune-up	MPR
	Frequenc	cy (MHz)		1715	1732.5	1750	limit (dBm)	(dB)
10	QPSK	1	0	23.16	23.09	22.97		
10	QPSK	1	25	22.84	22.94	22.89	24.00	0
10	QPSK	1	49	22.96	22.80	23.15		
10	QPSK	25	0	22.05	21.96	21.86		
10	QPSK	25	12	21.95	21.92	21.80	00.00	4
10	QPSK	25	25	21.93	21.97	21.90	23.00	1
10	QPSK	50	0	21.89	21.92	21.82		
10	16QAM	1	0	22.40	22.27	22.27		
10	16QAM	1	25	21.95	21.99	21.77	23.00	1
10	16QAM	1	49	22.28	22.11	22.37		
10	16QAM	25	0	20.99	21.09	20.83		
10	16QAM	25	12	20.88	20.98	20.76	22.00	2
10	16QAM	25	25	20.87	21.13	20.85	22.00	
10	16QAM	50	0	20.94	20.90	20.75		
	Cha	nnel		19975	20175	20375	Tune-up	MPR
	Frequenc	cy (MHz)		1712.5	1732.5	1752.5	limit (dBm)	(dB)
5	QPSK	1	0	23.09	23.06	23.08		
5	QPSK	1	12	23.24	23.18	23.01	24.00	0
5	QPSK	1	24	22.96	23.00	23.18		
5	QPSK	12	0	21.92	22.00	21.99		
5	QPSK	12	7	22.09	21.88	21.78	23.00	1
5	QPSK	12	13	21.93	21.89	22.05	23.00	
5	QPSK	25	0	21.97	22.02	21.92		
5	16QAM	1	0	22.71	22.34	22.34		
5	16QAM	1	12	21.79	21.65	21.98	23.00	1
5	16QAM	1	24	22.13	22.32	22.27		
5	16QAM	12	0	20.97	20.95	20.82		
5	16QAM	12	7	20.78	20.82	20.79	22.00	2
5	16QAM	12	13	20.89	20.92	20.99	22.00	2
5	16QAM	25	0	20.84	20.82	20.74		

Report No. : FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 34 of 52

	Cha	nnel		19965	20175	20385	Tune-up	MPR
	Frequen	cy (MHz)		1711.5	1732.5	1753.5	limit (dBm)	(dB)
3	QPSK	1	0	23.04	22.86	23.18		
3	QPSK	1	8	22.95	22.92	22.80	24.00	0
3	QPSK	1	14	22.95	22.90	23.04		
3	QPSK	8	0	22.03	21.99	21.81		
3	QPSK	8	4	21.97	22.01	21.86	00.00	4
3	QPSK	8	7	21.99	22.02	21.90	23.00	1
3	QPSK	15	0	21.96	22.02	21.87		
3	16QAM	1	0	22.65	22.47	22.41		1
3	16QAM	1	8	22.04	21.72	22.19	23.00	
3	16QAM	1	14	22.21	22.33	22.42		
3	16QAM	8	0	20.78	20.90	20.79		
3	16QAM	8	4	20.88	20.92	20.94	20.00	2
3	16QAM	8	7	20.84	20.93	20.82	22.00	2
3	16QAM	15	0	21.12	20.70	20.69		
	Cha	nnel		19957	20175	20393	Tune-up	MPR
	Frequen	cy (MHz)		1710.7	1732.5	1754.3	limit (dBm)	(dB)
1.4	QPSK	1	0	22.88	22.92	22.80		
1.4	QPSK	1	3	22.89	22.88	22.91		
1.4	QPSK	1	5	22.89	22.81	22.84	24.00	0
1.4	QPSK	3	0	22.91	22.98	22.86	24.00	U
1.4	QPSK	3	1	22.95	23.10	22.95		
1.4	QPSK	3	3	22.93	23.08	22.94		
1.4	QPSK	6	0	21.89	22.01	21.94	23.00	1
1.4	16QAM	1	0	22.09	21.94	21.90		
1.4	16QAM	1	3	22.00	22.02	22.03		
1.4	16QAM	1	5	22.09	21.49	22.03	23.00	1
1.4	16QAM	3	0	21.69	21.80	22.06	23.00	1
1.4	16QAM	3	1	21.72	22.11	22.09		
1.4	16QAM	3	3	22.21	21.97	21.92		
1.4	16QAM	6	0	20.80	20.75	20.85	22.00	2

Report No.: FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 35 of 52

<LTE Band 12>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		23060	23095	23130	(dBm)	(dB)
	Frequen	cy (MHz)		704	707.5	711		
10	QPSK	1	0	23.80	23.86	24.04		
10	QPSK	1	25	23.99	24.06	24.10	24.50	0
10	QPSK	1	49	23.86	23.78	24.08		
10	QPSK	25	0	22.71	22.79	22.96		
10	QPSK	25	12	22.85	22.83	22.97	00.50	4
10	QPSK	25	25	22.86	22.81	22.96	23.50	1
10	QPSK	50	0	22.84	22.89	22.98		
10	16QAM	1	0	23.02	23.10	23.31		
10	16QAM	1	25	22.98	23.08	23.39	23.50	1
10	16QAM	1	49	23.21	23.08	23.38		
10	16QAM	25	0	21.80	21.79	22.16		2
10	16QAM	25	12	21.96	21.86	22.05	22.50	
10	16QAM	25	25	21.96	21.84	22.19		
10	16QAM	50	0	21.94	21.93	22.02		
	Cha	nnel		23035	23095	23155	Tune-up	MPR
	Frequen	cy (MHz)		701.5	707.5	713.5	limit (dBm)	(dB)
5	QPSK	1	0	23.79	23.87	23.75		
5	QPSK	1	12	24.10	24.13	24.01	24.50	0
5	QPSK	1	24	23.83	23.86	24.02		
5	QPSK	12	0	22.71	22.91	22.96		
5	QPSK	12	7	22.78	22.96	22.92	00.50	
5	QPSK	12	13	22.91	22.88	22.73	23.50	1
5	QPSK	25	0	22.83	22.77	22.93		
5	16QAM	1	0	23.01	23.24	23.23		
5	16QAM	1	12	23.12	23.33	23.29	23.50	1
5	16QAM	1	24	23.21	23.05	23.28		
5	16QAM	12	0	21.75	21.94	22.01		
5	16QAM	12	7	21.75	22.08	22.01	00.50	0
5	16QAM	12	13	21.95	21.86	22.07	22.50	2
5	16QAM	25	0	22.00	22.00	22.08		

Report No.: FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 36 of 52

SPORTON LAB. FCC SAR Test Report

	Cha	nnel		23025	23095	23165	Tune-up	MPR
	Frequenc	cy (MHz)		700.5	707.5	714.5	limit (dBm)	(dB)
3	QPSK	1	0	23.89	24.04	23.91		
3	QPSK	1	8	23.82	23.82	23.92	24.50	0
3	QPSK	1	14	23.81	23.82	23.95		
3	QPSK	8	0	22.88	23.00	22.91		
3	QPSK	8	4	22.89	22.98	22.93	00.50	
3	QPSK	8	7	22.93	23.01	22.84	23.50	1
3	QPSK	15	0	22.86	23.05	22.91		
3	16QAM	1	0	23.08	23.21	23.19		
3	16QAM	1	8	23.15	23.24	23.16	23.50	1
3	16QAM	1	14	22.99	23.18	23.16		
3	16QAM	8	0	21.91	21.98	22.02		
3	16QAM	8	4	22.15	22.15	22.09	22.50	2
3	16QAM	8	7	22.18	22.08	22.00	22.50	۷
3	16QAM	15	0	22.10	21.91	22.03		
	Cha	nnel		23017	23095	23173	Tune-up	MPR
	Frequenc	cy (MHz)		699.7	707.5	715.3	limit (dBm)	(dB)
1.4	QPSK	1	0	23.84	23.88	23.86		
1.4	QPSK	1	3	23.72	23.98	23.85		
1.4	QPSK	1	5	23.69	23.78	23.81	24.50	0
1.4	QPSK	3	0	23.71	23.92	23.99	24.50	U
1.4	QPSK	3	1	23.78	24.03	24.05		
1.4	QPSK	3	3	23.85	24.02	24.02		
1.4	QPSK	6	0	22.80	22.99	22.94	23.50	1
1.4	16QAM	1	0	23.04	23.40	23.19		
1.4	16QAM	1	3	23.03	23.42	23.19		
1.4	16QAM	1	5	22.92	23.14	23.08	23.50	1
1.4	16QAM	3	0	23.05	23.15	23.11	20.00	
1.4	16QAM	3	1	23.08	23.25	23.15		
1.4	16QAM	3	3	23.00	23.26	23.23		
1.4	16QAM	6	0	21.82	21.98	21.78	22.50	2

Report No.: FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 37 of 52

13. Bluetooth Exclusions Applied

Mode Band	Average power(dBm)						
IVIOGE DATIG	Bluetooth v3.0+EDR	Bluetooth v4.0 LE					
2.4GHz Bluetooth	9.5	9.5					

Report No. : FA622402

Note:

1. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

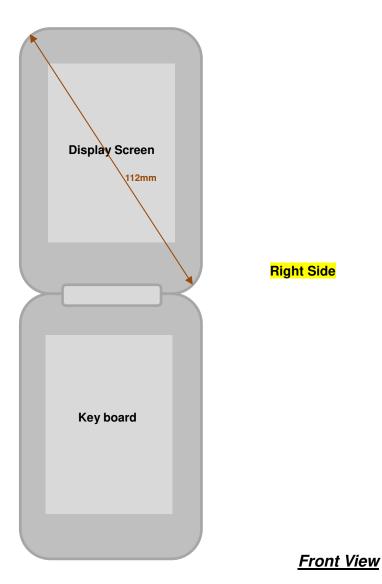
[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
 - The result is rounded to one decimal place for comparison

Bluetooth Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
9.5	15	2.48	0.9

Note:

Per KDB 447498 D01v06, the test exclusion threshold is 0.9 which is <= 3, SAR testing is not required.


SPORTON INTERNATIONAL (XI'AN) INC.

14. Antenna Location

<Flip-Open Mode>

Left Side

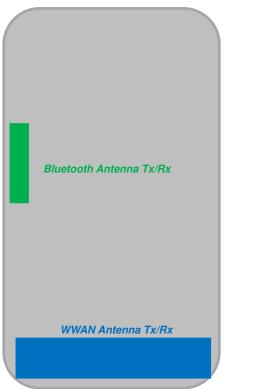
Top Side

Length: 107 mm Width: 55 mm

Bottom Side

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

FCC ID: SRQ-Z320 Page 39 of 52 Form


Issued Date : Jul. 15, 2016 Form version. : 160427

Report No. : FA622402

Right Side

<Flip-Close Mode>

Top Side

Left Side

Report No.: FA622402

Back View

Bottom Side

Page 40 of 52

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

FCC ID: SRQ-Z320

Issued Date : Jul. 15, 2016 Form version. : 160427

15. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No. : FA622402

- b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.

GSM Note:

- 1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (2Tx slots) for GSM850 and GPRS (3Tx slots) for GSM1900 are considered as the primary mode.
- Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ 1/4 dB higher than the primary mode, SAR measurement is not required for the secondary mode.

UMTS Note:

SPORTON INTERNATIONAL (XI'AN) INC.

- 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA.

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 15, 2016

FCC ID: SRQ-Z320 Page 41 of 52 Form version.: 160427

SPORTON LAB. FCC SAR Test Report

LTE Note:

 Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.

Report No. : FA622402

- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 6. For LTE B12 / B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

15.1 Head SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Flip Configuration	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	GSM850	GPRS (2 Tx slots)	Right Cheek	Open	0mm	128	824.2	30.70	31.00	1.072	0.02	0.605	0.648
	GSM850	GPRS (2 Tx slots)	Right Tilted	Open	0mm	128	824.2	30.70	31.00	1.072	-0.01	0.245	0.263
	GSM850	GPRS (2 Tx slots)	Left Cheek	Open	0mm	128	824.2	30.70	31.00	1.072	0.03	0.585	0.627
	GSM850	GPRS (2 Tx slots)	Left Tilted	Open	0mm	128	824.2	30.70	31.00	1.072	-0.03	0.246	0.264
	GSM1900	GPRS (3 Tx slots)	Right Cheek	Open	0mm	810	1909.8	26.73	27.00	1.064	0.02	0.231	0.246
	GSM1900	GPRS (3 Tx slots)	Right Tilted	Open	0mm	810	1909.8	26.73	27.00	1.064	-0.13	0.095	0.101
	GSM1900	GPRS (3 Tx slots)	Left Cheek	Open	0mm	810	1909.8	26.73	27.00	1.064	0	n.a	n.a
	GSM1900	GPRS (3 Tx slots)	Left Tilted	Open	0mm	810	1909.8	26.73	27.00	1.064	0.14	0.100	0.106
02	GSM1900	GPRS (3 Tx slots)	SAR at Mouth Area	Open	10mm	810	1909.8	26.73	27.00	1.064	-0.01	0.506	<mark>0.538</mark>

Report No. : FA622402

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Flip Configuration	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
03	WCDMA Band V	RMC 12.2Kbps	Right Cheek	Open	0mm	4182	836.4	23.41	24.00	1.146	0.06	0.530	0.607
	WCDMA Band V	RMC 12.2Kbps	Right Tilted	Open	0mm	4182	836.4	23.41	24.00	1.146	0.02	0.218	0.250
	WCDMA Band V	RMC 12.2Kbps	Left Cheek	Open	0mm	4182	836.4	23.41	24.00	1.146	0.03	0.512	0.587
	WCDMA Band V	RMC 12.2Kbps	Left Tilted	Open	0mm	4182	836.4	23.41	24.00	1.146	-0.07	0.224	0.257
	WCDMA Band IV	RMC 12.2Kbps	Right Cheek	Open	0mm	1413	1732.6	23.98	24.00	1.005	0.03	0.317	0.318
	WCDMA Band IV	RMC 12.2Kbps	Right Tilted	Open	0mm	1413	1732.6	23.98	24.00	1.005	-0.06	0.250	0.251
04	WCDMA Band IV	RMC 12.2Kbps	Left Cheek	Open	0mm	1413	1732.6	23.98	24.00	1.005	0.14	0.336	<mark>0.338</mark>
	WCDMA Band IV	RMC 12.2Kbps	Left Tilted	Open	0mm	1413	1732.6	23.98	24.00	1.005	-0.08	0.294	0.295
	WCDMA Band II	RMC 12.2Kbps	Right Cheek	Open	0mm	9538	1907.6	23.86	24.00	1.033	-0.11	0.318	0.328
	WCDMA Band II	RMC 12.2Kbps	Right Tilted	Open	0mm	9538	1907.6	23.86	24.00	1.033	-0.13	0.129	0.133
	WCDMA Band II	RMC 12.2Kbps	Left Cheek	Open	0mm	9538	1907.6	23.86	24.00	1.033	0	n.a	n.a
	WCDMA Band II	RMC 12.2Kbps	Left Tilted	Open	0mm	9538	1907.6	23.86	24.00	1.033	-0.07	0.132	0.136
05	WCDMA Band II	RMC 12.2Kbps	SAR at Mouth Area	Open	10mm	9538	1907.6	23.86	24.00	1.033	-0.04	0.701	<mark>0.724</mark>

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 43 of 52

<LTE SAR>

Plot No.	Band	BW (MHz)	RB Size	RB offset	Test Position	Flip Configuration	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 12	10M	1RB	25offset	Right Cheek	Open	0mm	23095	707.5	24.06	24.50	1.107	-0.13	0.074	0.082
	LTE Band 12	10M	1RB	25offset	Right Tilted	Open	0mm	23095	707.5	24.06	24.50	1.107	0.11	0.070	0.077
06	LTE Band 12	10M	1RB	25offset	Left Cheek	Open	0mm	23095	707.5	24.06	24.50	1.107	0.06	0.216	0.239
	LTE Band 12	10M	1RB	25offset	Left Tilted	Open	0mm	23095	707.5	24.06	24.50	1.107	0.09	0.068	0.075
	LTE Band 12	10M	25RB	12offset	Right Cheek	Open	0mm	23095	707.5	22.83	23.50	1.167	0.1	0.067	0.078
	LTE Band 12	10M	25RB	12offset	Right Tilted	Open	0mm	23095	707.5	22.83	23.50	1.167	-0.02	0.020	0.023
	LTE Band 12	10M	25RB	12offset	Left Cheek	Open	0mm	23095	707.5	22.83	23.50	1.167	0.08	0.205	0.239
	LTE Band 12	10M	25RB	12offset	Left Tilted	Open	0mm	23095	707.5	22.83	23.50	1.167	0.14	0.050	0.058
07	LTE Band 4	20M	1RB	0offset	Right Cheek	Open	0mm	20175	1732.5	23.36	24.00	1.159	-0.06	0.268	0.311
	LTE Band 4	20M	1RB	0offset	Right Tilted	Open	0mm	20175	1732.5	23.36	24.00	1.159	0.1	0.174	0.202
	LTE Band 4	20M	1RB	0offset	Left Cheek	Open	0mm	20175	1732.5	23.36	24.00	1.159	0.03	0.228	0.264
	LTE Band 4	20M	1RB	0offset	Left Tilted	Open	0mm	20175	1732.5	23.36	24.00	1.159	0.17	0.183	0.212
	LTE Band 4	20M	50RB	0offset	Right Cheek	Open	0mm	20175	1732.5	22.02	23.00	1.253	0.02	0.193	0.242
	LTE Band 4	20M	50RB	0offset	Right Tilted	Open	0mm	20175	1732.5	22.02	23.00	1.253	-0.06	0.128	0.160
	LTE Band 4	20M	50RB	0offset	Left Cheek	Open	0mm	20175	1732.5	22.02	23.00	1.253	0.05	0.165	0.207
	LTE Band 4	20M	50RB	0offset	Left Tilted	Open	0mm	20175	1732.5	22.02	23.00	1.253	-0.19	0.134	0.168

Report No.: FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 44 of 52

Plot No.	Band	BW (MHz)	RB Size	RB offset	Test Position	Flip Configuration	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 2	20M	1RB	49offset	Right Cheek	Open	0mm	18900	1880	22.96	23.50	1.132	0.07	0.258	0.292
	LTE Band 2	20M	1RB	49offset	Right Tilted	Open	0mm	18900	1880	22.96	23.50	1.132	-0.02	0.126	0.143
	LTE Band 2	20M	1RB	49offset	Left Cheek	Open	0mm	18900	1880	22.96	23.50	1.132	0	n.a	n.a
	LTE Band 2	20M	1RB	49offset	Left Tilted	Open	0mm	18900	1880	22.96	23.50	1.132	-0.05	0.137	0.155
08	LTE Band 2	20M	1RB	49offset	SAR at Mouth Area	Open	10mm	18900	1880	22.96	23.50	1.132	0.06	0.662	<mark>0.750</mark>
	LTE Band 2	20M	50RB	0offset	Right Cheek	Open	0mm	18900	1880	21.80	22.50	1.175	-0.04	0.192	0.226
	LTE Band 2	20M	50RB	0offset	Right Tilted	Open	0mm	18900	1880	21.80	22.50	1.175	-0.02	0.096	0.113
	LTE Band 2	20M	50RB	0offset	Left Cheek	Open	0mm	18900	1880	21.80	22.50	1.175	0	n.a	n.a
	LTE Band 2	20M	50RB	0offset	Left Tilted	Open	0mm	18900	1880	21.80	22.50	1.175	-0.04	0.108	0.127
	LTE Band 2	20M	50RB	0offset	SAR at Mouth Area	Open	10mm	18900	1880	21.80	22.50	1.175	0.05	0.519	0.610

Report No. : FA622402

Note:

- "n.a" stands for there is no full 1g SAR cube for antenna is located near the bottom and the measured head SAR distribution was clipped.
- The device antenna is located near the bottom and the measured head SAR distribution was clipped. According to KDB 648474 D04 v01r03 section 10, EUT was positioned under the flat phantom with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell, the low bottom of the phone was lowered from the phantom to establish the same separation distance at the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone was determined by the straight line passing perpendicularly through the phantom surface. The procedure to determine the separation for EUT positioning under the flat phantom is illustrated in the SAR test setup photo exhibit.

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date: Jul. 15, 2016 Form version.: 160427 FCC ID: SRQ-Z320 Page 45 of 52

15.2 Body Worn Accessory SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Flip Configuration	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS (2 Tx slots)	Front	Close	15mm	128	824.2	30.70	31.00	1.072	-0.18	0.266	0.285
09	GSM850	GPRS (2 Tx slots)	Back	Close	15mm	128	824.2	30.70	31.00	1.072	0.03	0.777	0.833
	GSM850	GPRS (2 Tx slots)	Back	Close	15mm	189	836.4	30.67	31.00	1.079	0.06	0.581	0.627
	GSM850	GPRS (2 Tx slots)	Back	Close	15mm	251	848.8	30.45	31.00	1.135	-0.03	0.450	0.511
	GSM1900	GPRS (3 Tx slots)	Front	Close	15mm	810	1909.8	26.73	27.00	1.064	-0.07	0.216	0.230
10	GSM1900	GPRS (3 Tx slots)	Back	Close	15mm	810	1909.8	26.73	27.00	1.064	-0.06	0.453	0.482

Report No.: FA622402

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Flip Configuration	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA Band V	RMC 12.2Kbps	Front	Close	15mm	4182	836.4	23.41	24.00	1.146	-0.12	0.150	0.172
11	WCDMA Band V	RMC 12.2Kbps	Back	Close	15mm	4182	836.4	23.41	24.00	1.146	0.06	0.497	<mark>0.569</mark>
	WCDMA Band IV	RMC 12.2Kbps	Front	Close	15mm	1413	1732.6	23.98	24.00	1.005	-0.02	0.369	0.371
12	WCDMA Band IV	RMC 12.2Kbps	Back	Close	15mm	1413	1732.6	23.98	24.00	1.005	0.09	0.557	<mark>0.560</mark>
	WCDMA Band II	RMC 12.2Kbps	Front	Close	15mm	9538	1907.6	23.86	24.00	1.033	-0.09	0.298	0.308
13	WCDMA Band II	RMC 12.2Kbps	Back	Close	15mm	9538	1907.6	23.86	24.00	1.033	-0.1	0.551	0.569

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 46 of 52

SPORTON LAB. FCC SAR Test Report

<LTE SAR>

Plot No.	Band	BW (MHz)	RB Size	RB offset	Test Position	Flip Configuration	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 12	10M	1RB	25offset	Front	Close	15mm	23095	707.5	24.06	24.50	1.107	-0.05	0.051	0.056
14	LTE Band 12	10M	1RB	25offset	Back	Close	15mm	23095	707.5	24.06	24.50	1.107	0.19	0.149	<mark>0.165</mark>
	LTE Band 12	10M	25RB	12offset	Front	Close	15mm	23095	707.5	22.83	23.50	1.167	0.05	0.048	0.056
	LTE Band 12	10M	25RB	12offset	Back	Close	15mm	23095	707.5	22.83	23.50	1.167	0.03	0.107	0.125
	LTE Band 4	20M	1RB	0offset	Front	Close	15mm	20175	1732.5	23.36	24.00	1.159	-0.04	0.315	0.365
15	LTE Band 4	20M	1RB	0offset	Back	Close	15mm	20175	1732.5	23.36	24.00	1.159	0.07	0.544	0.630
	LTE Band 4	20M	50RB	0offset	Front	Close	15mm	20175	1732.5	22.02	23.00	1.253	-0.08	0.245	0.307
	LTE Band 4	20M	50RB	0offset	Back	Close	15mm	20175	1732.5	22.02	23.00	1.253	-0.04	0.416	0.521
	LTE Band 2	20M	1RB	49offset	Front	Close	15mm	18900	1880	22.96	23.50	1.132	-0.14	0.258	0.292
16	LTE Band 2	20M	1RB	49offset	Back	Close	15mm	18900	1880	22.96	23.50	1.132	-0.02	0.510	0.578
	LTE Band 2	20M	50RB	0offset	Front	Close	15mm	18900	1880	21.80	22.50	1.175	-0.15	0.174	0.204
	LTE Band 2	20M	50RB	0offset	Back	Close	15mm	18900	1880	21.80	22.50	1.175	0.12	0.375	0.441

Report No.: FA622402

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 47 of 52

16. Simultaneous Transmission Analysis

NO.	Cimultanasus Transmissian Configurations	Mobile	e Phone	Note
NO.	Simultaneous Transmission Configurations	Head	Body	Note
1.	GSM (Voice) + Bluetooth		Yes	
2.	WCDMA (Voice)+ Bluetooth		Yes	
3.	LTE (Voice) + Bluetooth		Yes	
4.	GPRS/EDGE(Data) + Bluetooth		Yes	WWAN VoIP
5.	WCDMA(Data) + Bluetooth		Yes	WWAN VoIP
6.	LTE(Data) + Bluetooth		Yes	WWAN VoIP

Report No. : FA622402

General Note:

- This device supported VoIP in GPRS, EGPRS, WCDMA and LTE (e.g. 3rd party VoIP).
- 2. The Scaled SAR summation is calculated based on the same configuration and test position.
- 3. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.

SPORTON INTERNATIONAL (XI'AN) INC.

- ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
- iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
- iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
- For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula below.
 - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Bluetooth	Exposure Position	Body worn
Max Power	Test separation	15 mm
9.5 dBm	Estimated SAR (W/kg)	0.126 W/kg

16.1 Body-Worn Accessory Exposure Conditions

WWAN Band			1	2		
		Exposure Position	WWAN	Bluetooth	1+2 Summed	
			1g SAR (W/kg)	Estimated 1g SAR (W/kg)	1g SAR (W/kg)	
	GSM850	Front	0.285	0.126	0.41	
GSM		Back	0.833	0.126	<mark>0.96</mark>	
GSM	GSM1900	Front	0.230	0.126	0.36	
	G3W1900	Back	0.482	0.126	0.61	
WCDMA	Band V	Front	0.172	0.126	0.30	
		Back	0.569	0.126	0.70	
	Band IV	Front	0.371	0.126	0.50	
		Back	0.560	0.126	0.69	
	Band II	Front	0.308	0.126	0.43	
		Back	0.569	0.126	0.70	
LTE	Band 12	Front	0.056	0.126	0.18	
	Band 12	Back	0.165	0.126	0.29	
	Band 4	Front	0.365	0.126	0.49	
		Back	0.630	0.126	0.76	
	Band 2	Front	0.292	0.126	0.42	
		Back	0.578	0.126	0.70	

Report No. : FA622402

Test Engineer: Kat Yin

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 49 of 52

17. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA622402

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 17.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)
Measurement System							
Probe Calibration	6.0	N	1	1	1	6.0	6.0
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6
Linearity	4.7	R	1.732	1	1	2.7	2.7
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6
Modulation Response	3.2	R	1.732	1	1	1.8	1.8
Readout Electronics	0.3	N	1	1	1	0.3	0.3
Response Time	0.0	R	1.732	1	1	0.0	0.0
Integration Time	2.6	R	1.732	1	1	1.5	1.5
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2
Probe Positioning	2.9	R	1.732	1	1	1.7	1.7
Max. SAR Eval.	2.0	R	1.732	1	1	1.2	1.2
Test Sample Related							
Device Positioning	3.0	N	1	1	1	3.0	3.0
Device Holder	3.6	N	1	1	1	3.6	3.6
Power Drift	5.0	R	1.732	1	1	2.9	2.9
Power Scaling	0.0	R	1.732	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty	6.1	R	1.732	1	1	3.5	3.5
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0
Liquid Conductivity Repeatability	0.2	N	1	0.78	0.71	0.1	0.1
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4
Liquid Permittivity Repeatability	0.15	N	1	0.23	0.26	0.0	0.0
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1
Combined Std. Uncertainty							11.4%
Coverage Factor for 95 %							K=2
Expanded STD Uncertainty							22.7%

Report No.: FA622402

Table 17.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791

Issued Date : Jul. 15, 2016 Form version. : 160427 FCC ID: SRQ-Z320 Page 51 of 52

18. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA622402

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [6] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [7] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [9] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [10] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

FCC ID : SRQ-Z320 Page 52 of 52 Form version. : 160427

Appendix A. Plots of System Performance Check

Report No.: FA622402

The plots are shown as follows.

SPORTON INTERNATIONAL (XI'AN) INC.

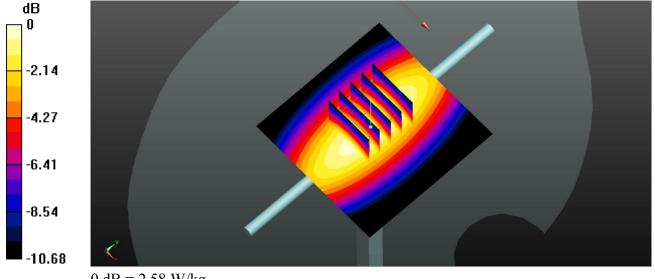
System Check Head 750MHz 20160627

DUT: D750V3-SN:1087

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: HSL 750 2016/06/27 Medium parameters used: f = 750 MHz; $\sigma = 0.891$ S/m; $\varepsilon_r = 42.417$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.5°C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.72, 10.72, 10.72); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.56 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.51 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.03 W/kgSAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.33 W/kg

Maximum value of SAR (measured) = 2.58 W/kg

0 dB = 2.58 W/kg

System Check_Head_835MHz 20160701

DUT: D835V2-SN:4d151

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

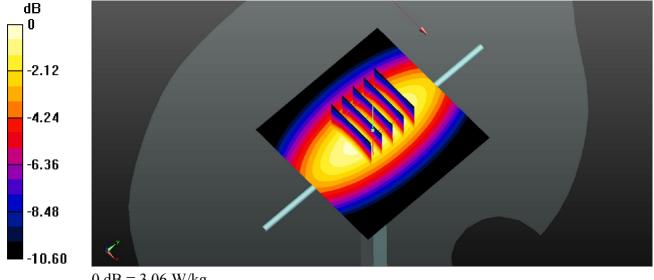
Medium: HSL 835 2016/07/01 Medium parameters used: f = 835 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 41.959$; ρ

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.15, 10.15, 10.15); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.07 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.59 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.06 W/kg

0 dB = 3.06 W/kg

System Check Head 1750MHz 20160626

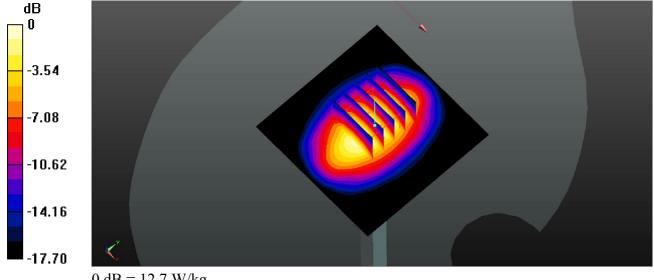
DUT: D1750V2-SN:1090

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: HSL 1750 2016/06/26 Medium parameters used: f = 1750 MHz; $\sigma = 1.352$ S/m; $\varepsilon_r =$

40.879: $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.4 °C; Liquid Temperature : 22.3 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.69, 8.69, 8.69); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.0 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 98.93 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.78 W/kgMaximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg

System Check Head 1900MHz 20160630

DUT: D1900V2-SN:5d170

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

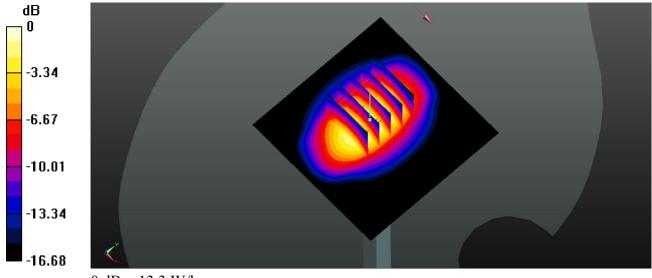
Medium: HSL_1900_2016/06/30 Medium parameters used: f = 1900 MHz; $\sigma = 1.445$ S/m; $\varepsilon_r =$

40.117; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.4 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.37, 8.37, 8.37); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.83 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 9.59 W/kg; SAR(10 g) = 5.14 W/kg

Maximum value of SAR (measured) = 13.3 W/kg

0 dB = 13.3 W/kg

System Check Body 750MHz 20160626

DUT: D750V3-SN:1087

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

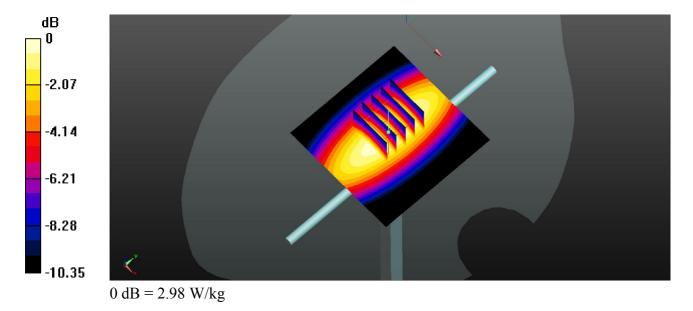
Medium: MSL_750_2016/06/26 Medium parameters used: f = 750 MHz; σ = 0.977 S/m; $ε_r = 53.884$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.59, 10.59, 10.59); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.98 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.77 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.98 W/kg

System Check Body 835MHz 20160626

DUT: D835V2-SN:4d151

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

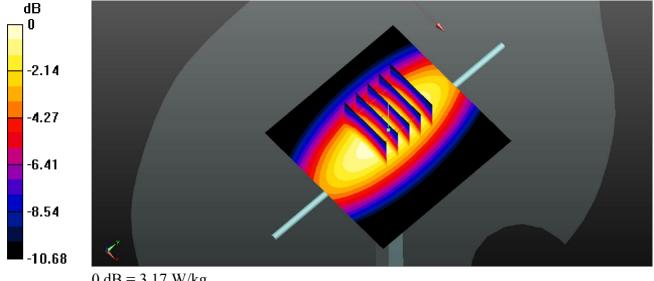
Medium: MSL 835 2016/06/26 Medium parameters used: f = 835 MHz; $\sigma = 0.994$ S/m; $\varepsilon_r = 54.412$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.3, 10.3, 10.3); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.16 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.63 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.73 W/kg

SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg

System Check Body 1750MHz 20160626

DUT: D1750V2-SN:1090

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL 1750 2016/06/26 Medium parameters used: f = 1750 MHz; $\sigma = 1.517$ S/m; $\varepsilon_r =$

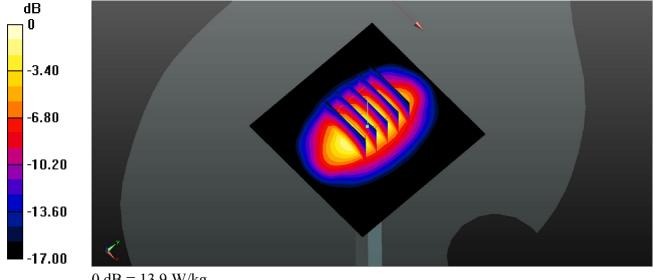
53.127: $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.24, 8.24, 8.24); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.9 W/kg


Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 96.20 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg

System Check Body 1900MHz 20160626

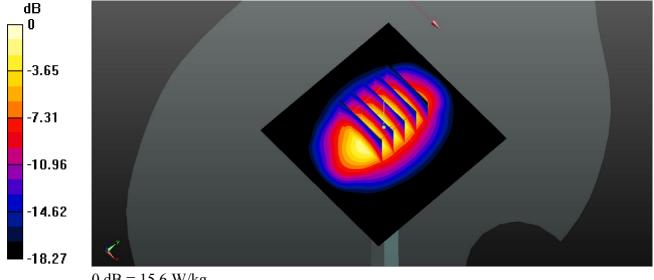
DUT: D1900V2-SN:5d170

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL 1900 2016/06/26 Medium parameters used: f = 1900 MHz; $\sigma = 1.575$ S/m; $\varepsilon_r =$

52.001; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.99, 7.99, 7.99); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.3 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 84.65 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.62 W/kgMaximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg

Appendix B. Plots of High SAR Measurement

Report No.: FA622402

The plots are shown as follows.

SPORTON INTERNATIONAL (XI'AN) INC.

01_GSM850_GPRS (2 Tx slots)_Right Cheek_0mm_Ch128

Communication System: UID 0, GPRS (GMSK 2 Tx slot) (0); Frequency: 824.2 MHz; Duty Cycle: 1:4.15

Medium: HSL_850_2016/07/01 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 42.092$; $\rho = 1000$ kg/m³

Date: 2016/7/1

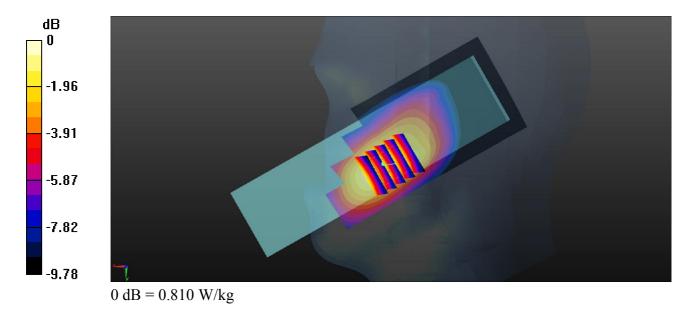
Ambient Temperature : 23.3 °C; Liquid Temperature : 22.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.15, 10.15, 10.15); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch128/Area Scan (51x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.823 W/kg

Maximum value of SAR (interpolated) = 0.823 W/kg


Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.387 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.920 W/kg

SAR(1 g) = 0.605 W/kg; SAR(10 g) = 0.407 W/kg

Maximum value of SAR (measured) = 0.810 W/kg

02 GSM1900 GPRS (3 Tx slots) Mouth Area 10mm Ch810

Communication System: UID 0, GPRS (GMSK 3 Tx slot) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.77

Date: 2016/6/30

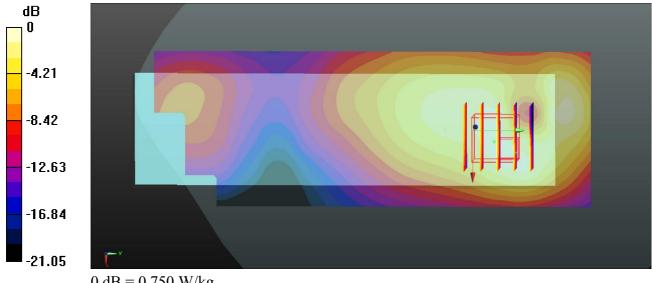
Medium: HSL 1900 2016/06/30 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.455$ S/m; $\varepsilon_r =$ 40.084; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.37, 8.37, 8.37); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch810/Area Scan (51x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.667 W/kg


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.01 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.915 W/kg

SAR(1 g) = 0.506 W/kg; SAR(10 g) = 0.286 W/kg

Maximum value of SAR (measured) = 0.750 W/kg

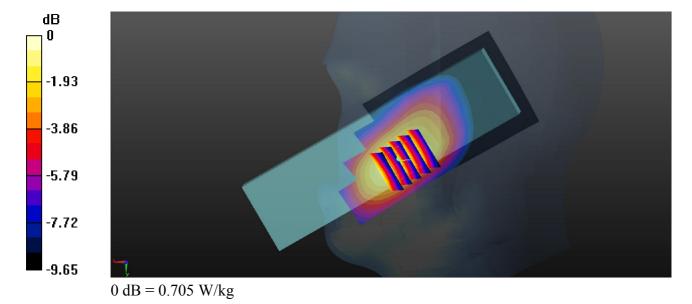
0 dB = 0.750 W/kg

03 WCDMA Band V RMC 12.2Kbps Right Cheek 0mm Ch4182

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: $HSL_850_2016/07/01$ Medium parameters used: f = 836.4 MHz; $\sigma = 0.901$ S/m; $\varepsilon_r = 41.942$: $\rho = 1000$ kg/m³

Date: 2016/7/1

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.4 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.15, 10.15, 10.15); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch4182/Area Scan (51x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.707 W/kg

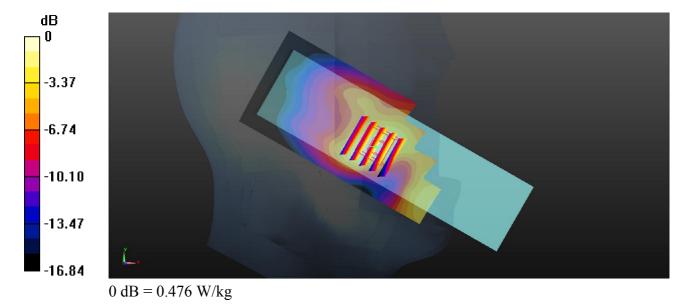
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.969 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.803 W/kg SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.358 W/kg

Maximum value of SAR (measured) = 0.705 W/kg

Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium: HSL_1750_2016/06/26 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.334$ S/m; $\epsilon_r = 40.94$; $\rho = 1000$ kg/m³

Date: 2016/6/26

Ambient Temperature : 23.4 °C; Liquid Temperature : 22.3 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.69, 8.69, 8.69); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1413/Area Scan (51x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.490 W/kg

Ch1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.435 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.556 W/kg

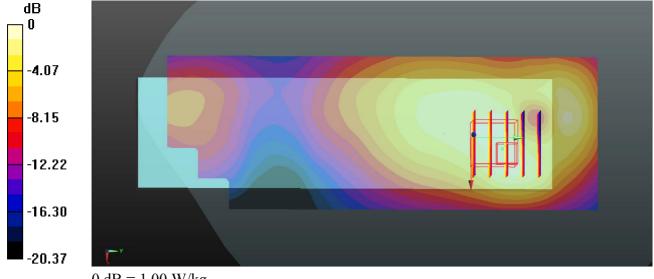
SAR(1 g) = 0.336 W/kg; SAR(10 g) = 0.196 W/kgMaximum value of SAR (measured) = 0.476 W/kg

05 WCDMA Band II RMC 12.2Kbps Mouth Area 10mm Ch9538

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL 1900 2016/06/30 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.453$ S/m; ε_r =40.089: $\rho = 1000 \text{ kg/m}^3$

Date: 2016/6/30

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.5 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.37, 8.37, 8.37); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch9838/Area Scan (51x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.04 W/kg

Ch9838/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.67 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.701 W/kg; SAR(10 g) = 0.396 W/kgMaximum value of SAR (measured) = 1.00 W/kg

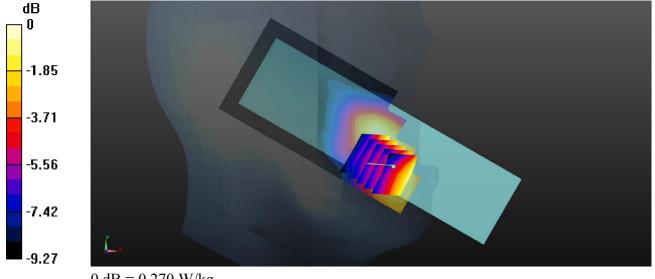
0 dB = 1.00 W/kg

06 LTE Band 12 10M QPSK 1RB 25offset Left Cheek 0mm Ch23095

Communication System: UID 0, FDD-LTE (0); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: HSL 750 2016/06/27 Medium parameters used: f = 707.5 MHz; $\sigma = 0.852$ S/m; $\varepsilon_r = 43.01$; $\rho = 1000 \text{ kg/m}^3$

Date: 2016/6/27

Ambient Temperature : 23.4 °C; Liquid Temperature : 22.5 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.72, 10.72, 10.72); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch23095/Area Scan (51x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.276 W/kg

Ch23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.757 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.292 W/kg

SAR(1 g) = 0.216 W/kg; SAR(10 g) = 0.157 W/kgMaximum value of SAR (measured) = 0.270 W/kg

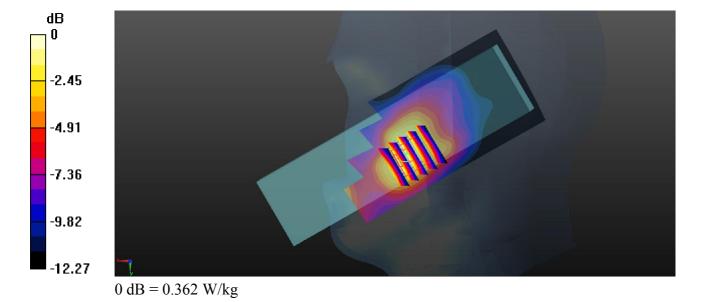
0 dB = 0.270 W/kg

07 LTE Band 4 20M QPSK 1RB 0offset Right Cheek 0mm Ch20175

Communication System: UID 0, FDD-LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750_2016/06/26 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.334$ S/m; $\epsilon_r = 40.943$; $\rho = 1000$ kg/m³

Date: 2016/6/26

Ambient Temperature : 23.4 °C; Liquid Temperature : 22.3 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.69, 8.69, 8.69); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch20175/Area Scan (51x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.355 W/kg

Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.249 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.440 W/kg SAR(1 g) = 0.268 W/kg; SAR(10 g) = 0.161 W/kg

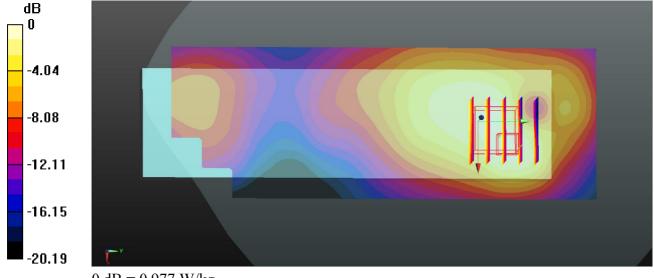
Maximum value of SAR (measured) = 0.362 W/kg

08 LTE Band 2 20M QPSK 1RB 49offset Mouth Area 10mm Ch18900

Communication System: UID 0, FDD-LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL_1900_2016/06/30 Medium parameters used: f = 1880 MHz; $\sigma = 1.423$ S/m; $\epsilon_r = 40.193$; $\rho = 1000$ kg/m³

Date: 2016/6/30

Ambient Temperature : 23.4 °C; Liquid Temperature : 22.5 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.37, 8.37, 8.37); Calibrated: 2015/11/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2015/8/27
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch18900/Area Scan (51x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.04 W/kg

Ch18900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.25 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.22 W/kg SAR(1 g) = 0.662 W/kg; SAR(10 g) = 0.383 W/kg

Maximum value of SAR (measured) = 0.977 W/kg

0 dB = 0.977 W/kg