

Page 1of 24

Verified code: 714656

Test Report

Report No.: E202307262325-14

Customer: **BYD Auto Industry Company Limited**

Address: No.3001,3007, HengPing Road, Pingshan, Shenzhen, P.R. China

DiLink, BYD Di3.0F Sample Name:

Sample Model: DiLink 3.0F, MTCF03

Sample Receive

Jul.28,2023

Date:

Oct.25,2023 ~ Oct.26,2023 Test Date:

Reference CFR 47, FCC Part 15 Subpart C

Document: RADIO FREQUENCY DEVICES: Subpart C—Intentional Radiators

Test Result: Pass

Prepared by: Hung Lifang Reviewed by: Frag Hung Approved by: Zhao Zethan Peng Huarui Zhao Zethan Zhao Zethan

GRG METROLOGY & TEST GROUP CO., LTD.

Issued Date: 2023-11-08

GRG METROLOGY & TEST GROUP CO., LTD.

Address: No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, China Tel: (+86) 400-602-0999 FAX: (+86) 020-38698685 Web: http://www.grgtest.com

Report No.: E202307262325-14 Page 2 of 24

Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is

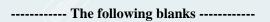
invalid if it is altered or missing; The report is invalid without the signature of the person who prepared,

reviewed and approved it.

2. The sample information is provided by the client and responsible for its authenticity; The content of the report

is only valid for the samples sent this time.

3. When there are reports in both Chinese and English, the Chinese version will prevail when the language


problems are inconsistent.

4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the

report.

5. Without the agreement of the laboratory, the client is not authorized to use the test results for unapproved

propaganda.

TABLE OF CONTENTS

1.	TEST R	ESULT SUMMARY	5
2.	GENER	AL DESCRIPTION OF EUT	6
	2.1	APPLICANT	6
	2.2	MANUFACTURER	6
	2.3	FACTORY	6
	2.4	BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	6
	2.5	CHANNEL LIST	7
	2.6	TEST OPERATION MODE	7
	2.7	LOCAL SUPPORTIVE INSTRUMENTS	7
	2.8	CONFIGURATION OF SYSTEM UNDER TEST	8
3.	LABOR	ATORY AND ACCREDITATIONS AND MEASUREMENT UNCERTAINTY	9
	3.1	LABORATORY	9
	3.2	ACCREDITATIONS	9
	3.3	MEASUREMENT UNCERTAINTY	10
4.	LIST OF	F USED TEST EQUIPMENT AT GRGT	11
5.	RADIA	TED SPURIOUS EMISSIONS	12
	5.1	LIMITS	12
	5.2	TEST PROCEDURES	12
	5.3	TEST SETUP	16
	5.4	DATA SAMPLE	17
	5.5	TEST RESULTS	18
AP	PENDIX .	A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM	24
AP	PENDIX	B. PHOTOGRAPH OF THE EUT	24

----- The following blanks -----

Report No.: E202307262325-14 Page 4 of 24

REPORT ISSUED HISTORY

Report Version	Report No.	Description	Compile Date
1.0	E202307262325-14	Original Issue	2023-10-27

Note:

1. Based on the report number E20211217696105-4, E20211217696105-4& E202307262325-14 are the following changes:

Report No.	Product Name:	Adding Product Name:	Model No.:	Adding Model:	Note:
E20211217696105-4	DiLink	/	DiLink 3.0F	/	
E202307262325-14	DiLink	BYD Di3.0F	DiLink 3.0F	MTCF03	Adding the product name BYD Di3.0F and the model MTCF03

- 1) Both models DiLink 3.0F and MTCF03 are identical except model number. The difference between the two versions of DiLink 3.0F is the broadcasting(AM/FM/DAB) chip only. in this report adding the product name BYD Di3.0F and the model MTCF03.
- 2) Except for the above changes, there are no other differences.
- 2. After evaluation, this report does not need to be retested, in this report we only updates the section 2.2, adding the product name BYD Di3.0F and the model MTCF03, except for Radiated Spurious Emission below 1GHz, all test datas come from E20211217696105-4(FCC ID: SD4-DILINK6125F, Issued Date: 2022-06-07).

Report No.: E202307262325-14 Page 5 of 24

1. TEST RESULT SUMMARY

Standard	Item	Limit / Severity	Result
	Antenna Requirement	§15.203	PASS
	Conducted Emissions	§15.207 (a)	Not Applicable
	Radiated Spurious Emission	§15.247(d) §15.205 §15.209	PASS
CFR 47, FCC Part 15	6 dB Bandwidth	§15.247 (a)(2)	PASS
Subpart C (§15.247)	Maximum Peak Output Power	§15.247(b)(3)	PASS
	Power Spectral Density	§15.247(e)	PASS
	Conducted band edges and Spurious Emission	§15.247(d)	PASS
	Restricted bands of operation	\$15.205 \$15.209 \$15.247(d)	PASS

Note:1) Not Applicable, the EUT is powered by DC 12V.

----- The following blanks -----

²⁾The antenna is External antenna. The max gain of Antenna is -1.77dBi ,which accordance 15.203 is considered sufficient to comply with the provisions of this section.

³⁾ Except for Radiated Spurious Emission below 1GHz, the test results of others please refer to the E20211217696105 -4 report.

Report No.: E202307262325-14 Page 6 of 24

2. GENERAL DESCRIPTION OF EUT

2.1 APPLICANT

Name: BYD Auto Industry Company Limited

Address: No. 3001, 3007, Hengping Road, Pingshan, Shenzhen, P. R. China

2.2 MANUFACTURER

Name: BYD Auto Industry Company Limited

Address:

No. 3001, 3007, Hengping Road, Pingshan, Shenzhen, P. R. China

2.3 FACTORY

Name: Huizhou BYD Electronics Co., Ltd.

Address: Xiangshui River, Economic Development Zone, Daya Bay, Huizhou, Guangdong, P. R.

China

2.4 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Product Name: DiLink

Adding Product

Name:

BYD Di3.0F

Product Model: DiLink 3.0F Adding Model: MTCF03

Both models DiLink 3.0F and MTCF03 are identical except model number. The

Models discrepancy: difference between the two versions of DiLink 3.0F is the broadcasting (AM/FM/DAB)

chip only.

Trade Name: BYD

FCC ID: SD4-DILINK6125F

Power Supply: DC 12V

Frequency Band: 2412MHz-2462MHz

Modulation Type: DSSS for IEEE 802.11b mode; OFDM for IEEE 802.11g/n mode

Antenna

Specification: External antenna with -1.77dBi gain (Max)

Transmit Power: 18.99dBm for IEEE 802.11b

21.16dBm for IEEE 802.11g

20.33dBm for IEEE 802.11n HT20 20.56dBm for IEEE 802.11n HT40

Temperature Range: -30°C ~70°C

Hardware Version: DiLink HW 6125F Software Version: DiLink SW 4.0F

Sample submitting

way:

■Provided by customer □Sampling

Report No.: E202307262325-14 Page 7 of 24

Sample No: E202307262325-0001

The EUT antenna gain is provided by the applicant. This report is made solely on the

Note: basis of such data and/or information. We accept no responsibility for the authenticity

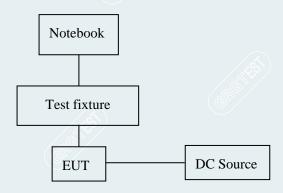
and completeness of the above data and information and the validity of the results

and/or conclusions.

2.5 CHANNEL LIST

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n HT20							
CH03 – CH09 for IEEE 802.11n HT40							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)							
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

2.6 TEST OPERATION MODE


Mode No.		Description of the modes
1	2.4G Wi-Fi TX mode	

2.7 LOCAL SUPPORTIVE INSTRUMENTS

Name of equipment	Manufacturer	Model	Serial number	Note
Notebook	LENOVO	TianYi 310-14ISK	MP18DLC6	1
Adapter(Notebook)	LENOVO	ADLX65NVV3A	SA10M42747	Unshielded, 1m (AC Cable) Shielded, 1.8m (DC Cable)
DC Source	LW	PS-305DM	1 🔊	/
Test fixture	/	/	18	/
Cable		<u>(\$</u>		
Test fixture cable	/	8/1	/	Unshielded 0.15m
USB cable	/	/		Unshielded 1.0m
DC cable	/	/	1	Unshielded 0.8m

Report No.: E202307262325-14 Page 8 of 24

2.8 CONFIGURATION OF SYSTEM UNDER TEST

Test software:

Software version	
QRCT	

Power Setting:

Mode	Date Rate	Frequecy (MHz)	Power Setting
		2412	15
IEEE 802.11b	1M	2437	15
		2462	15
		2412	15
IEEE 802.11g	6M	2437	15
		2462	15
		2412	14
IEEE 802.11n HT20	MCS0	2437	14
		2462	14
, ch		2422	11
IEEE 802.11n HT40	MCS0	2437	11
		2452	11

----- The following blanks -----

Report No.: E202307262325-14 Page 9 of 24

3. LABORATORY AND ACCREDITATIONS AND MEASUREMENT UNCERTAINTY

3.1 LABORATORY

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of GRG METROLOGY & TEST GROUP CO., LTD.

No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua District

Add.: Shenzhen, 518110, People's Republic of China

P.C.: 518110

Tel: 0755-61180008

Fax: 0755-61180008

3.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to GB/T 27025(ISO/IEC 17025:2017).

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	ISED (Company Number: 24897, CAB identifier:CN0069)
USA	FCC (Registration Number: 759402, Designation Number: CN1198)

Copies of granted accreditation certificates are available for downloading from our web site, http://www.grgtest.com

The following blanks	
----------------------	--

Report No.: E202307262325-14 Page 10 of 24

3.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measure	ment	Frequency	Uncertainty
	Coplanar	9kHz~30MHz	4.40dB ¹⁾
	Coaxial	9kHz~30MHz	4.40dB ¹⁾
		30MHz~200MHz	4.60dB ¹⁾
	Horizontal	200MHz~1000MHz	4.80dB ¹⁾
		1GHz∼18GHz	5.00dB ¹⁾
Radiated Emission		18GHz~26.5GHz	5.20dB ¹⁾
		30MHz~200MHz	4.70dB ¹⁾
/2		200MHz~1000MHz	4.70dB ¹⁾
	Vertical	1GHz∼18GHz	5.10dB ¹⁾
Ś		18GHz~26.5GHz	5.40dB ¹⁾

Note:

----- The following blanks -----

¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95%. This uncertainty represents an expanded uncertainty factor of k=2.

Report No.: E202307262325-14 Page 11 of 24

4. LIST OF USED TEST EQUIPMENT AT GRGT

				///			
Name of Equipment	Manufacturer Model		Serial Number	Calibration Due			
Radiated Spurious Emission (Below 1GHz)							
Test software	Tonscend	JS32-RE					
Bi-log Antenna	Schwarzbeck	VULB 9160	VULB9160-3402	2024-09-24			
Test Receiver	R&S	ESR26	101758	2024-09-22			
Preamplifier	SHIRONG ELECTRONIC	DLNA-30M1G- G41	20200928003	2023-12-19			

Note: The calibration interval of the above test instruments is 12 months.

Report No.: E202307262325-14 Page 12 of 24

5. RADIATED SPURIOUS EMISSIONS

5.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required.

Measurement Quasi-peak(dBµV/m)@distance 3m Frequency (MHz) Quasi-peak(µV/m) distance(m) 2400/F(kHz) 300 0.009-0.490 128.5~93.8 24000/F(kHz) 30 0.490-1.705 73.8~63 30 30 1.705-30.0 69.5 100 3 40 30~88 3 150 43.5 88~216 216~960 200 3 46 500 3 Above 960 54

NOTE:

- (1) The emission limits for the ranges 9-90kHz and 110-490kHz are based on measurements employing a linear average detector.
- (2) The lower limit shall apply at the transition frequencies.
- (3) Above 18GHz test distance is 1m, so the PeakLimit=74+20*log(3/1)=83.54 (dB μ V/m). The Avg Limit=54+20*log(3/1)=63.54 (dB μ V/m).

5.2 TEST PROCEDURES

1) Sequence of testing 9kHz to 30MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Report No.: E202307262325-14 Page 13 of 24

Final measurement:

- --- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0 $^{\circ}$ to 360 $^{\circ}$) and by rotating the elevation axes (0 $^{\circ}$ to 360 $^{\circ}$).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30MHz to 1GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0 ° to 360 ° and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Report No.: E202307262325-14 Page 14 of 24

3) Sequence of testing 1GHz to 18GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0 ° to 360 ° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18GHz Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- --- The EUT is placed on a desktop position in the center of the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Report No.: E202307262325-14 Page 15 of 24

Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

NOTE:

- (a). The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak&AVG), RBW=300Hz(for Peak&AVG). the frequency from 150kHz to 30MHz, Set RBW=9kHz, RBW=9kHz, (for QP Detector).
- (b). The frequency from 30MHz to 1GHz, Set RBW=120kHz, RBW=300kHz, (for QP Detector).
- (c). The frequency above 1GHz, for Peak detector: Set RBW=1MHz, RBW=3MHz.
- (d). The frequency above 1GHz, for Avg detector: Set RBW=1MHz, if the EUT is configured to transmit with duty cycle \geq 98%, set VBW \leq RBW/100 (i.e.,10kHz) but not less than 10Hz. if the EUT duty cycle is \leq 98%, set VBW \geq 1/T, Where T is defined in section 2.9.

5.3 TEST SETUP

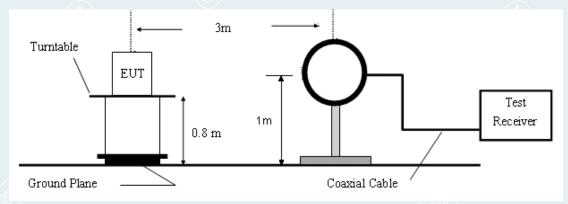


Figure 1. 9kHz to 30MHz radiated emissions test configuration

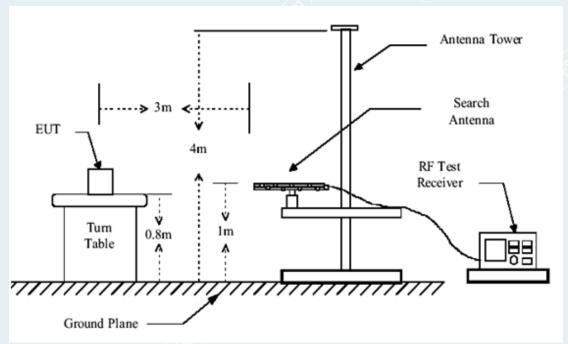


Figure 2. 30MHz to 1GHz radiated emissions test configuration

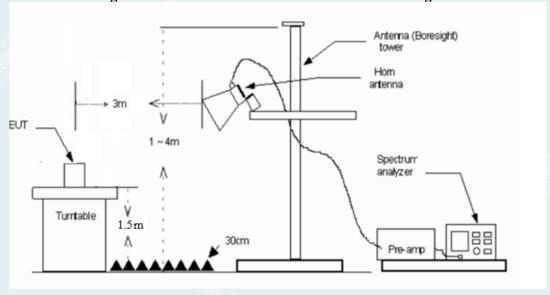


Figure 3. 1GHz to 18GHz radiated emissions test configuration

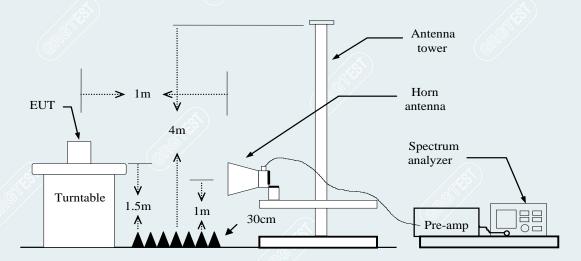


Figure 4.18GHz to 26.5GHz radiated emissions test configuration

5.4 DATA SAMPLE

30MHz to 1GHz

No.	Frequency	Reading	Factor	Level	Limit Margin		Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	37.06	-15.48	21.58	40.00	-18.42	PK	Vertical

1GHz-18GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	65.45	-11.12	54.33	74.00	-19.67	peak	Vertical
XXX	xxx	63.00	-11.12	51.88	54.00	-2.12	AVG	Vertical

Above 18GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	68.86	57.66	-11.20	83.54	25.88	peak	Vertical
XXX	XXX	68.89	-11.20	57.69	63.54	5.85	AVG	Vertical

Frequency (MHz) = Emission frequency in MHz

Ant.Pol. (H/V) = Antenna polarization

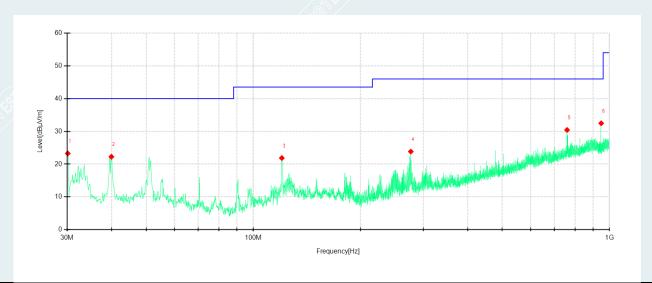
Reading (dBuV) = Uncorrected Analyzer / Receiver reading Correction Factor (dB/m) = Antenna factor + Cable loss - Amplifier gain

Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Remark Result (dBuV/m) – Limit (dBuV/m)

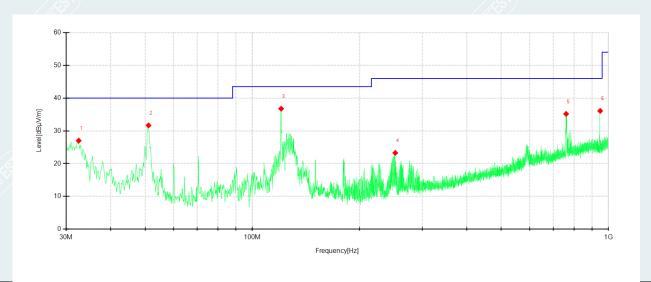
PK & Peak = Peak Reading


QP = Quasi-peak Reading AVG = Average Reading Report No.: E202307262325-14 Page 18 of 24

5.5 TEST RESULTS

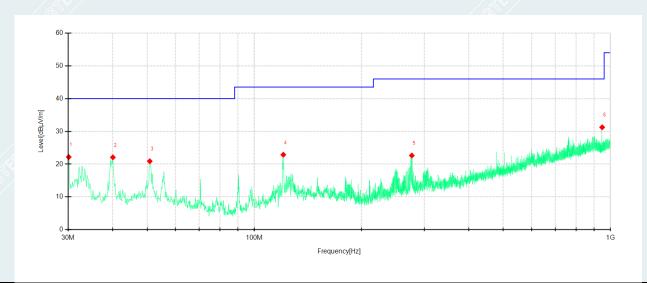
Below 1GHz

All models were pretested and only the worst modes and channels were recorded in this report. (IEEE 802.11g)


EUT Name	BYD Di3.0F	Model	MTCF03
Environmental Conditions	25.0°C/54%RH/101.0kPa	Test Voltage	DC 12V
Test Made	Mode 1/ IEEE 802.11g Frequency (2412MHz)	Polarity	Horizontal
Tested By	Zhang Zishan	Tested Date	2023-10-26

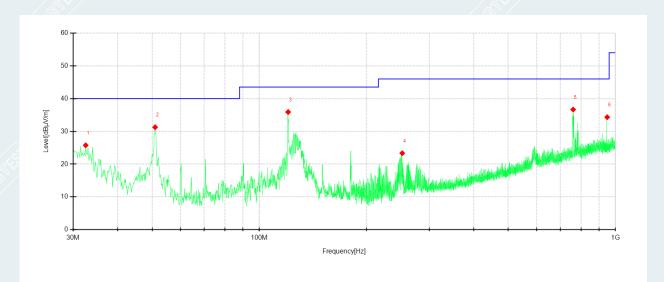
	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle []	Polarity	Verdict
1	30.1213	52.49	23.26	-29.23	40.00	16.74	PK	100	275	Horizontal	PASS
2	39.9437	50.92	22.26	-28.66	40.00	17.74	PK	100	78	Horizontal	PASS
3	120.2213	51.86	21.87	-29.99	43.50	21.63	PK	200	100	Horizontal	PASS
4	276.7746	52.19	23.84	-28.35	46.00	22.16	PK	100	223	Horizontal	PASS
5	760.1375	47.16	30.42	-16.74	46.00	15.58	PK	100	183	Horizontal	PASS
6	947.7347	47.88	32.47	-15.41	46.00	13.53	PK	200	229	Horizontal	PASS

Report No.: E202307262325-14 Page 19 of 24


EUT Name	BYD Di3.0F	Model	MTCF03
Environmental Conditions	25.0°C/54%RH/101.0kPa	Test Voltage	DC 12V
Test Mode	Mode 1/ IEEE 802.11g Frequency (2412MHz)	Polarity	Vertical
Tested By	Zhang Zishan	Tested Date	2023-10-26

	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle []	Polarity	Verdict
1	32.5466	56.11	27.02	-29.09	40.00	12.98	PK	100	306	Vertical	PASS
2	51.1001	60.25	31.67	-28.58	40.00	8.33	PK	100	294	Vertical	PASS
3	120.4638	66.72	36.76	-29.96	43.50	6.74	PK	100	98	Vertical	PASS
4	251.9152	52.55	23.28	-29.27	46.00	22.72	PK	100	357	Vertical	PASS
5	760.3800	51.90	35.17	-16.73	46.00	10.83	PK	100	34	Vertical	PASS
6	947.7347	51.50	36.09	-15.41	46.00	9.91	PK	200	250	Vertical	PASS

Report No.: E202307262325-14 Page 20 of 24


EUT Name	BYD Di3.0F	Model	MTCF03
Environmental Conditions	25.0°C/54%RH/101.0kPa	Test Voltage	DC 12V
l'l'est Mode	Mode 1/ IEEE 802.11g Frequency (2437MHz)	Polarity	Horizontal
Tested By	Zhang Zishan	Tested Date	2023-10-26

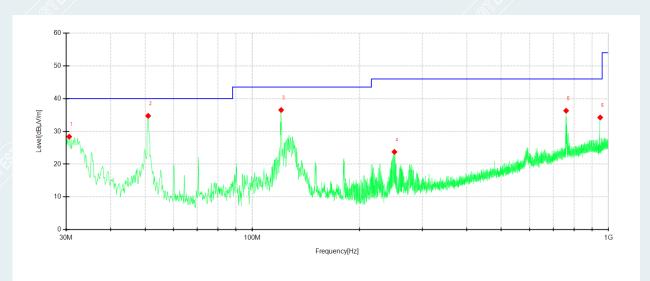
	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle []	Polarity	Verdict
1	30.1213	51.40	22.17	-29.23	40.00	17.83	PK	100	287	Horizontal	PASS
2	40.0650	50.74	22.08	-28.66	40.00	17.92	PK	100	339	Horizontal	PASS
3	50.8576	49.46	20.90	-28.56	40.00	19.10	PK	200	360	Horizontal	PASS
4	120.5851	52.83	22.88	-29.95	43.50	20.62	PK	200	86	Horizontal	PASS
5	276.7746	50.99	22.64	-28.35	46.00	23.36	PK	100	184	Horizontal	PASS
6	947.7347	46.66	31.25	-15.41	46.00	14.75	PK	200	254	Horizontal	PASS

Report No.: E202307262325-14 Page 21 of 24

EUT Name	BYD Di3.0F	Model	MTCF03
Environmental Conditions	25.0°C/54%RH/101.0kPa	Test Voltage	DC 12V
l'Est Mode	Mode 1/ IEEE 802.11g Frequency (2437MHz)	Polarity	Vertical
Tested By	Zhang Zishan	Tested Date	2023-10-26

	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle	Polarity	Verdict
1	32.5466	54.85	25.76	-29.09	40.00	14.24	PK	100	296	Vertical	PASS
2	50.9789	59.84	31.27	-28.57	40.00	8.73	PK	100	296	Vertical	PASS
3	120.4638	65.86	35.90	-29.96	43.50	7.60	PK	100	99	Vertical	PASS
4	251.9152	52.61	23.34	-29.27	46.00	22.66	PK	100	347	Vertical	PASS
5	760.5013	53.39	36.66	-16.73	46.00	9.34	PK	100	360	Vertical	PASS
6	947.7347	49.74	34.33	-15.41	46.00	11.67	PK	200	156	Vertical	PASS

Report No.: E202307262325-14 Page 22 of 24


EUT Name	BYD Di3.0F	Model	MTCF03
Environmental Conditions	25.0°C/54%RH/101.0kPa	Test Voltage	DC 12V
l'l'est Mode	Mode 1/ IEEE 802.11g Frequency (2462MHz)	Polarity	Horizontal
Tested By	Zhang Zishan	Tested Date	2023-10-26

	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle []	Polarity	Verdict
1	30.1213	53.65	24.42	-29.23	40.00	15.58	PK	100	238	Horizontal	PASS
2	40.1863	50.00	21.34	-28.66	40.00	18.66	PK	100	262	Horizontal	PASS
3	120.4638	51.92	21.96	-29.96	43.50	21.54	PK	200	71	Horizontal	PASS
4	277.0171	50.55	22.21	-28.34	46.00	23.79	PK	100	238	Horizontal	PASS
5	759.8950	47.94	31.20	-16.74	46.00	14.80	PK	100	134	Horizontal	PASS
6	947.6135	47.91	32.49	-15.42	46.00	13.51	PK	200	175	Horizontal	PASS

Report No.: E202307262325-14 Page 23 of 24

EUT Name	BYD Di3.0F	Model	MTCF03
Environmental Conditions	25.0°C/54%RH/101.0kPa	Test Voltage	DC 12V
Test Made	Mode 1/ IEEE 802.11g Frequency (2462MHz)	Polarity	Vertical
Tested By	Zhang Zishan	Tested Date	2023-10-26

Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle []	Polarity	Verdict
1	30.6063	57.60	28.39	-29.21	40.00	11.61	PK	100	241	Vertical	PASS
2	50.9789	63.30	34.73	-28.57	40.00	5.27	PK	100	280	Vertical	PASS
3	120.4638	66.47	36.51	-29.96	43.50	6.99	PK	100	45	Vertical	PASS
4	250.5813	53.03	23.73	-29.30	46.00	22.27	PK	100	345	Vertical	PASS
5	760.5013	53.03	36.30	-16.73	46.00	9.70	PK	100	267	Vertical	PASS
6	947.7347	49.65	34.24	-15.41	46.00	11.76	PK	200	67	Vertical	PASS

Remark:

- 1 No emission found between lowest internal used/generated frequency to 30MHz.
- Radiated emissions measured in frequency range from 9 kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 The IF bandwidth of Receiver between 30MHz to 1GHz was 120 kHz.

APPENDIX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM

Please refer to the attached document E202307262325-20 Test photo. $\label{eq:equation:equation:equation:equation}$

APPENDIX B. PHOTOGRAPH OF THE EUT

Please refer to the attached document E202307262325-21 EUT photo.

----- End of Report -----