

TEST REPORT

No. I15Z40451-GTE01

for

ZTE CORPORATION

WCDMA/GSM (GPRS) Dual-Mode Digital Mobile Phone

Model Name: ZTE Kis II Max/Kis II Max/ZTE KIS II Max/

KIS II Max/ZTE Kis II Max plus/ ZTE Kis II Max plus

FCC ID: SRQ-IIMAXPLUS

with

Hardware Version: TMBI

Software Version: ZTE-CN-FQB25S-P172R10V1.0.0

Issued Date: 2015-04-14

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

FCC 2.948 Listed: No. 525429

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504

Email: cttl_terminals@catr.cn, website: www.chinattl.com

CONTENTS

1. TEST LABORATORY	4
1.1. TESTING LOCATION	4
1.2. TESTING ENVIRONMENT	4
1.3. PROJECT DATA	4
1.4. SIGNATURE	4
2. CLIENT INFORMATION	5
)N5
	AATION5
	EUT) AND ANCILLARY EQUIPMENT (AE)
3.2. INTERNAL IDENTIFICATI	ON OF EUT USED DURING THE TEST6
3.3. INTERNAL IDENTIFICATI	ON OF AE USED DURING THE TEST6
3.4. NORMAL ACCESSORY SET	TTING6
3.5. GENERAL DESCRIPTION.	
4. REFERENCE DOCUMENTS	
4.1. REFERENCE DOCUMENTS	S FOR TESTING7
5. LABORATORY ENVIRONME	NT
6. SUMMARY OF TEST RESULT	SS9
	ED10
ANNEX A: MEASUREMENT RESI	ULTS11
A 1 OUTPUT POWER	11
	17
	23
A.8 CONDUCTED SPURIOUS EI	MISSION
A.9 PEAK-TO-AVERAGE POWE	R RATIO69

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I15Z40451-GTE01	Rev.0	1st edition	2015-04-14

1. Test Laboratory

1.1. Testing Location

Location 1: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China 100191

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2014-06-10 Testing End Date: 2015-03-12

1.4. Signature

Wang Junqing

(Prepared this test report)

Qu Pengfei

(Reviewed this test report)

Liu Baodian

Deputy Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: ZTE CORPORATION

Address /Post: J0411, No. 889 Bibo Road, ZhangjiangHi-TechPark, Shanghai, China

City: Shanghai
Postal Code: 201203
Country: China
Contact Person: Zhang Min

Contact Email /

Telephone: 0086-21-68897541

Fax: /

2.2. Manufacturer Information

Company Name: ZTE CORPORATION

Address /Post: J0411, No. 889 Bibo Road, ZhangjiangHi-TechPark, Shanghai, China

City: Shanghai Postal Code: 201203 Country: China

Telephone: 0086-21-68897541

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description WCDMA/GSM(GPRS) Dual-Mode Digital Mobile Phone

ZTE Kis II Max/ Kis II Max/ZTE KIS II Max /KIS II Max/ZTE Kis II Model Name

Max plus/ ZTE Kis II Max plus

FCC ID **SRQ-IIMAXPLUS**

GSM850; PCS1900; WCDMA Band II; WCDMA Band V Frequency

Antenna Integrated

Output power 32.00dBm maximum EIRP measured for Band II

3.4VDC to 4.2VDC (nominal: 3.7VDC) Extreme vol. Limits

Extreme temp. Tolerance -30°C to +50°C

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Telecommunication Metrology Center of MIIT of People's Republic of China. Note: The EUT is a variant model of ZTE V815W. Only RSE/EIRP had been tested. The other result is coming from the initial model.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT3	865730029523087	TMBI	ZTE-CN-FQB25S-P172R10V1.0.0

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description		
AE1	Battery	1	1540451BA001
AE1			

Model Li3712T42P3h634445 ZTE CORPORATION Manufacturer

1200mAh Capacitance Nominal voltage 3.7V

3.4. Normal Accessory setting

Fully charged battery was used during the test

3.5. General Description

The Equipment Under Test (EUT) is a model of WCDMA/GSM(GPRS) Dual-Mode Digital Mobile Phone with integrated antenna. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-14
		Edition
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-14
		Edition
ANSI/TIA-603-D	Land Mobile FM or PM Communications Equipment	2010
	Measurement and Performance Standards	
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2009
	Low-Voltage Electrical and Electronic Equipment in the	
	Range of 9 kHz to 40 GHz	
KDB971168 D01	Procedures for Compliance Measurement of the	2011
	Fundamental Emission Power of Licensed Wideband (> 1	
	MHz) Digital Transmission Systems	

5. LABORATORY ENVIRONMENT

Fully-anechoic chamber FAC-3 (9 meters × 6.5 meters × 4 meters) did not exceed following limits along the EMC testing:

Min. = 15 °C, Max. = 35 °C
Min. = 15 %, Max. = 75 %
0.014MHz - 1MHz, >60dB;
1MHz - 1000MHz, >90dB.
> 2 MΩ
< 4 Ω
Between 0 and 6 dB, from 1GHz to 18GHz
Between 0 and 6 dB, from 80 to 4000 MHz

Shielded room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	<4 Ω

6. SUMMARY OF TEST RESULTS

Items	List	Clause in FCC rules	Verdict
1	Output Power	22.913(a)/24.232(b)	Р
2	Emission Limit	2.1051/22.917/24.238	Р
3	Conducted Emission	15.107/15.207	Р
4	Frequency Stability	2.1055/24.235	Р
5	Occupied Bandwidth	2.1049(h)(i)	Р
6	Emission Bandwidth	22.917(b)/24.238(b)	Р
7	Band Edge Compliance	22.917(b)/24.238(b)	Р
8	Conducted Spurious Emission	2.1057/22.917/24.238	Р
9	PEAK-TO-AVERAGE POWER RATIO	KDB971168	Р

7. Test Equipments Utilized

NO.	Description	TYPE	SERIES NUMBER	MANUFACTURE	CAL DUE DATE	CAL PERIOD
1	Test Receiver	ESU26	100376	R&S	2015-10-29	1 year
2	EMI Antenna	VULB 9163	302	Schwarzbeck	2017-1-3	3 year
3	EMI Antenna	3117	00119024	ETS-Lindgren	2016-01-20	3 year
4	LISN	NV216	101200	R&S	2015-07-07	1 year
5	Universal Radio Communication Tester	CMU200	108646	R&S	2015-10-28	1 year
6	Universal Radio Communication Tester	E5515C	MY48361083	Agilent	2016-02-27	1 year
7	Spectrum Analyzer	E4440A	MY48250642	Agilent	2016-03-02	1 year
8	EMI Antenna	9117	167	Schwarzbeck	2016-04-01	3 year
9	EMI Antenna	VULB 9163	9163 175	Schwarzbeck	2015-07-15	3 year
10	EMI Antenna	3117	00119024	ETS-Lindgren	2016-01-20	3 year
11	Signal Generator	N5183A	MY49060052	Agilent	2016-03-02	1 year
12	Climate chamber	SH-241	92007454	ESPEC	2015-12-14	2 year
13	Loop Antenna	HFH2-Z2	829324/007	R&S	2017-12-10	3 year

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure max power transmission and proper modulation.

This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSU (peak)

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.2MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range).

A.1.2.2 Test Condition

RBW	VBW	Sweep Time	Span
1MHz	1MHz	300ms	10MHz

GSM850

Measurement result

GSM (GMSK)

Frequency(MHz)	Power Step	Output power(dBm)
824.2	5	32.27
836.6	5	32.29
848.8	5	32.29

GPRS (GMSK, 1Slot)

Frequency(MHz)	Power Step	Output power(dBm)
824.2	3	31.96
836.6	3	32.02
848.8	3	32.05

PCS1900

Measurement result

GSM (GMSK)

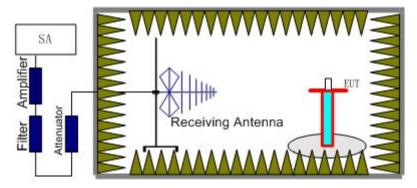
Frequency(MHz)	Power Step	Output power(dBm)	
1850.2	0	29.36	
1880.0	0	29.17	
1909.8	0	28.82	

GPRS (GMSK, 1Slot)

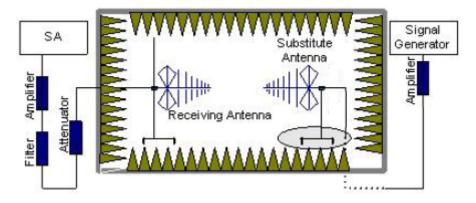
Frequency(MHz)	Power Step	Output power(dBm)		
1850.2	3	29.53		
1880.0	3	29.42		
1909.8	3	29.03		

A.1.2 Radiated

A.1.2.1 Description


This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."


A.1.2.2 Method of Measurement

The measurements procedures in TIA-603C-2004 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is

connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna.
 - The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.
 - The measurement results are obtained as described below:
 - Power(EIRP)= P_{Mea} P_{Ag} P_{cl} G_a
- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

GSM 850-ERP 22.913(a)

Limits

	Power Step	Burst Peak ERP (dBm)
GSM	5	≤38.45dBm (7W)
GPRS	3	≤38.45dBm (7W)
EGPRS	6	≤38.45dBm (7W)

Measurement result

GSM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna	Correction	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
				Gain(dB)	(dB)				
824.20	-13.01	2.26	-45.79	-0.96	2.15	29.33	38.45	9.12	Н
836.60	-12.93	2.26	-45.66	-0.82	2.15	29.14	38.45	9.31	Н
848.80	-12.19	2.28	-45.54	-0.79	2.15	29.71	38.45	8.74	V

GPRS

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
824.20	-13.07	2.26	-45.79	-0.96	2.15	29.27	38.45	9.18	Н
836.60	-12.96	2.26	-45.66	-0.82	2.15	29.11	38.45	9.34	Н
848.80	-12.24	2.28	-45.54	-0.79	2.15	29.66	38.45	8.79	V

EGPRS

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
824.20	-13.08	2.26	-45.79	-0.96	2.15	29.26	38.45	9.19	Н
836.60	-12.95	2.26	-45.66	-0.82	2.15	29.12	38.45	9.33	Н
848.80	-12.26	2.28	-45.54	-0.79	2.15	29.64	38.45	8.81	V

Frequency: 848.80MHz

 $Peak \; ERP(dBm) = P_{Mea}(-12.19dBm) - P_{cl}(2.28dB) - P_{Ag}(-45.54 \; dB) - G_a \; (-0.79dB) - 2.15dB = 29.71dBm$

ANALYZER SETTINGS: RBW = VBW = 3MHz

PCS1900-EIRP 24.232(c)

Limits

	Power Step	Burst Peak EIRP (dBm)
GSM	0	≤33dBm (2W)
GPRS	3	≤33dBm (2W)
EGPRS	5	≤33dBm (2W)

Measurement result

GSM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-17.16	2.93	-43.75	-5.25	28.91	33.00	4.09	Н
1880.00	-14.11	2.85	-43.75	-5.19	31.98	33.00	1.02	Н
1909.80	-14.52	2.89	-43.77	-5.13	31.49	33.00	1.51	Н

GPRS

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-17.20	2.93	-43.75	-5.25	28.87	33.00	4.13	Н
1880.00	-14.12	2.85	-43.75	-5.19	31.97	33.00	1.03	Н
1909.80	-14.50	2.89	-43.77	-5.13	31.51	33.00	1.49	Н

EGPRS

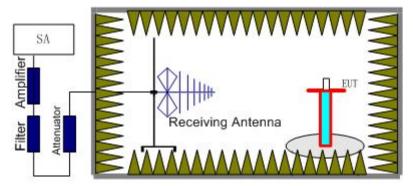
Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-17.19	2.93	-43.75	-5.25	28.88	33.00	4.12	Н
1880.00	-14.09	2.85	-43.75	-5.19	32.00	33.00	1.00	Н
1909.80	-14.53	2.89	-43.77	-5.13	31.48	33.00	1.52	Н

Frequency: 1880.00MHz

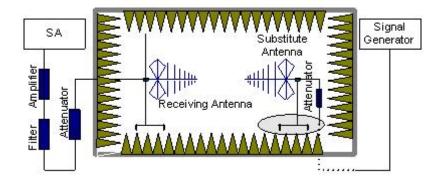
 $Peak \; EIRP(dBm) = P_{Mea}(-14.09dBm) \; - \; P_{cl}(2.85dB) \; - \; P_{Ag}(-43.75dB) \; - \; G_a \; (-5.19dB) \; = 32.00dBm \; - \; P_{cl}(-43.75dB) \; - \; P_{cl}(-43.7$

ANALYZER SETTINGS: RBW = VBW = 3MHz

A.2 EMISSION LIMIT


A.2.1 Measurement Method

The measurement procedures in TIA-603C-2004 are used.


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power(EIRP)= $P_{Mea} - P_{pl} - G_a$

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

A.2.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) and GSM850 band (824.2MHz, 836.6MHz, 848.8MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
GSM 850MHz	Low	30MHz-10GHz	Pass
	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
GSM 1900MHz	Low	30MHz-20GHz	Pass
	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
850MHz	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
1000MU=	5~8	1 MHz	3 MHz	3
1900MHz	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

GSM Mode Channel 128/824.2MHz

Frequency(MHz)	D (dDm)	Path	Antenna	Correction	Peak	Limit	Margin(dP)	Polarization
Frequency(MHZ)	P _{Mea} (dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Margin(dB)	1 Olanzation
1648.57	-37.44	3.41	-5.65	2.15	-37.35	-13.00	24.35	Н
2472.67	-36.02	4.43	-5.27	2.15	-37.33	-13.00	24.33	Н
3296.90	-35.89	5.35	-7.11	2.15	-36.28	-13.00	23.28	V
4121.58	-39.55	5.80	-8.35	2.15	-39.15	-13.00	26.15	Н
4945.57	-49.63	6.32	-9.32	2.15	-48.78	-13.00	35.78	Н
7561.65	-56.86	7.29	-11.29	2.15	-55.01	-13.00	42.01	Н

GSM Mode Channel 190/836.6MHz

Fraguenov/MHz)	D (dDm)	Path	Antenna	Correction	Peak	Limit	Margin(dD)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Margin(dB)	1 Olarization
1672.92	-40.28	3.54	-5.60	2.15	-40.37	-13.00	27.37	Н
2509.57	-33.53	4.48	-5.31	2.15	-34.85	-13.00	21.85	Н
3346.41	-37.01	5.22	-7.23	2.15	-37.15	-13.00	24.15	Н
4183.22	-38.81	5.84	-8.39	2.15	-38.41	-13.00	25.41	Н
5019.78	-48.77	6.21	-9.43	2.15	-47.70	-13.00	34.70	V
6251.28	-56.80	6.79	-10.29	2.15	-55.45	-13.00	42.45	Н

GSM Mode Channel 251/848.8MHz

Frequency(MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Margin(dB)	Polarization
1697.58	-41.94	3.45	-5.55	2.15	-41.99	-13.00	28.99	Н
2546.38	-31.99	4.48	-5.39	2.15	-33.23	-13.00	20.23	Н
3395.20	-37.20	5.48	-7.35	2.15	-37.48	-13.00	24.48	Н
4244.32	-38.64	6.05	-8.43	2.15	-38.41	-13.00	25.41	Н
5093.08	-43.99	6.47	-9.53	2.15	-43.08	-13.00	30.08	Н
6259.25	-55.92	6.77	-10.30	2.15	-54.54	-13.00	41.54	Н

GSM Mode Channel 512/1850.2MHz

Frequency(MHz)	D (dDm)	Path	Antenna	Peak	Limit	Margin(dB)	Polarization	
Frequency(MHZ)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	ivialyili(ub)	1 Glarization	
3700.39	-42.88	5.34	-7.87	-40.35	-13.00	27.35	Н	
5550.39	-46.66	6.61	-10.05	-43.22	-13.00	30.22	Н	
7401.18	-31.01	7.20	-11.15	-27.06	-13.00	14.06	Н	
9251.17	-43.17	8.23	-12.25	-39.15	-13.00	26.15	V	
11101.36	-30.27	8.92	-12.22	-26.97	-13.00	13.97	V	
12951.88	-39.72	9.54	-12.68	-36.58	-13.00	23.58	V	

GSM Mode Channel 661/1880.0MHz

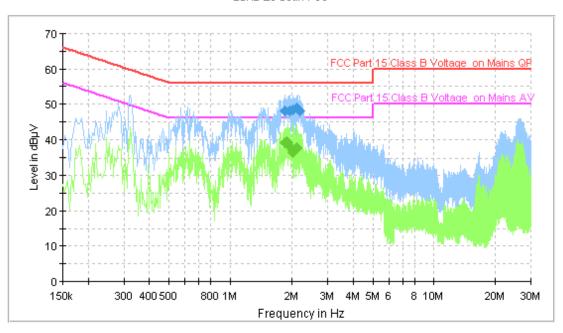
Fraguenov/MHz)	D (dDm)	Path	Antenna	Peak	Limit	Margin(dD)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	Margin(dB)	Polarization
3760.21	-41.43	5.14	-7.95	-38.62	-13.00	25.62	V
5640.13	-45.62	6.85	-10.05	-42.42	-13.00	29.42	Н
7519.89	-30.70	7.52	-11.25	-26.97	-13.00	13.97	V
9400.18	-41.13	7.99	-12.33	-36.79	-13.00	23.79	V
11280.43	-33.64	9.21	-12.32	-30.53	-13.00	17.53	Н
13159.84	-40.60	9.71	-12.98	-37.33	-13.00	24.33	V

GSM Mode Channel 810/1909.8MHz

Frequency(MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Peak EIRP(dBm)	Limit (dBm)	Margin(dB)	Polarization
3819.79	-39.40	5.49	-8.03	-36.86	-13.00	23.86	V
5729.53	-44.81	6.76	-10.06	-41.51	-13.00	28.51	Н
7639.01	-31.99	7.57	-11.36	-28.20	-13.00	15.20	V
9549.17	-38.20	8.21	-12.35	-34.06	-13.00	21.06	Н
11459.16	-32.98	8.88	-12.42	-29.44	-13.00	16.44	Н
13368.93	-40.50	9.79	-13.32	-36.97	-13.00	23.97	V

A.3 CONDUCTED EMISSION

The measurement procedure in ANSI C63.4-2003 is used. Conducted Emission is measured with travel charger.


A.3.1 Limit

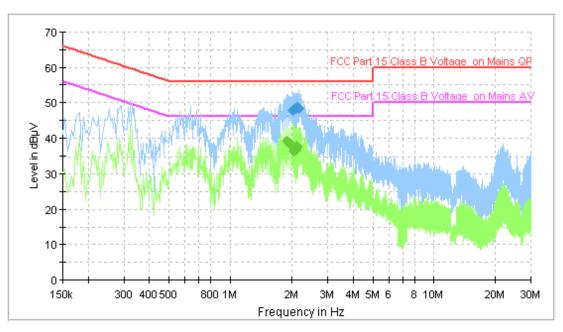
Fraguency of Emission (MHz)	Conducted	Limit (dBμV)					
Frequency of Emission (MHz)	Quasi -Peak	Average					
0.15 – 0.5	66 to 56*	56 to 46*					
0.5 – 5	56	46					
5 – 30	60	50					
* Decreases with logarithm of the frequency							

A.3.2 Measurement result GSM850MHz

ESH2-Z5 Scan-FCC

Final Measurement Detector 1

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	$(dB\mu V)$	PE	Line	(dB)	(dB)	(dBµV)
1.842000	48.1	FLO	L1	10.1	7.9	56.0
1.942000	48.1	FLO	L1	10.1	7.9	56.0
2.006000	48.2	FLO	L1	10.1	7.8	56.0
2.102000	48.8	FLO	L1	10.1	7.2	56.0
2.130000	48.6	FLO	L1	10.1	7.4	56.0
2.170000	48.1	FLO	L1	10.1	7.9	56.0


Final Measurement Detector 2

Frequency	Average	DE	Line	Corr.	Margin	Limit
(MHz)	$(dB\mu V)$	PE	Line	(dB)	(dB)	(dBµV)
1.842000	39.1	FLO	L1	10.1	6.9	46.0
1.886000	39.3	FLO	L1	10.1	6.7	46.0
1.914000	39.0	FLO	L1	10.1	7.0	46.0
1.958000	38.1	FLO	L1	10.1	7.9	46.0
2.018000	36.6	FLO	L1	10.1	9.4	46.0
2.102000	37.6	FLO	L1	10.1	8.4	46.0

PCS1900MHz

ESH2-Z5 Scan-FCC

Final Measurement Detector 1

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	PE	Line	(dB)	(dB)	$(dB\mu V)$
2.006000	47.7	FLO	L1	10.1	8.3	56.0
2.034000	48.1	FLO	L1	10.1	7.9	56.0
2.090000	48.5	FLO	L1	10.1	7.5	56.0
2.102000	48.5	FLO	L1	10.1	7.5	56.0
2.130000	48.6	FLO	L1	10.1	7.4	56.0
2.158000	48.3	FLO	L1	10.1	7.7	56.0

Final Measurement Detector 2

Frequency	Average	DE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	PE	Line	(dB)	(dB)	(dBµV)
1.894000	39.0	FLO	L1	10.1	7.0	46.0
1.966000	38.3	FLO	L1	10.1	7.7	46.0
2.006000	37.3	FLO	L1	10.1	8.7	46.0
2.034000	36.5	FLO	L1	10.1	9.5	46.0
2.090000	36.8	FLO	L1	10.1	9.2	46.0
2.118000	37.6	FLO	L1	10.1	8.4	46.0

A.4 FREQUENCY STABILITY

A.4.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on channel 661 for PCS 1900 and channel 190 for GSM850 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from +50°C to -30°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5℃ during the measurement procedure.

A.4.2 Measurement Limit

A.4.2.1 For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.5VDC and 4.2VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

A.4.2.2 For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the

fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

A.4.3 Measurement results

GSM 850 Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.4	47	0.056
3.7	23	0.027
4.2	44	0.053

Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-30	32	0.038
-20	49	0.059
-10	45	0.054
0	31	0.037
10	27	0.032
20	29	0.035
30	21	0.025
40	11	0.013
50	51	0.061

PCS 1900

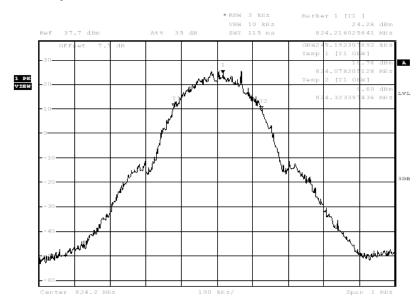
Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.4	39	0.021
3.7	32	0.017
4.2	41	0.022

Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-30	45	0.024
-20	46	0.024
-10	36	0.019
0	27	0.014
10	24	0.013
20	31	0.016
30	33	0.018
40	13	0.007
50	17	0.009

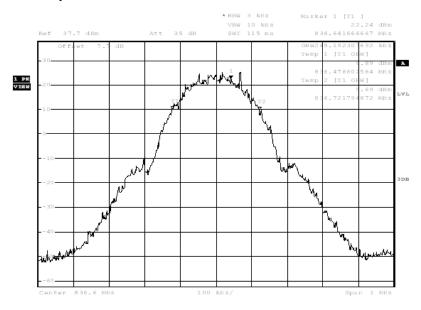
A.5 OCCUPIED BANDWIDTH


A.5.1 Occupied Bandwidth Results

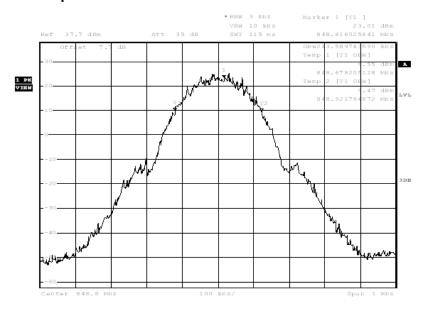
Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. Spectrum analyzer plots are included on the following pages.

GSM 850

Frequency(MHz)	Occupied Bandwidth (kHz)
824.2	245.19
836.6	245.19
848.8	243.59


GSM 850 Channel 128-Occupied Bandwidth

Date: 10.JUN.2014 18:36:32

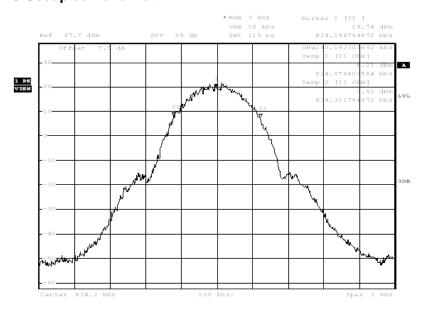


Channel 190-Occupied Bandwidth

Date: 10.JUN.2014 18:37:43

Channel 251-Occupied Bandwidth

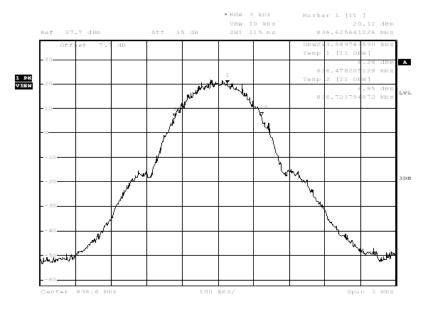
Date: 10.JUN.2014 18:38:54



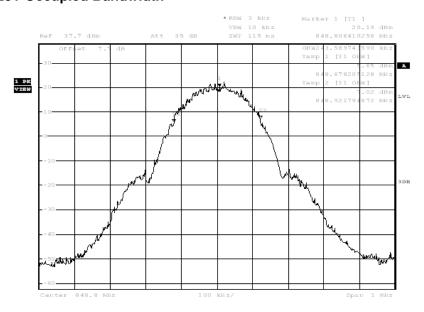
GPRS 850

Frequency(MHz)	Occupied Bandwidth (kHz)
824.2	245. 19
836.6	243. 59
848.8	243. 59

GPRS 850


Channel 128-Occupied Bandwidth

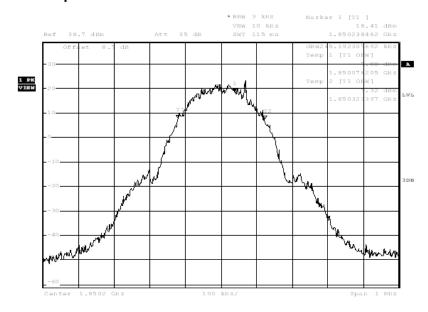
Date: 10.JUN.2014 19:56:46



Channel 190-Occupied Bandwidth

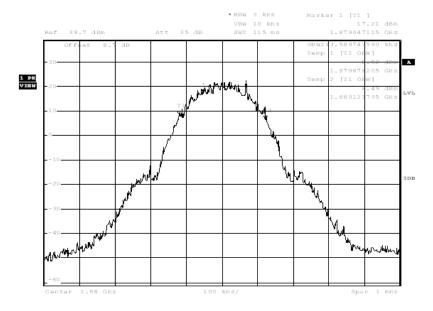
Date: 10.JUN.2014 19:57:57

Channel 251-Occupied Bandwidth

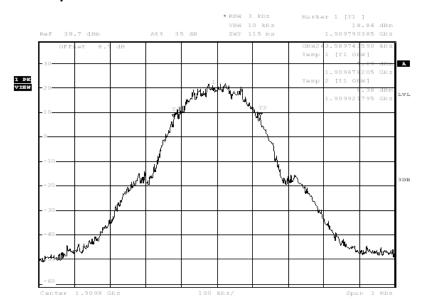

Date: 10.JUN.2014 19:59:07

PCS 1900

Frequency(MHz)	Occupied Bandwidth (kHz)
1850.2	245. 19
1880.0	243. 59
1909.8	243. 59


PCS 1900 Channel 512-Occupied Bandwidth

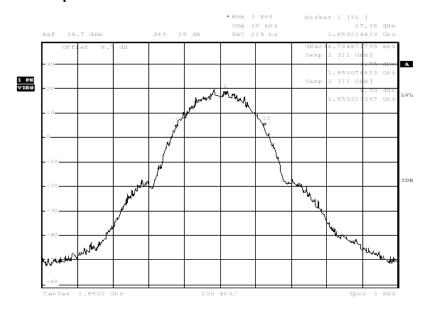
Date: 10.JUN.2014 20:34:23



Channel 661-Occupied Bandwidth

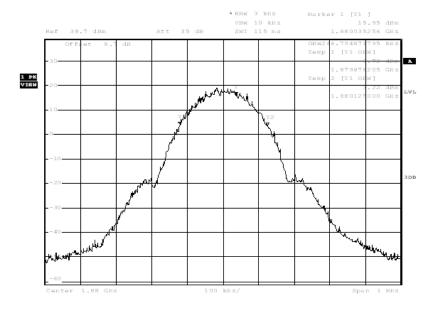
Date: 10.JUN.2014 20:35:33

Channel 810-Occupied Bandwidth

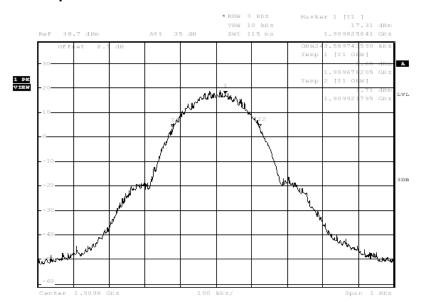

Date: 10.JUN.2014 20:36:44

GPRS 1900

Frequency(MHz)	Occupied Bandwidth (kHz)
1850.2	246. 79
1880.0	246. 79
1909.8	243. 59


GPRS 1900 Channel 512-Occupied Bandwidth

Date: 10.JUN.2014 22:37:42



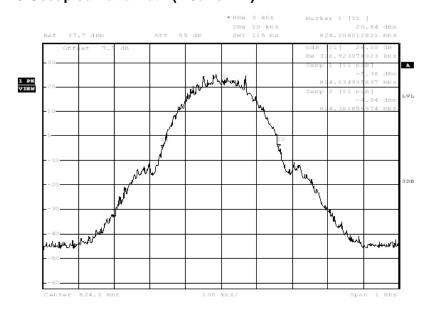
Channel 661-Occupied Bandwidth

Date: 10.JUN.2014 22:38:53

Channel 810-Occupied Bandwidth

Date: 10.JUN.2014 22:40:04

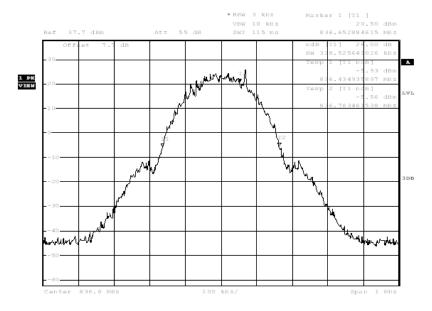
A.6 EMISSION BANDWIDTH


A.6.1Emission Bandwidth Results

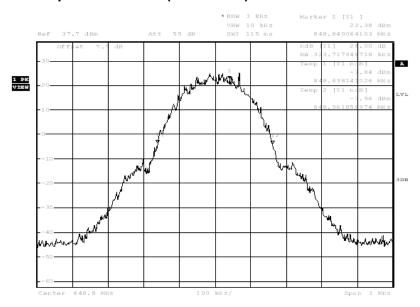
Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

GSM 850(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
824.2	326. 92
836.6	328. 53
848.8	323. 72


GSM 850 Channel 128-Occupied Bandwidth (-26dBc BW)

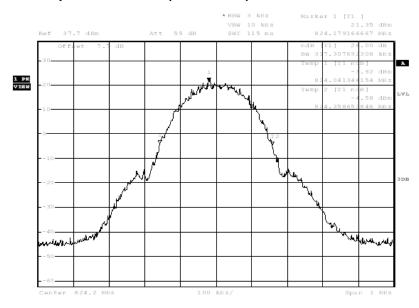
Date: 10.JUN.2014 18:40:09



Channel 190-Occupied Bandwidth (-26dBc BW)

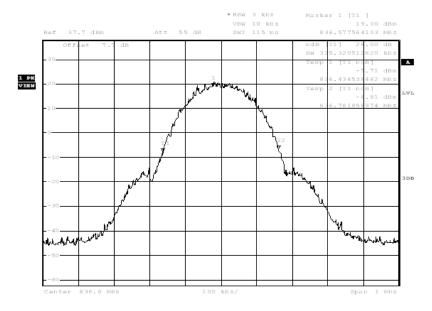
Date: 10.JUN.2014 18:41:22

Channel 251-Occupied Bandwidth (-26dBc BW)

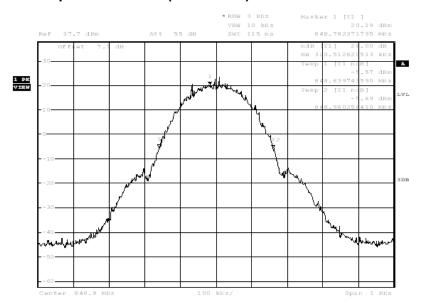

Date: 10.JUN.2014 18:42:35

GPRS 850(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
824.2	317. 31
836.6	325. 32
848.8	320. 51


GPRS 850 Channel 128-Occupied Bandwidth (-26dBc BW)

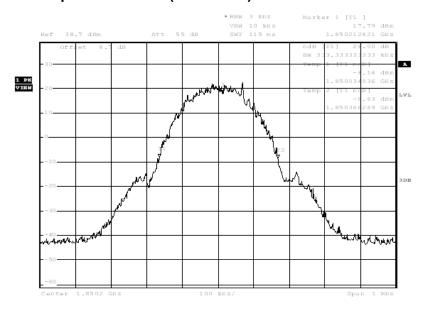
Date: 10.JUN.2014 20:00:22



Channel 190-Occupied Bandwidth (-26dBc BW)

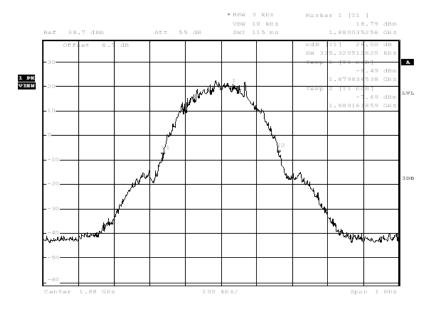
Date: 10.JUN.2014 20:01:35

Channel 251-Occupied Bandwidth (-26dBc BW)

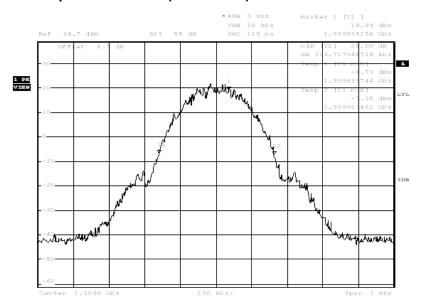

Date: 10.JUN.2014 20:02:48

PCS 1900(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
1850.2	333. 33
1880.0	325. 32
1909.8	323. 72


PCS 1900 Channel 512-Occupied Bandwidth (-26dBc BW)

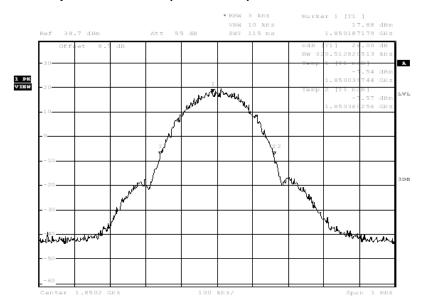
Date: 10.JUN.2014 20:37:59



Channel 661-Occupied Bandwidth (-26dBc BW)

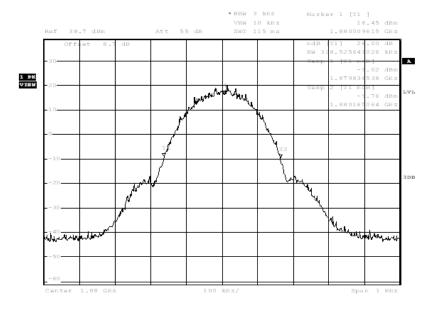
Date: 10.JUN.2014 20:39:13

Channel 810-Occupied Bandwidth (-26dBc BW)

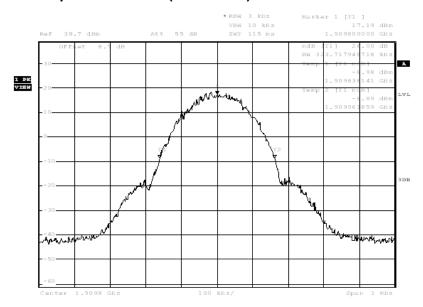

Date: 10.JUN.2014 20:40:26

GPRS 1900(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
1850.2	320. 51
1880.0	328. 53
1909.8	323. 72


GPRS 1900 Channel 512-Occupied Bandwidth (-26dBc BW)

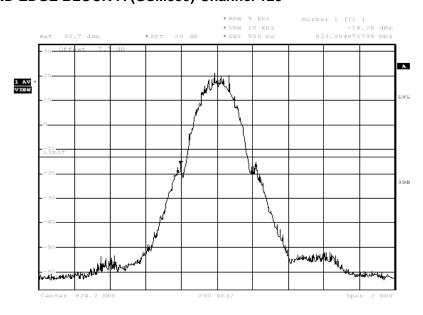
Date: 10.JUN.2014 22:41:19



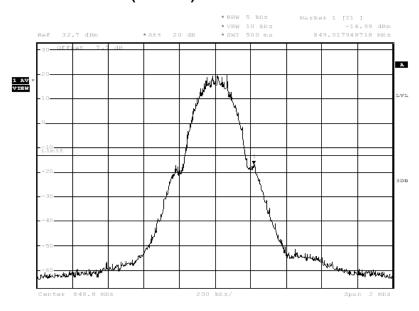
Channel 661-Occupied Bandwidth (-26dBc BW)

Date: 10.JUN.2014 22:42:32

Channel 810-Occupied Bandwidth (-26dBc BW)

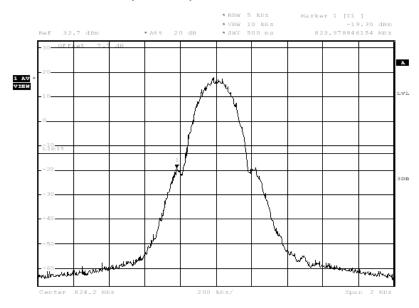


Date: 10.JUN.2014 22:43:45

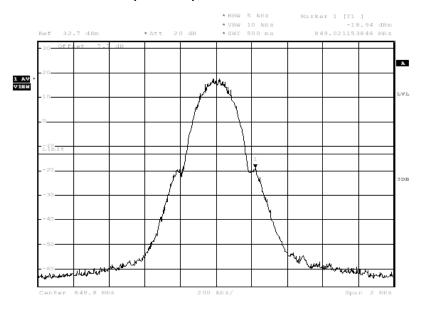

A.7 BAND EDGE COMPLIANCE

GSM 850 LOW BAND EDGE BLOCK-A (GSM850)-Channel 128

Date: 8.JUL.2014 23:01:58

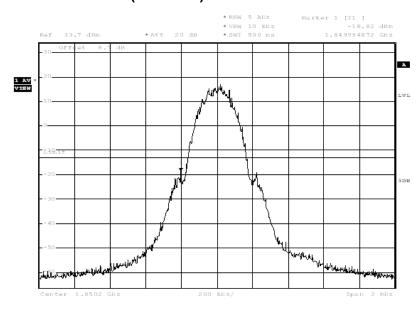

HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251

Date: 8.JUL.2014 23:03:46

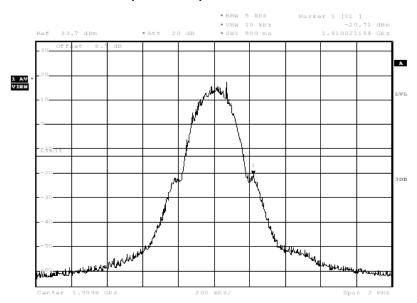


GPRS 850 LOW BAND EDGE BLOCK-A (GSM850)-Channel 128

Date: 8.JUL.2014 23:11:57

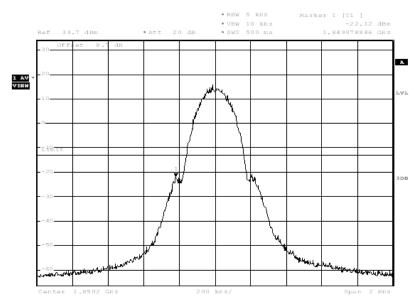

HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251

 ${\tt Date: 8.JUL.2014-23:13:44}$

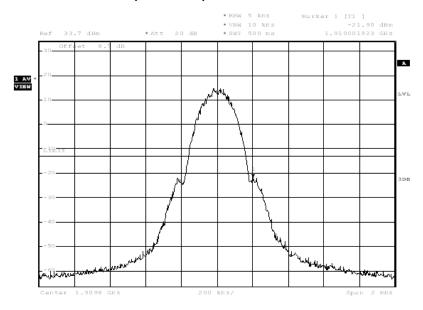


PCS 1900 LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512

Date: 8.JUL.2014 23:24:19


HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810

 ${\tt Date: 8.JUL.2014-23:26:07}$



GPRS 1900 LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512

Date: 8.JUL.2014 23:43:53

HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810

Date: 8.JUL.2014 23:45:40

A.8 CONDUCTED SPURIOUS EMISSION

A.8.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 10 GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW.
- The procedure to get the conducted spurious emission is as follows:
 The trace mode is set to MaxHold to get the highest signal at each frequency;
 Wait 25 seconds;
 Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

GSM850 Transmitter

Channel	Frequency (MHz)	
128	824.2	
190	836.6	
251	848.8	

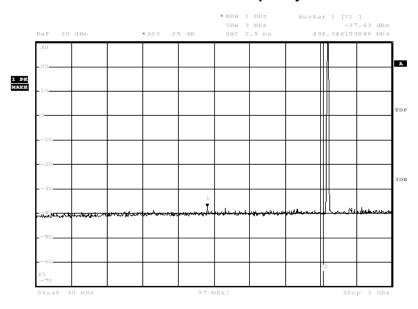
PCS1900 Transmitter

Channel	Frequency (MHz)	
512	1850.2	
661	1880.0	
810	1909.8	

A. 8.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

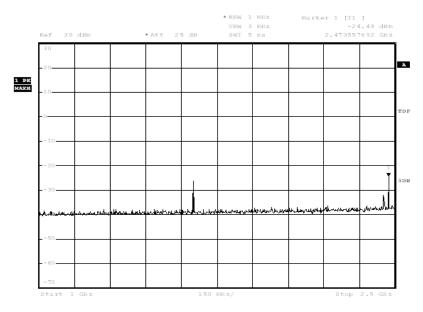
The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.



A. 8.3 Measurement result GSM850

A.8.3.1 Channel 128: 30MHz - 1GHz

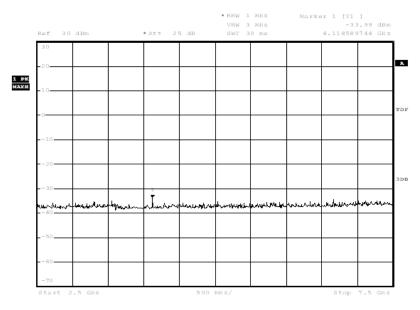
Spurious emission limit -13dBm.


NOTE: peak above the limit line is the carrier frequency.

Date: 10.JUN.2014 18:46:35

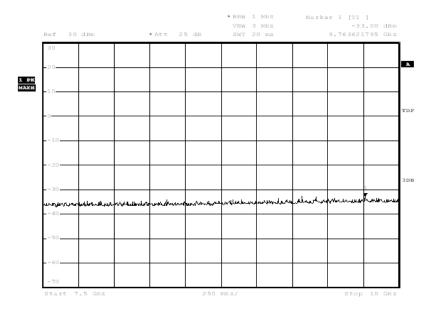
A.8.3.2 Channel 128: 1GHz - 2.5GHz

Spurious emission limit -13dBm.



Date: 10.JUN.2014 18:46:53

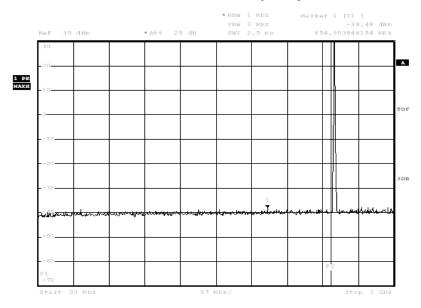
A.8.3.3 Channel 128: 2.5GHz - 7.5GHz


Spurious emission limit -13dBm.

Date: 10.JUN.2014 18:47:10

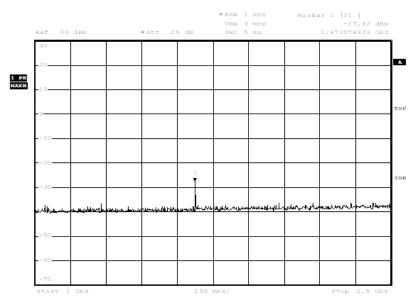
A.8.3.4 Channel 128: 7.5GHz -10GHz

Spurious emission limit -13dBm.


Date: 10.JUN.2014 18:47:28

A.8.3.5 Channel 190: 30MHz - 1GHz

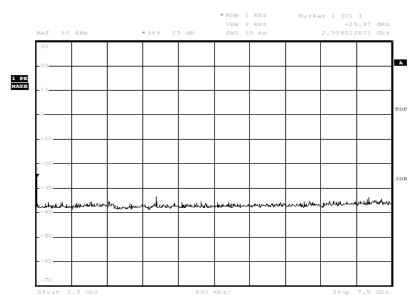
Spurious emission limit -13dBm


NOTE: peak above the limit line is the carrier frequency.

Date: 10.JUN.2014 18:47:48

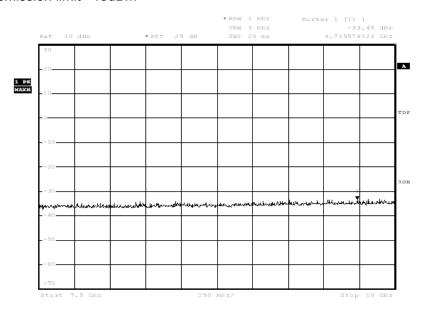
A.8.3.6 Channel 190: 1GHz -2.5GHz

Spurious emission limit -13dBm



Date: 10.JUN.2014 18:48:06

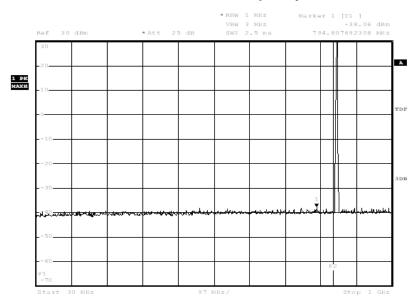
A.8.3.7 Channel 190: 2.5GHz -7.5GHz


Spurious emission limit -13dBm

Date: 10.JUN.2014 18:48:23

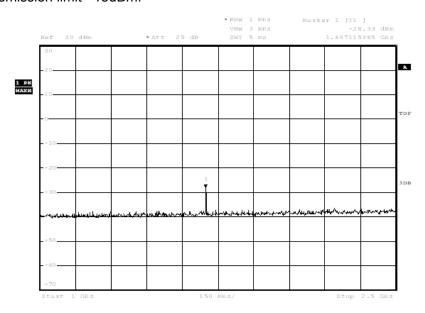
A.8.3.8 Channel 190: 7.5GHz -10GHz

Spurious emission limit -13dBm


Date: 10.JUN.2014 18:48:41

A.8.3.9 Channel 251: 30MHz - 1GHz

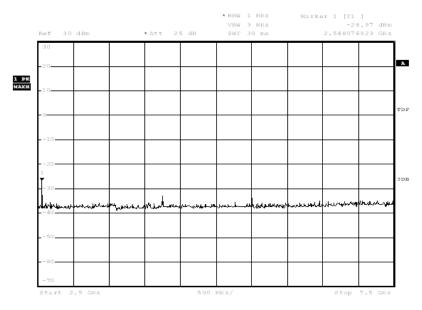
Spurious emission limit -13dBm.


NOTE: peak above the limit line is the carrier frequency.

Date: 10.JUN.2014 18:49:01

A.8.3.10 Channel 251: 1GHz - 2.5GHz

Spurious emission limit -13dBm.



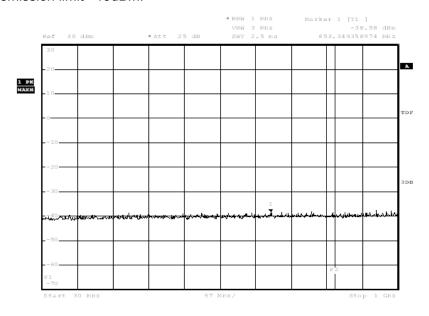
Date: 10.JUN.2014 18:49:19

A.8.3.11 Channel 251:2.5GHz - 7.5GHz

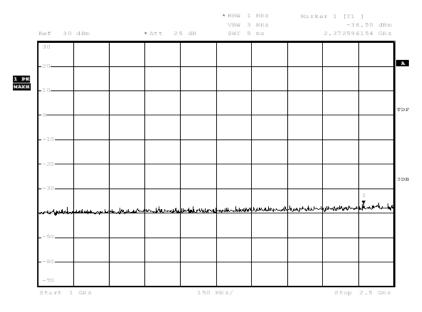
Spurious emission limit -13dBm.

Date: 10.JUN.2014 18:49:36

A.8.3.12 Channel 251: 7.5GHz - 10GHz


Spurious emission limit -13dBm.

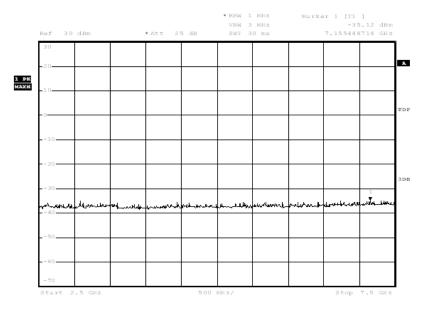
Date: 10.JUN.2014 18:49:54


A.8.3.13 Idle mode: 30MHz – 1GHz Spurious emission limit –13dBm.

Date: 10.JUN.2014 18:50:16

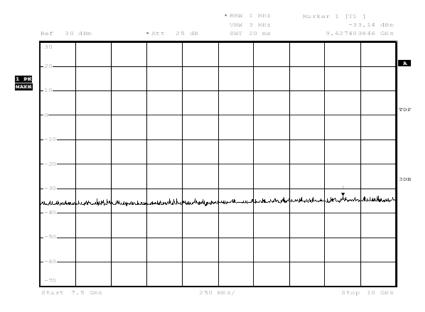
A.8.3.14 Idle mode: 1GHz - 2.5GHz

Spurious emission limit -13dBm.



Date: 10.JUN.2014 18:50:34

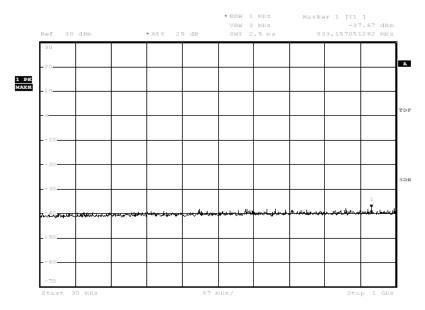
A.8.3.15 Idle mode: 2.5GHz - 7.5GHz


Spurious emission limit -13dBm.

Date: 10.JUN.2014 18:50:51

A.8.3.16 Idle mode: 7.5GHz - 10GHz

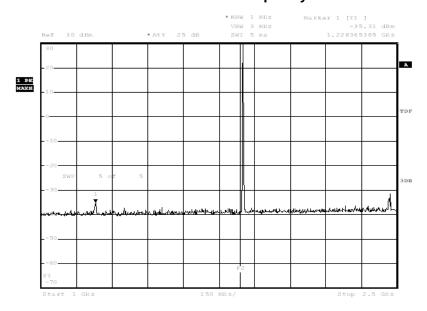
Spurious emission limit -13dBm.


Date: 10.JUN.2014 18:51:08

PCS1900

A.8.3.17 Channel 512: 30MHz - 1GHz

Spurious emission limit -13dBm.

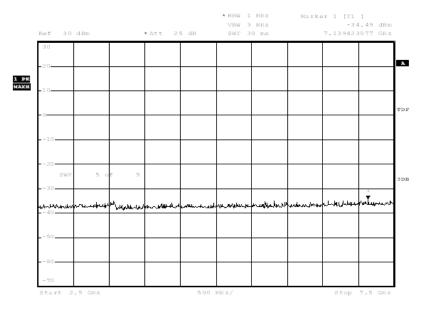


Date: 10.JUN.2014 20:44:26

A.8.3.18 Channel 512: 1GHz - 2.5GHz

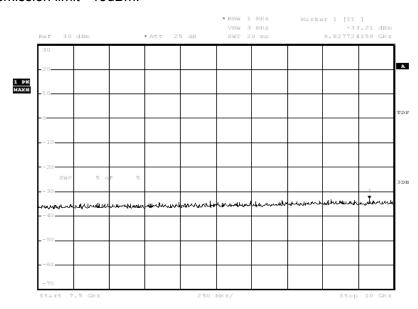
Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.



Date: 10.JUN.2014 20:44:39

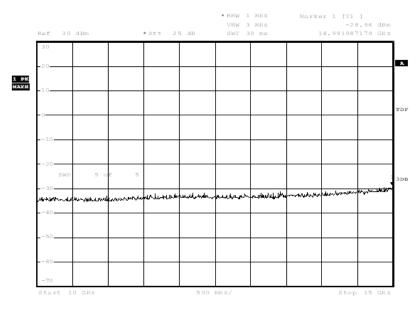
A.8.3.19 Channel 512: 2.5GHz - 7.5GHz


Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:44:56

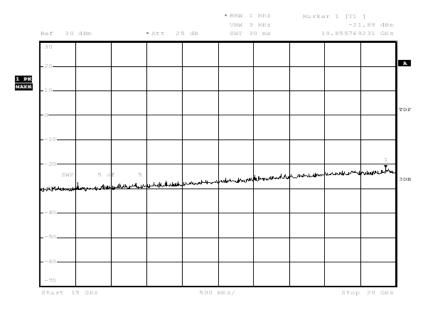
A.8.3.20 Channel 512: 7.5GHz -10GHz

Spurious emission limit -13dBm.



Date: 10.JUN.2014 20:45:14

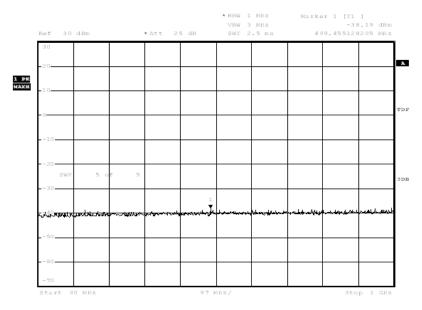
A.8.3.21 Channel 512: 10GHz -15GHz


Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:45:31

A.8.3.22 Channel 512: 15GHz -20GHz

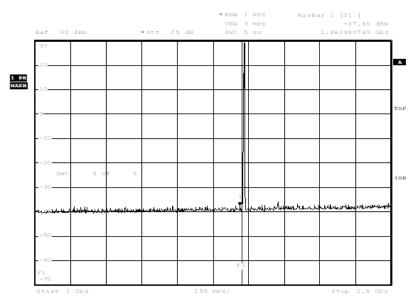
Spurious emission limit -13dBm.



Date: 10.JUN.2014 20:45:49

A.8.3.23 Channel 661: 30MHz - 1GHz

Spurious emission limit -13dBm

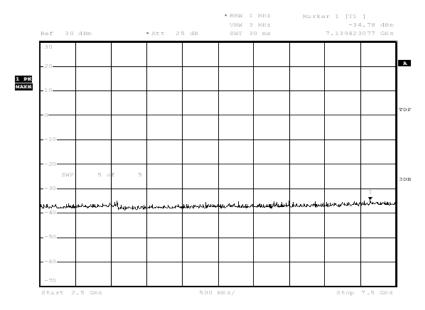


Date: 10.JUN.2014 20:46:09

A.8.3.24 Channel 661: 1GHz -2.5GHz

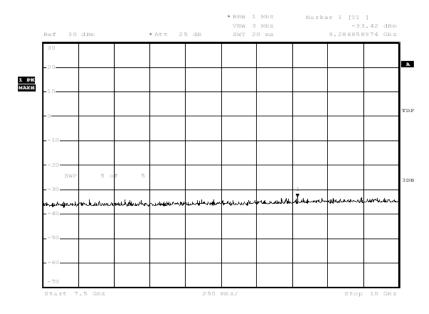
Spurious emission limit -13dBm

NOTE: peak above the limit line is the carrier frequency.



Date: 10.JUN.2014 20:46:22

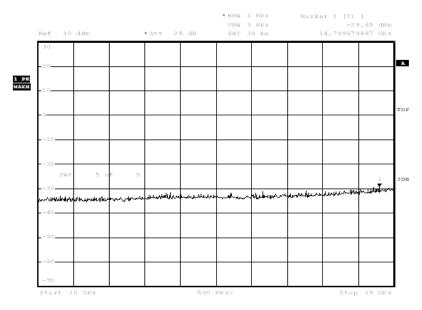
A.8.3.25 Channel 661: 2.5GHz -7.5GHz


Spurious emission limit -13dBm

Date: 10.JUN.2014 20:46:39

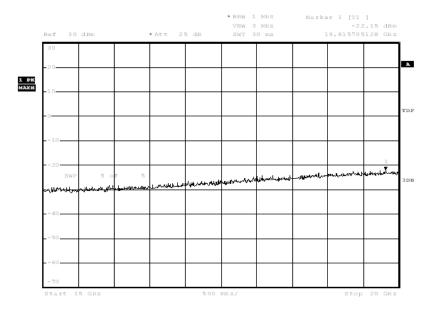
A.8.3.26 Channel 661: 7.5GHz -10GHz

Spurious emission limit -13dBm



Date: 10.JUN.2014 20:46:57

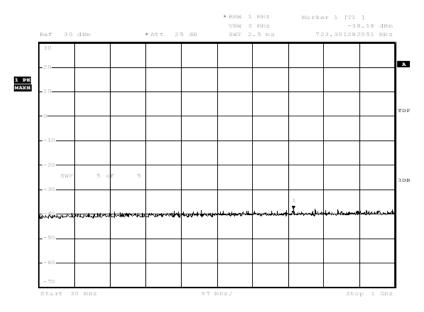
A.8.3.27 Channel 661: 10GHz -15GHz


Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:47:14

A.8.3.28 Channel 661: 15GHz -20GHz

Spurious emission limit -13dBm.



Date: 10.JUN.2014 20:47:32

A.8.3.29 Channel 810: 30MHz - 1GHz

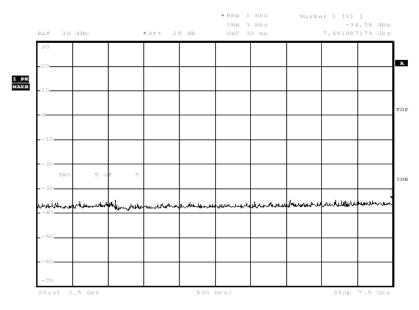
Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:47:52

A.8.3.30 Channel 810: 1GHz - 2.5GHz

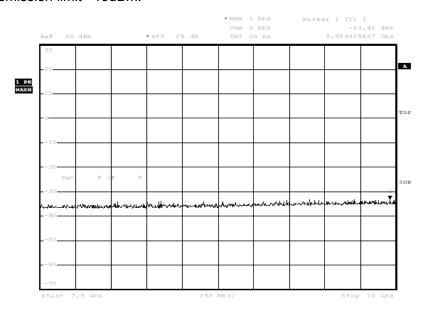
Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.



Date: 10.JUN.2014 20:48:05

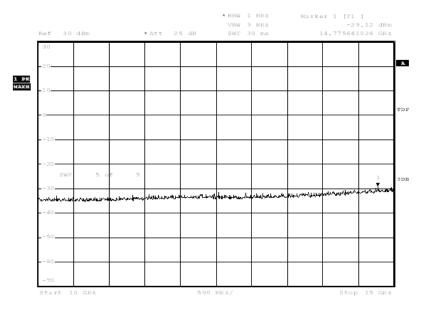
A.8.3.31 Channel 810:2.5GHz - 7.5GHz


Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:48:23

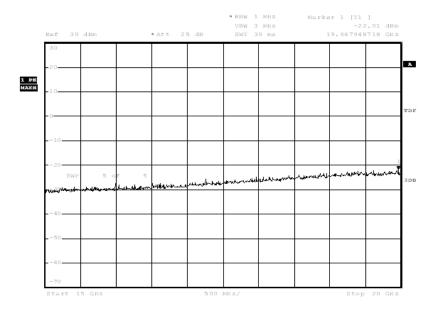
A.8.3.32 Channel 810: 7.5GHz - 10GHz

Spurious emission limit -13dBm.



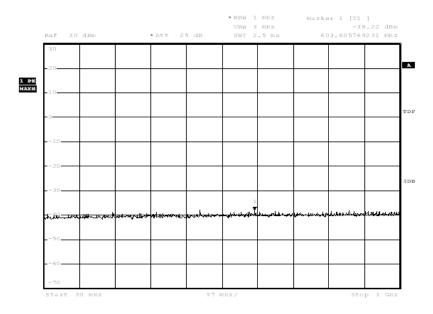
Date: 10.JUN.2014 20:48:40

A.8.3.33 Channel 810: 10GHz -15GHz

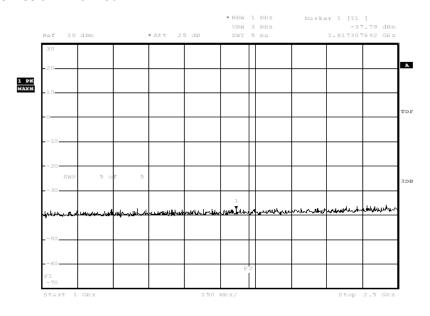

Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:48:58

A.8.3.34 Channel 810: 15GHz -20GHz


Spurious emission limit -13dBm.

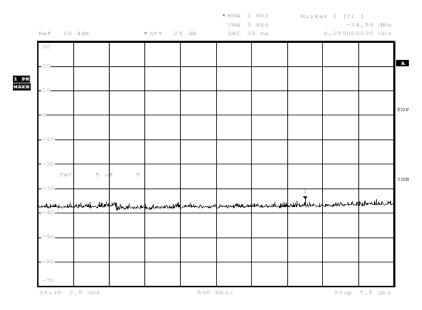
Date: 10.JUN.2014 20:49:15


A.8.3.35 Idle mode: 30MHz – 1GHz Spurious emission limit –13dBm.

Date: 10.JUN.2014 20:49:37

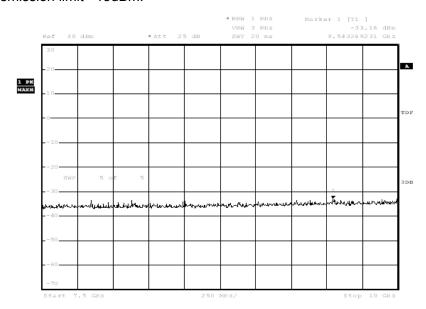
A.8.3.36 Idle mode: 1GHz - 2.5GHz

Spurious emission limit -13dBm.



Date: 10.JUN.2014 20:49:50

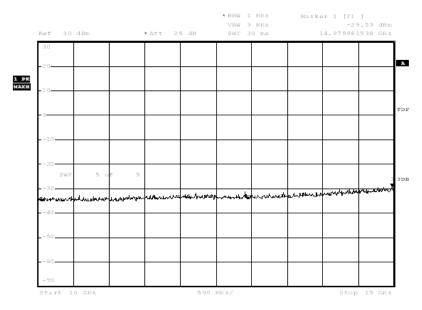
A.8.3.37 Idle mode: 2.5GHz - 7.5GHz


Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:50:08

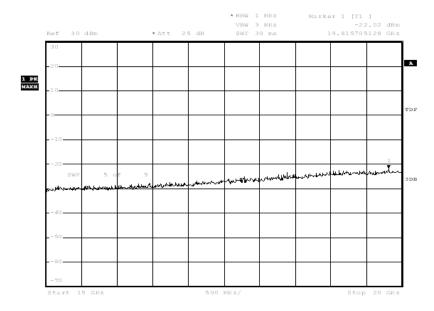
A.8.3.38 Idle mode: 7.5GHz - 10GHz

Spurious emission limit -13dBm.



Date: 10.JUN.2014 20:50:25

A.8.3.39 Idle mode: 10GHz -15GHz


Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:50:43

A.8.3.40 IDLE mode: 15GHz -20GHz

Spurious emission limit -13dBm.

Date: 10.JUN.2014 20:51:00

A.9 PEAK-TO-AVERAGE POWER RATIO

A.9.1 Measurement description

According to KDB971168, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

The parameter of spectrum analyzer: RBW = 10MHz, detector = sample, No. of sample = 500,000

A.9.2 Measurement results

Frequency Error vs Temperature

	Frequency(MHz)	PAPR(dB)
GSM850	836.60	7.46
GPRS850	836.60	7.48
GSM1900	1880.00	7.56
GPRS1900	1880.00	7.49

END OF REPORT