

TEST REPORT

EUT Description WLAN and BT, 1x1 PCle M.2 1216 adapter card

Brand Name Intel® Wi-Fi AX101

Model Name AX101D2W

FCC ID PD9AX101D2

Date of Test Start/End 2020-11-11 / 2020-11-24

Features 802.11ax, Dual Band, 1x1 Wi-Fi + Bluetooth® 5,1 Diversity Antenna

(see section 5)

Applicant Intel Mobile Communications

100 Center Point Circle, Suite 200

Address Columbia, South Carolina 29210

USA

Contact Person Steven Hackett

Telephone/Fax/ Email steven.c.hackett@intel.com

Reference Standards FCC CFR Title 47 Part 15 E

(see section 1)

Test Report identification 200928-04.TR01

Rev. 00

Revision Control This test report revision replaces any previous test report revision

see section 8)

The test results relate only to the samples tested.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

Reference to accreditation shall be used only by full reproduction of test report.

Issued by Reviewed by

Khodor RIDA (Test Engineer Lead)

Cheiel IN (Technical Manager)

Intel Corporation S.A.S – WRF Lab
425 rue de Goa – Le Cargo B6 - 06600, Antibes, France
Tel. +33493001400 / Fax +33493001401

Table of Contents

1. Sta	andards, reference documents and applicable test methods	3
2. Ge	eneral conditions, competences and guarantees	3
3. En	vironmental Conditions	3
4. Te	st samples	4
	IT Features	
	marks and comments	
		_
	st Verdicts summary	
7.1. 8	802.11 a/n/ac/ax – U-NII-1	6
7.2.	802.11 a/n/ac/ax – U-NII-2A	6
8. Do	ocument Revision History	6
A.1	MEASUREMENT SYSTEM	7
A.2	TEST EQUIPMENT LIST	9
A.3	MEASUREMENT UNCERTAINTY EVALUATION	10
B.1	TEST CONDITIONS	11
B.2	TEST RESULTS TABLES U-NII-1	12
B.2.1	26DB & 99% BANDWIDTH	12
B.2.2	POWER LIMITS. MAXIMUM OUTPUT POWER & MAXIMUM POWER SPECTRAL DENSITY	14
B.2.3	UNDESIRABLE EMISSION LIMITS: OUT OF BAND (CONDUCTED)	20
B.2.4	RADIATED SPURIOUS EMISSION	21
B.3	TEST RESULTS TABLES U-NII-2A	33
B.3.1	26DB & 99% BANDWIDTH	33
B.3.2	POWER LIMITS. MAXIMUM OUTPUT POWER & MAXIMUM POWER SPECTRAL DENSITY	35
B.3.3	UNDESIRABLE EMISSIONS LIMITS : OUT OF BAND (CONDUCTED)	39
B.3.4	RADIATED SPURIOUS EMISSION	40
B.3.5	5 26DB AND 99% BANDWIDTH	52
B.3.6	MAXIMUM OUTPUT POWER	58
B.3.7	UNDESIRABLE EMISSION LIMITS: OUT OF BAND (CONDUCTED)	64
C.1	TEST SETUP	70
C.2	TEST SAMPLE	72

1. Standards, reference documents and applicable test methods

- 1. FCC Title 47 CFR part 15 Subpart E Unlicensed National Information Infrastructure Devices. 2019-10-01 Edition
- 2. FCC Title 47 CFR part 15 Subpart C §15.209 Radiated emission limits; general requirements. 2019-10-01 Edition
- 3. FCC OET KDB 789033 D02 v02r01 General U-NII Test Procedures New Rules Guidelines for compliance testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15, Subpart E).
- 4. FCC OET KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

2. General conditions, competences and guarantees

- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel WRF Lab declines any responsibility with respect to the identified information provided by the customer and that may affect the validity of results.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.
- ✓ Complete or partial reproduction of the report cannot be made without written permission of Intel WRF Lab.

3. Environmental Conditions

✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	20.2°C ± 3.4°C
Humidity	44% ± 17.5%

4. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note	
	200928-04.S09	RF Module	AX101D2W	WFM: D8F8834C5810	2020-11-03		
#1	180000-01.S06	Adapter 1216SD to M.2	HrP Adapter M2	N/A	2017-05-11	RF Conducted	
" '	170000-01.S02	Laptop	Latitude E5450	21HTPF2	2017-03-28	Til Conductor	
	180717-03.S14	Extender	PCB00651_01	6510818-132	2018-08-21		
	200928-04.S06	RF Module	AX101D2W	WFM:D8F8834C57E8	2020-11-03		
	180717-03.S13	Extender	PCB00651_01	6510818-131	2018-08-21		
#2	180000-01.S02	Socket	JfP Adapter M2	-	2017-08-09	Used for 30MHz-18GHz Radiated Spurious Emissions	
#2	170000-01.S16	Laptop	Latitude E5470	C2HTPF2	2017-06-13	tests except test cases in #4	
	200611-03.S28	Main Antenna	Skycross	-	2020-07-01		
	200611-03.S29	Aux Antenna	Skycross	-	2020-07-01		
	200928-04.S06	RF Module	AX101D2W	WFM:D8F8834C57E8	2020-11-03		
	200102-01.S03	Extender	ADEXELEC	-	2020-01-02		
	200928-02.S11	Adaptor	HrP M2 Adaptor 1216	6961919-172	2020-10-27		
#3	200715-03.S06	Absorber	MCS material	-	2020-07-23	Used for 18GHz-40GHz Radiated Spurious Emissions tests	
#3	180000-01.S02	Socket	JfP Adapter M2	-	2017-08-09		
	170801-01.S10	Laptop	Latitude E7470	7KNOXF2	2017-09-08		
	200611-03.S28	Main Antenna	Skycross	-	2020-07-01		
	200611-03.S29	Aux Antenna	Skycross	-	2020-07-01		
	200928-04.S11	RF Module	AX101D2W	WFM18CC18F1C18D	2020-11-03		
	180717-03.S13	Extender	PCB00651_01	6510818-131	2018-08-21	Used for 6.4-18 GHz Radiated Spurious Emissions tests for	
#4	180000-01.S02	Socket	JfP Adapter M2	-	2017-08-09	802.11a-Ch56-Ant1 802.11n20-Ch52-Ant1	
#4	170000-01.S16	Laptop	Latitude E5470	C2HTPF2	2017-06-13	802.11n20-Ch56-Ant1 802.11ac80-Ch58ac80-Ant1	
	200611-03.S28	Main Antenna	Skycross	-	2020-07-01		
	200611-03.S29	Aux Antenna	Skycross	-	2020-07-01		

5. EUT Features

The herein information is provided by the customer

Brand Name	Intel® Wi-Fi AX101				
Model Name	AX101D2W				
Software Version	DRTU 01594_99_3500_51\	V			
Driver Version	99.0.58.2				
Prototype / Production	Production				
Supported Radios	802.11b/g/n/ax 2.4GHz (2400.0 – 2483.5 MHz) 802.11a/n/ac/ax 5.2GHz (5150.0 – 5350.0 MHz) 5.6GHz (5470.0 – 5725.0 MHz) 5.8GHz (5725.0 – 5850.0 MHz) Bluetooth 5.1 2.4GHz (2400.0 – 2483.5 MHz)				
Antenna Information	Transmitter Main (chain A DIV 1) Aux (chain A Div 2) Manufacturer SkyCross Skycross Antenna type PIFA antenna PIFA antenna Part number N/A N/A Declared antenna gain (dBi) +5 +5				
Document	Filename Intel_Ref_Antenna data_HMC-M2 Ant_Spec_Universe_SkyCross Antenna Date of receipt 2013-01-28				

6. Remarks and comments

1. No deviations were made from the test methods listed in section 1 of this report

7. Test Verdicts summary

The statement of conformity to applicable standards in the table below are based on the measured values, without taking into account the measurement uncertainties.

7.1. 802.11 a/n/ac/ax - U-NII-1

FCC part	Test name	Verdict
15.407 (a) (1)	Power Limits. Maximum output power	Р
15.407 (a) (1)	Power spectral density	Р
15.407 (b) (1) 15.209	Undesirable emissions limits: Band Edge (conducted)	Р
15.407 (b) (1) 15.209	Undesirable emissions limits: Spurious emissions (radiated)	Р

7.2. 802.11 a/n/ac/ax – U-NII-2A

FCC part	Test name	Verdict
15.407 (a) (2)	Power Limits. Maximum output power	Р
15.407 (a) (2)	Power spectral density	Р
15.407 (b) (2) 15.209	Undesirable emissions limits: Band Edge (conducted)	Р
15.407 (b) (2) 15.209	Undesirable emissions limits: Spurious emissions (radiated)	Р

P: Pass

F: Fail

NM: Not Measured NA: Not Applicable

8. Document Revision History

Revision #	Modified by	Revision Details
Rev. 00	C.Requin	First Issue

Annex A. Test & System Description

A.1 Measurement System

Measurements were performed using the following setups, made in accordance to the general provisions of FCC OET KDB 789033 D02 General UNII Test Procedures.

The DUT was installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes, using the Intel proprietary tool DRTU.

Sample Calculation

The spurious received voltage $V(dB\mu V)$ in the spectrum Analyzer is converted to Electric field strength using the transducer factor F corresponding to the Rx path Loss:

F (dB/m)= Rx Antenna Factor (dB/m) + Cable losses (dB) – Amplifiers Gain (dBi)
**E (dB
$$\mu$$
V/m) =** V(dB μ V) + F (dB/m)

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

$$E_{SpecLimit} = E_{Meas} + 20*log(D_{Meas}/D_{SpecLimit})$$

where

 $E_{SpecLimit}$ is the field strength of the emission at the distance specified by the limit, in dB μ V/m E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m D_{Meas} is the measurement distance, in m $D_{SpecLimit}$ is the distance specified by the limit, in m

A.2 Test Equipment List

Conducted setup

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0316	Spectrum Analyzer	FSV30	103309	Rohde & Schwarz	2019-09-02	2021-09-02
0442	RF cable 50cm	Coax 2.92mm Male To 2.92mm Male	N/A	PASTERNACK	2020-08-26	2021-02-26
1044	10dB Attenuator + MH4	N/A	N/A	N/A	N/A	N/A
0583	Temp & Humidity Logger	RA12E-TH1-RAS	RA12-B9D6E	AVITECH	2019-09-06	2021-09-06
1002	Measurement SW v1.5.4.2	Octopi	N/A	Step AT	N/A	N/A

Radiated Setup #1

Radiated	Setup #1					
ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0135	Anechoic Chamber	FACT3	5720	ETS-Lindgren	2020-07-06	2022-01-07
0136	Turn Table	ETS	-	ETS-Lindgren	N/A	N/A
0147	Switch & Positioning systems	EMC Center	00159757	ETS-Lindgren	N/A	N/A
0530	Measurement SW	EMC32, v10.40.10	100623	Rohde & Schwarz	N/A	N/A
1033	Boresight antenna mast	BAM 4.0-P	P/278/2890.01	Maturo	N/A	N/A
0420	Spectrum Analyzer	FSV40	101556	Rohde & Schwarz	2020-05-25	2022-05-25
0993	Biconical antenna 30 MHz – 1 GHz	UBAA9115 + BBVU9135 + DGA9552N	0286 + CH 9044	Schwarzbeck	2019-11-22	2021-11-22
0325	Horn antenna	3117	00157734	ETS-Lindgren	2019-08-12	2021-08-12
0141	Horn Antenna + Amplifier + HPF6.4	3117	00157736	ETS-Lindgren	2020-04-02	2022-04-02
0334	Double-Ridged Waveguide Horn with Pre-Amplifier 18 GHz to 40 GHz	3116C+PA	00169308bis + 00196308	ETS-Lindgren	2019-07-24	2021-07-24
0202	Cable 1m - 30MHz to 18 GHz	UFB311A-0-3360- 50U300	MFR 64639223229-001	Micro-coax	2020-08-25	2021-02-25
0206	Cable 1.2m – 18 to 40 GHz	UFA147A-0-0480- 200200	MFR 64639223720-003	Micro-coax	2020-08-25	2021-02-25
0263	Cable 1m - 1GHz to 18GHz	UFA147A	-	Utilflex	2020-08-25	2021-02-25
0369	Cable 2m - 26.5GHz to 40GHz	794-9191-2000A	E00327	Atem	2020-08-25	2021-02-25
0371	Cable 1m – 30 MHz - 18GHz	UFB311A-0-0590- 50U50U	MFR 64639 223230-001	Micro-coax	2020-08-25	2021-02-25
0758	Cable 7.5m - 30MHz to 18GHz	0501051057000GX	18.23.181	Radiall	2020-08-25	2021-02-25
0809	Cable 7m - 18GHz to 40GHz	R286304009	-	Radiall	2020-08-25	2021-02-25
0859	Cable 2.5m - 30MHz to 18GHz	0500990992500KE	19.23.395	Radiall	2020-08-25	2021-02-25
0797	Temp & Humidity Logger	RA12E-TH1-RAS	RA12-D0EB1A	Avtech	2019-07-04	2021-07-04
		•		•	•	•

N/A: Not Applicable

Radiated Setup #2

Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
Anechoic chamber	RFD-FA-100	5996	ETS Lindgren	2020-07-06	2022-07-06
Switch & Positioner	EMCenter	00151232	ETS Lindgren	N/A	N/A
Antenna Tower	2171B-3.0M	00150123	ETS Lindgren	N/A	N/A
Turntable	-	ı	ETS Lindgren	N/A	N/A
Measurement SW	EMC32, v10.50.10	100401	Rohde & Schwarz	N/A	N/A
Spectrum Analyzer	FSV40	101358	Rohde & Schwarz	2020-02-25	2022-02-25
Double Ridge Horn (1- 18GHz)	3117	00152266	ETS Lindgren	2020-03-08	2022-03-08
Horn Antenna 3117 + Amplifier + HPF6.4	3117	00157736	ETS-Lindgren	2020-04-02	2022-04-02
Double Horn Ridged antenna	3116C-PA	00169308bis + 00196308	ETS-Lindgren	2019-07-24	2021-07-24
RF Cable 1-18GHz, 1.5 m	0501050991200GX	19.21.710	Radiall	2020-08-20	2021-02-20
RF Cable 1-18GHz, 1.2 m	2301761761200PJ	12.22.1104	Radiall	2020-08-20	2021-02-20
RF Cable 1-18GHz - 6.5m	140-8500-11-51	001	Spectrum	2020-08-20	2021-02-20
RF Cable 1GHz-18GHz 1.5m	-	-	Spirent	2020-08-20	2021-02-20
RF Cable 18-40 GHz 6m	R286304009	1747364	Radiall	2020-08-20	2021-02-20
RF Cable 1.2m 40MHz-40GHz	794-9191-1200A	DA585	Atem	2020-08-20	2021-02-20
RF Cable 1-9.5GHz 1.2m	0500990991200KE		Radiall	2020-08-20	2021-02-20
Temp & Humidity Logger	RA12E-TH1-RAS	RA12-D4F316	Avtech	2019-07-05	2021-07-05
	Anechoic chamber Switch & Positioner Antenna Tower Turntable Measurement SW Spectrum Analyzer Double Ridge Horn (1- 18GHz) Horn Antenna 3117 + Amplifier + HPF6.4 Double Horn Ridged antenna RF Cable 1-18GHz, 1.5 m RF Cable 1-18GHz, 1.2 m RF Cable 1-18GHz - 6.5m RF Cable 1GHz-18GHz 1.5m RF Cable 1GHz-18GHz 1.5m RF Cable 1B-40 GHz 6m RF Cable 1.2m 40MHz-40GHz RF Cable 1-9.5GHz 1.2m	Anechoic chamber RFD-FA-100 Switch & Positioner EMCenter Antenna Tower 2171B-3.0M Turntable - Measurement SW EMC32, v10.50.10 Spectrum Analyzer FSV40 Double Ridge Horn (1- 18GHz) 3117 Horn Antenna 3117 + Amplifier + HPF6.4 Double Horn Ridged antenna 3116C-PA RF Cable 1-18GHz, 1.5 m 0501050991200GX RF Cable 1-18GHz, 1.2 m 2301761761200PJ RF Cable 1-18GHz - 6.5m 140-8500-11-51 RF Cable 1GHz-18GHz 1.5m - RF Cable 18-40 GHz 6m R286304009 RF Cable 1.2m 40MHz-40GHz 794-9191-1200A RF Cable 1-9.5GHz 1.2m 0500990991200KE	Anechoic chamber RFD-FA-100 5996 Switch & Positioner EMCenter 00151232 Antenna Tower 2171B-3.0M 00150123 Turntable	Anechoic chamber RFD-FA-100 5996 ETS Lindgren Switch & Positioner EMCenter 00151232 ETS Lindgren Antenna Tower 2171B-3.0M 00150123 ETS Lindgren Turntable - EMC32, v10.50.10 100401 Rohde & Schwarz Measurement SW EMC32, v10.50.10 100401 Rohde & Schwarz Spectrum Analyzer FSV40 101358 Rohde & Schwarz Double Ridge Horn (1- 18GHz) 3117 00152266 ETS Lindgren Horn Antenna 3117 + Amplifier + HPF6.4 3117 00157736 ETS-Lindgren Double Horn Ridged antenna 3116C-PA 00169308bis + 00196308 + ETS-Lindgren RF Cable 1-18GHz, 1.5 m 0501050991200GX 19.21.710 Radiall RF Cable 1-18GHz, 1.2 m 2301761761200PJ 12.22.1104 Radiall RF Cable 1-18GHz - 6.5m 140-8500-11-51 001 Spectrum RF Cable 1GHz-18GHz 1.5m - Spirent RF Cable 18-40 GHz 6m R286304009 1747364 Radiall RF Cable 1-9.5GHz 1.2m 0500999991200KE <td>Anechoic chamber RFD-FA-100 5996 ETS Lindgren 2020-07-06 Switch & Positioner EMCenter 00151232 ETS Lindgren N/A Antenna Tower 2171B-3.0M 00150123 ETS Lindgren N/A Turntable - - ETS Lindgren N/A Measurement SW EMC32, v10.50.10 100401 Rohde & Schwarz N/A Spectrum Analyzer FSV40 101358 Rohde & Schwarz 2020-02-25 Double Ridge Horn (1- 18GHz) 3117 00152266 ETS Lindgren 2020-03-08 Horn Antenna 3117 + Amplifier + HPF6.4 3117 00157736 ETS-Lindgren 2020-04-02 HPF6.4 00169308bis + HPF6.4 ETS-Lindgren 2020-04-02 ETS-Lindgren 2019-07-24 RF Cable 1-18GHz, 1.5 m 0501050991200GX 19.21.710 Radiall 2020-08-20 RF Cable 1-18GHz, 1.2 m 2301761761200PJ 12.22.1104 Radiall 2020-08-20 RF Cable 1-18GHz - 6.5m 140-8500-11-51 001 Spectrum 2020-08-20 RF Cable 1B-40 GHz 6m</td>	Anechoic chamber RFD-FA-100 5996 ETS Lindgren 2020-07-06 Switch & Positioner EMCenter 00151232 ETS Lindgren N/A Antenna Tower 2171B-3.0M 00150123 ETS Lindgren N/A Turntable - - ETS Lindgren N/A Measurement SW EMC32, v10.50.10 100401 Rohde & Schwarz N/A Spectrum Analyzer FSV40 101358 Rohde & Schwarz 2020-02-25 Double Ridge Horn (1- 18GHz) 3117 00152266 ETS Lindgren 2020-03-08 Horn Antenna 3117 + Amplifier + HPF6.4 3117 00157736 ETS-Lindgren 2020-04-02 HPF6.4 00169308bis + HPF6.4 ETS-Lindgren 2020-04-02 ETS-Lindgren 2019-07-24 RF Cable 1-18GHz, 1.5 m 0501050991200GX 19.21.710 Radiall 2020-08-20 RF Cable 1-18GHz, 1.2 m 2301761761200PJ 12.22.1104 Radiall 2020-08-20 RF Cable 1-18GHz - 6.5m 140-8500-11-51 001 Spectrum 2020-08-20 RF Cable 1B-40 GHz 6m

N/A: Not Applicable

Radiated Setup - shared equipments Shared Radiated Equipment

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0616	Power Sensor	NRP-Z81	104385	Rohde & Schwarz	2020-04-08	2022-04-08
0617	Power Sensor	NRP-Z81	104386	Rohde & Schwarz	2020-04-08	2022-04-08
0618	Power Sensor	NRP-Z81	104382	Rohde & Schwarz	2020-04-08	2022-04-08

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the table below with a coverage factor of k = 2 to indicate a 95% level of confidence:

Measurement type	Uncertainty	Unit
Timing	±0.12	%
Power Spectral density	±1.47	dB
Occupied bandwidth	±2.07	%
Conducted Power	±1.03	dB
Conducted Spurious Emission <40 GHz	±3.45	dB
Radiated tests <1GHz	±5.26	dB
Radiated tests 1GHz – 40 GHz	±4.85	dB

Annex B. Test Results U-NII-1 & U-NII-2A

The herein test results were performed by:

Test case measurement	Test Engineer
26dB & 99% bandwidth	C.Requin
Power Limits. Maximum output power	C.Requin
Power spectral density	C.Requin
Undesirable emissions limits: Band Edge (conducted)	C.Requin
Undesirable emissions limits (radiated)	A.Lounes, N.Bui

B.1 Test Conditions

For all modes, the EUT can transmit at both CHAIN A DIV1 and CHAIN A DIV2 RF outputs individually, but not simultaneously.

The following data rates were selected based on preliminary testing that identified those rates as the worst cases for output power and spurious levels at the band edges:

Transmission	Mode	Bandwidth (MHz)	Worst Case Data Rate
	802.11a	20	6Mbps
	802.11n	20	HT0
	002.1111	40	HT0
CHAIN A – DIV 1/ DIV 2	802.11ac	80	VHT0
		20	HE0
	802.11ax	40	HE0
		80	HE0

B.2 Test Results Tables U-NII-1

B.2.1 26dB & 99% Bandwidth

Test procedure

The conducted setup shown in section was used to measure the 26dB & 99% Bandwidth. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

Results tables

Mode	Rate	Antenna	Channel	Freq [MHz]	26dB BW [MHz]	99% BW [MHz]
			36	5180	23.65	16.48
		CHAIN A DIV1	40	5200	23.90	16.64
802.11a	GMbpa		48	5240	34.20	19.92
002.11a	6Mbps		36	5180	24.35	16.64
		CHAIN A DIV2	40	5200	23.45	16.56
			48	5240	34.80	20.36
	НТ0		36	5180	23.95	17.68
		CHAIN A DIV1	40	5200	24.15	17.68
802.11n20			48	5240	33.80	19.52
602.111120		CHAIN A DIV2	36	5180	24.35	17.84
			40	5200	24.20	17.72
			48	5240	35.70	20.48
		CHAIN A DIV1	38	5190	42.75	36.08
000 44=40	LITO	CHAIN A DIVI	46	5230	43.47	36.08
802.11n40	HT0		38	5190	43.56	36.00
		CHAIN A DIV2	46	5230	43.56	36.08
902 110090	VHT0	CHAIN A DIV1	42	5210	88.54	75.00
802.11ac80	VHIU	CHAIN A DIV2	42	3210	89.11	75.00

Max Value

Mode	Rate	Antenna	Channel	Freq [MHz]	RU config.	26dB BW [MHz]	99% BW [MHz]
					Full	23.35	18.92
			36	5180	26/0	20.55	18.36
		CHAIN A	30	3100	52/37	22.05	18.36
		DIV1			106/53	23.05	18.28
			40	5200	Full	23.10	18.92
802.11ax20	HE0		48	5240	Full	31.80	19.36
602.11ax20	HEU				Full	23.95	18.88
			36	5180	26/0	20.65	18.44
		CHAIN A DIV2	30	5160	52/37	21.40	18.44
					106/53	23.00	18.24
			40	5200	Full	23.35	18.88
			48	5240	Full	35.15	19.80
		OLIAINI A	38	5190	Full	42.48	37.60
		CHAIN A DIV1	30	5190	242/61	24.21	18.88
802.11ax40	ЦΕО	DIVI	46	5230	Full	42.84	37.60
602.11ax40	HE0	CLIAINIA	38	5190	Full	42.39	37.44
		CHAIN A DIV2	30	5190	242/61	23.58	18.72
		DIVZ	46	5230	Full	42.30	37.52
		CHAIN A	42	5210	Full	84.55	76.80
802.11ax80	HE0	DIV1	42	3210	484/65	43.32	37.44
002.118X00	ПЕО	CHAIN A	42	5210	Full	85.69	76.80
		DIV2	42	3210	484/65	42.94	37.44

Max Value

See Section B.3.5 for the screenshot results

B.2.2 Power Limits. Maximum Output power & Maximum power spectral density

Test limits

FCC part	Limits
15.407 (a) (1) (iv)	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test procedure

The Maximum Conducted Output Power was measured using the channel integration method according to section E) 2) e) (Method SA-2 Alternative) of FCC OET KDB 789033 D02

The maximum power spectral density (PSD) was measured using the method according to section F) (Method SA-2 Alternative) of FCC OET KDB 789033 D02

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

The conducted setup shown in section was used to measure the maximum conducted output power and power spectral density. The antenna terminal of the EUT is connected to the spectrum analyser through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

Results tables

Duty cycle

Mode	Rate	Antenna	Duty Cycle [%]
000.445	CMbna	CHAIN A DIV1	94.90%
802.11a	6Mbps	CHAIN A DIV2	94.90%
802.11n20	HT0	CHAIN A DIV1	98.68%
802.111120	1110	CHAIN A DIV2	98.68%
802.11ax20	HE0	CHAIN A DIV1	98.68%
002.118,20	TILU	CHAIN A DIV2	98.68%
802.11n40	HT0	CHAIN A DIV1	98.68%
002.111140		CHAIN A DIV2	98.68%
802.11ax40	HE0	CHAIN A DIV1	98.68%
602.11dX40	ПЕО	CHAIN A DIV2	98.68%
802.11ac80	VHT0	CHAIN A DIV1	98.60%
002.11d000	VIIIU	CHAIN A DIV2	98.60%
802.11ax80	HE0	CHAIN A DIV1	98.60%
002.11dX00	TIEU	CHAIN A DIV2	98.60%

Maximum output power

Mode	Rate	Channel	Freq [MHz]	Antenna	Average Conducted Ouput Power [dBm]	Avg Max* Conducted Ouput Power [dBm]	Avg Max*. EIRP [dBm]	Avg Max* Conducted Power [mW]			
		36	5180	CHAIN A DIV1	15.61	15.84	20.84	38.35			
		30	3160	CHAIN A DIV2	15.45	15.68	20.68	36.96			
802.11a	CMbpa	40	F200	CHAIN A DIV1	17.63	17.86	22.86	61.06			
602.11a	6Mbps	40	5200	CHAIN A DIV2	17.37	17.60	22.60	57.51			
		40	F240	CHAIN A DIV1	21.18	21.41	26.41	138.27			
		48	5240	CHAIN A DIV2	21.32	21.55	26.55	142.80			
		36 HT0 40	26	26	5180	CHAIN A DIV1	15.57	15.57	20.57	36.06	
			5160	CHAIN A DIV2	15.35	15.35	20.35	34.28			
902 44 20	LITO		40	F200	CHAIN A DIV1	17.56	17.56	22.56	57.02		
802.11n20	піо		5200	CHAIN A DIV2	17.49	17.49	22.49	56.10			
		40	5040	CHAIN A DIV1	21.14	21.14	26.14	130.02			
		48	48	5240	CHAIN A DIV2	21.19	21.19	26.19	131.52		
		00	5400	CHAIN A DIV1	14.96	14.96	19.96	31.33			
000 44 - 40	LITO	38	5190	CHAIN A DIV2	14.77	14.77	19.77	29.99			
802.11n40	HT0	40	5000	CHAIN A DIV1	16.63	16.63	21.63	46.03			
		46	5230	CHAIN A DIV2	16.40	16.40	21.40	43.65			
000 44 = -00	\/LITO	40	5040	CHAIN A DIV1	14.22	14.22	19.22	26.42			
802.11ac80 VHT0	VHT0	42	42	42	42	5210	CHAIN A DIV2	14.52	14.52	19.52	28.31

^{*}Maximum values are the duty cycle compensated values calculated from the average (measured) values

Max Value Min Value

Mode	Rate	Channel	Freq [MHz]	Antenna	RU config.	Average Conducted Ouput Power [dBm]	Avg Max* Conducted Ouput Power [dBm]	Avg Max*. EIRP [dBm]	Avg Max* Conducted Power [mW]
					Full	15.35	15.35	20.35	34.28
				CHAIN A DIV1	26/0	13.66	13.66	18.66	23.23
				CHAIN A DIVI	52/37	16.33	16.33	21.33	42.95
		36	5180		106/53	16.11	16.11	21.11	40.83
		30	3100		Full	15.18	15.18	20.18	32.96
802.11ax20	HE0			CHAIN A DIV2	26/0	13.83	13.83	18.83	24.15
002.11ax20	602.11ax20			CHAIN A DIVZ	52/37	15.83	15.83	20.83	38.28
					106/53	15.98	15.98	20.98	39.63
		40	5200	CHAIN A DIV1	Full	17.57	17.57	22.57	57.15
				CHAIN A DIV2	Full	17.64	17.64	22.64	58.08
		48	5240	CHAIN A DIV1	Full	21.09	21.09	26.09	128.53
		40	3240	CHAIN A DIV2	Full	21.18	21.18	26.18	131.22
				CHAIN A DIV1	Full	14.70	14.70	19.70	29.51
		38	5190	CHAIN A DIVI	242/61	15.57	15.57	20.57	36.06
802.11ax40	HE0	30	5190	CHAIN A DIV2	Full	14.56	14.56	19.56	28.58
002.11ax40	ПЕО			CHAIN A DIVZ	242/61	15.06	15.06	20.06	32.06
		46	5230	CHAIN A DIV1	Full	16.49	16.49	21.49	44.57
		40	5230	CHAIN A DIV2	Full	16.48	16.48	21.48	44.46
				CHAIN A DIV1	Full	14.51	14.51	19.51	28.25
802.11ax80	LIEO	42	5210	CHAIN A DIVI	484/65	14.16	14.16	19.16	26.06
002.118X80	ПЕО	HE0 42	5210	CHAIN A DIVE	Full	14.48	14.48	19.48	28.05
				CHAIN A DIV2	484/65	14.14	14.14	19.14	25.94

^{*}Maximum values are the duty cycle compensated values calculated from the average (measured) values

Max Value Min Value

Maximum power spectral Density (PSD)

Mode	Rate	Channel	Freq [MHz]	Antenna	Average conducted PSD [dBm/MHz]	Maximum* conducted PSD [dBm/MHz]				
		20	5400	CHAIN A DIV1	4.88	5.11				
		36	5180	CHAIN A DIV2	4.64	4.87				
802.11a	6Mbpc	40	5200	CHAIN A DIV1	6.84	7.07				
602.11a	6Mbps	40		CHAIN A DIV2	6.57	6.80				
		48	5240	CHAIN A DIV1	10.34	10.57				
		40	5240	CHAIN A DIV2	10.47	10.70				
		36 40	5180	CHAIN A DIV1	4.55	4.55				
				CHAIN A DIV2	4.32	4.32				
002 11=20	HT0		5200	CHAIN A DIV1	6.56	6.56				
802.11n20	по			CHAIN A DIV2	6.48	6.48				
				40	5040	CHAIN A DIV1	10.10	10.10		
									48	5240
		38	5190	CHAIN A DIV1	0.57	0.57				
002 115 10	LITO	36	5190	CHAIN A DIV2	0.37	0.37				
802.11n40	піо	HT0	F220	CHAIN A DIV1	2.18	2.18				
		46	5230	CHAIN A DIV2	1.93	1.93				
902 110090	VILITO	VHT0 42	VHT0 42	V/LITO 40		CHAIN A DIV1	-3.25	-3.25		
802.11ac80	802.11ac80 VHT0			42 5210	CHAIN A DIV2	-2.99	-2.99			

^{*} Maximum values are the duty cycle compensated values calculated from the measured average values

i	intel.	

Mode	Rate	#Ch	Freq [MHz]	Antenna	RU config.	Average cond.PSD [dBm/MHz]	Max*cond.PSD [dBm/MHz]
				Full	4.16	4.16	
				CHAIN A DIV1	26/0	10.82	10.82
				CHAIN A DIVI	52/37	10.56	10.56
		36	F100		106/53	7.26	7.26
		30	5180		Full	4.00	4.00
802.11ax20	HE0			CHAIN A DIV2	26/0	10.99	10.99
602.11ax20 NE	HEU			CHAIN A DIVZ	52/37	10.07	10.07
					106/53	7.14	7.14
		40	5200	CHAIN A DIV1	Full	6.38	6.38
				CHAIN A DIV2	Full	6.44	6.44
			5240	CHAIN A DIV1	Full	9.88	9.88
				CHAIN A DIV2	Full	9.96	9.96
				CHAIN A DIV1	Full	0.07	0.07
		38	5190	CHAIN A DIVI	242/61	4.29	4.29
802.11ax40	HE0	30	5190	CHAIN A DIV2	Full	-0.06	-0.06
002.11dX40	ПЕО			CHAIN A DIVZ	242/61	3.78	3.78
		46	5230	CHAIN A DIV1	Full	1.86	1.86
		40	5230	CHAIN A DIV2	Full	1.84	1.84
				CHAIN A DIV1	Full	-3.05	-3.05
802.11ax80	HE0	42	5210	CHAIN A DIVI	484/65	-0.41	-0.41
002.118X00	HEU	42	5210	CHAIN A DIV2	Full	-3.11	-3.11
				CHAIN A DIV2	484/65	-0.41	-0.41

^{*} Maximum values are the duty cycle compensated values calculated from the measured average values

See Section B.3.6 for the screenshot results

B.2.3 Undesirable emission limits : out of band (Conducted)

Test limits

FCC part	Limits								
15.407 (b) (1)	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.								
	Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):								
	Freq Range (MHz)	Field Strength (μV/m)	Field Strength (dB _µ V/m)	Meas. Distance (m)					
	30-88	100	40	3]				
	88-216	150	43.5	3]				
	216-960	200	46	3]				
15.209	Above 960	500	54	3					
	The emission limits shown in quasi-peak detector except MHz. Radiated emission lim an average detector. For average radiated emissi when measuring with peak values in the table.	for the frequency lits in these three longer	pands 9-90 kHz, pands are based above 1000 MH:	110-490 kHz and on measuremenz, there is also a l	d above 1000 ats employing imit specified				

Test procedure

The conducted setup shown in section was used to measure undesirable emissions on the out of band domain. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss and the declared antenna gain.

Both lower and upper side of the out of band were performed using the integration method as defined in the out of band measurements section (paragraph II.G.3.d) of 789033 D02 v02r01

In case of out of band measurements falling in restricted bands, the declared antenna gain is also compensated in the graph.

For out of band measurements falling in restricted bands, the following limits in dBm were applied for the average detector after the conversion from the limits detailed above in dB μ V/m, according to FCC 47 CFR part 15 - Subpart C – §15.209(a). The limits in dBm for peak detector are 20dB above the indicated values in the table.

	§15.209(a)		Converted values		
Freq Range (MHz)	Distance (m)	Field strength (microvolts/meter)	Field strength (dB microvolts/meter)	Power (dBm)	
Above 960	3	500	54.0	-41.2	

See Section B.3.7 for the screenshot results.

B.2.4 Radiated spurious emission

Standard references

FCC part	Limits							
15.407 (b) (1)		For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.						
		Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):						
		Freq Range (MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Meas. Distance (m)			
		30-88	100	40	3			
		88-216	150	43.5	3			
		216-960	200	46	3			
15.209		Above 960	500	54	3			
	quasi-peak d MHz. Radiate an average d For average	etector except for ed emission limit letector. radiated emission ring with peak of	the above table a or the frequency be s in these three be n measurements detector function,	oands 9-90 kHz, oands are based above 1000 MHz	110-490 kHz and on measuremenz, there is also a l	d above 1000 its employing imit specified		

Test procedure

The radiated setup shown in section was used to measure the radiated spurious emissions.

Depending of the frequency range and bands being tested, different antennas and filters were used.

The final measurement is done by varying the antenna height, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

The radiated spurious emission was measured on the worst case configuration selected from the section B.1 and using the low, middle and high channels.

Test Results

Radiated spurious - 30 MHz - 1 GHz

Radiated Spurious - All modes

Frequency	Quasi-Peak	Limit	Margin	Polar
MHz	dBμV/m	dBµV/m	dB	
37.8	30.0	40.0	10.0	V
74.9	31.4	40.0	8.6	V
136.9	38.1	43.5	5.4	Н
261.5	40.5	46.0	5.5	Н

Note 1: The spurious signals detected do not depend on either the operating channel or the modulation mode.

<u>802.11a</u>

1 GHz - 40 GHz, 802.11a, 6Mbps, Chain A DIV1

Radiated Spurious - CH36

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBμV/m	dBμV/m	dBμV/m	dB	
3379.5	59.3		68.2	8.9	V
10360.4	51.4		68.2	16.8	V
15544.2	52.0		74.0	22.0	V
15544.2		43.4	54.0	10.6	V
39756.5	56.9		74.0	17.1	V
39756.5		45.6	54.0	8.4	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3369.5	58.5		68.2	9.7	Н
10403.5	54.0		68.2	14.2	V
15597.4	53.7		74.0	20.3	Н
15597.4		44.5	54.0	9.5	V
39595.5		46.5	54.0	7.5	V
39596.9	57.6		74.0	16.4	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3377.5	58.9		68.2	9.3	V
10476.9	50.9		68.2	17.3	V
15722.0	55.3		74.0	18.7	V
15722.0		47.3	54.0	6.7	V
20956.6		38.2	54.0	15.8	V
20960.8	51.6		74.0	22.4	V

1 GHz - 40 GHz, 802.11a, 6Mbps, Chain A DIV2

Radiated Spurious - CH36

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3392.0	59.0		68.2	9.2	Н
10361.4	54.6		68.2	13.6	Н
15544.2	53.9		74.0	20.1	V
15544.2		44.4	54.0	9.6	V
39676.5	58.1		74.0	15.9	Н
39676.5		45.9	54.0	8.1	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3368.5	59.0		68.2	9.2	Н
10397.6	53.3		68.2	14.9	Н
15599.3	53.5		74.0	20.5	V
15599.3		46.8	54.0	7.2	V
20799.8		38.1	54.0	15.9	V
20800.3	48.0		74.0	26.0	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3375.5	58.8		68.2	9.4	Н
10479.3	52.3		68.2	15.9	Н
15722.0	56.1		74.0	17.9	V
15722.0		47.3	54.0	6.7	V
20960.8		40.9	54.0	13.2	V
20963.2	52.0		74.0	22.0	V
31442.0	53.2		74.0	20.8	Н
31442.0		43.4	54.0	10.6	Н

<u>802.11n</u>

1 GHz - 40 GHz, 802.11n20, HT0, Chain A DIV1

Radiated Spurious - CH36

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3298.0	58.9		68.2	9.3	V
10361.4	52.2		68.2	16.0	Н
15541.8	53.3		74.0	20.7	V
15541.8		43.1	54.0	10.9	V
20720.0		37.4	54.0	16.6	V
20724.7	47.0		74.0	27.0	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3378.0	58.9		68.2	9.3	Н
10401.5	55.2		68.2	13.0	V
15603.6	53.3		74.0	20.7	V
15603.6		44.6	54.0	9.4	V
39678.4	57.9		74.0	16.1	Н
39679.4		46.2	54.0	7.8	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3137.5	59.5		68.2	8.8	V
10480.3	51.6		68.2	16.6	V
15722.0	55.8		74.0	18.2	V
15722.0		47.0	54.0	7.0	V
20965.1		38.4	54.0	15.6	V
20968.9	50.4		74.0	23.6	V

1 GHz - 40 GHz, 802.11n20, HT0, Chain A DIV2

Radiated Spurious - CH36

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3390.0	58.8		68.2	9.4	V
10363.3	56.6		68.2	11.6	Н
15545.1	53.6		74.0	20.4	V
15545.1		44.2	54.0	9.8	V
39670.2	57.6		74.0	16.4	V
39670.7		46.5	54.0	7.5	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3377.0	59.0		68.2	9.2	V
10405.9	53.9		68.2	14.3	Н
15599.3	55.8		74.0	18.2	V
15599.3		47.0	54.0	7.0	V
20796.0		36.7	54.0	17.3	V
20803.1	48.4		74.0	25.6	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3309.5	59.3		68.2	8.9	V
10478.4	51.1		68.2	17.1	Н
15725.0	58.2		74.0	15.8	V
15725.0		47.7	54.0	6.3	V
20962.7		41.1	54.0	12.9	V
20967.4	52.2		74.0	21.8	V
31435.7	54.0		74.0	20.0	Н
31436.7		43.4	54.0	10.6	Н

1 GHz- 40 GHz, 802.11n40, HT0, Chain A DIV1

Radiated Spurious - CH38

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3296.0	58.9		68.2	9.3	Н
10379.8	49.7		68.2	18.5	V
15593.5	50.5		74.0	23.5	Н
15593.5		41.8	54.0	12.2	V
39443.6	57.6		74.0	16.4	V
39451.8		45.5	54.0	8.5	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3316.0	58.9		68.2	9.3	Н
10455.6	50.6		68.2	17.6	V
15692.6	51.3		74.0	22.7	V
15692.6		43.5	54.0	10.5	V
39616.7	57.0		74.0	16.9	Н
39616.7		45.6	54.0	8.4	Н

1 GHz - 40 GHz, 802.11n40, HT0, Chain A DIV2

Radiated Spurious - CH38

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBμV/m	dBμV/m	dB	
3377.0	59.6		68.2	8.6	Н
10373.5	51.6		68.2	16.6	Н
15575.1		42.5	54.0	11.6	V
15575.1	55.6		74.0	18.4	V
39597.9	57.4		74.0	16.6	Н
39598.9		45.8	54.0	8.2	Н

Radiated Spurious - CH46

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3250.0	59.1		68.2	9.1	Н
10463.9	48.5		68.2	19.7	Н
15703.2	52.8		74.0	21.2	V
15703.2		44.8	54.0	9.2	V
39701.1	57.3		74.0	16.7	Н
39701.6		45.8	54.0	8.2	V

802.11ac

1 GHz - 40 GHz, 802.11ac80, VHT0, Chain A DIV1

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3375.5	59.8		68.2	8.4	Н
10403.9	49.0		68.2	19.2	V
15639.9	57.7		74.0	16.3	V
15639.9		49.5	54.0	4.5	V
20839.9		38.4	54.0	15.7	V
20843.2	47.7		74.0	26.3	V

1 GHz - 40 GHz, 802.11ac80, VHT0, Chain A DIV2

Radiated Spurious - CH42

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBμV/m	dBμV/m	dBµV/m	dB	
3295.0	59.2		68.2	9.0	Н
10412.1	48.8		68.2	19.4	Н
15638.4	51.6		74.0	22.4	V
15638.4		42.8	54.0	11.2	V
20870.6		37.5	54.0	16.5	V
20871.6	49.1		74.0	24.9	V

802.11ax

1 GHz - 40 GHz, 802.11ax20, HE0, Chain A DIV1

Radiated Spurious - CH36

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBμV/m	dBμV/m	dB	
3311.5	59.1		68.2	9.1	V
10344.0	60.0		68.2	8.2	Н
15514.7	56.7		74.0	17.3	V
15514.7		49.4	54.0	4.6	V
39485.6	57.1		74.0	16.9	Н
39486.0		45.1	54.0	8.9	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBμV/m	dBµV/m	dBµV/m	dB	
3287.0	60.1		68.2	8.1	V
12508.4		36.6	54.0	17.4	Н
12508.4	51.2		74.0	22.8	Н
15574.6	55.8		74.0	18.2	Н
15574.6		48.8	54.0	5.2	Н
39702.5	57.1		74.0	16.9	V
39702.5		45.7	54.0	8.3	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3387.5	59.1		68.2	9.1	V
10463.9	47.6		68.2	20.6	Н
15695.0	56.0		74.0	18.0	V
15695.0		49.8	54.0	4.2	Н
39528.9	57.4		74.0	16.6	Н
39528.9		45.0	54.0	9.0	Н

1 GHz - 40 GHz, 802.11ax20, HE0, Chain A DIV2

Radiated Spurious – CH36

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3153.5	59.6		68.2	8.6	Н
10344.0	62.7		68.2	5.5	Н
15514.7	57.6		74.0	16.4	V
15514.7		50.5	54.0	3.5	V
39621.5	57.8		74.0	16.2	V
39621.5		45.6	54.0	8.4	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3398.5	60.0		68.2	8.2	Н
10383.6	51.0		68.2	17.2	Н
15574.1	54.6		74.0	19.4	V
15574.1		47.7	54.0	6.3	Н
39706.9	57.7		74.0	16.3	V
39710.7		45.8	54.0	8.2	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5471.0	54.0		68.2	14.2	Н
10463.9	47.5		68.2	20.7	V
15694.5	58.5		74.0	15.5	V
15694.5		50.2	54.0	3.8	Н
39714.6	57.7		74.0	16.3	Н
39714.6		45.7	54.0	8.3	V

1 GHz - 40 GHz, 802.11ax40, HE0, Chain A DIV1

Radiated Spurious - CH38F

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3368.0	59.5		68.2	8.7	V
10344.0	57.5		68.2	10.7	Н
15516.1	56.1		74.0	17.9	V
15516.1		49.2	54.0	4.8	V
39683.2		46.0	54.0	8.0	Н
39683.7	57.4		74.0	16.6	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBμV/m	dBμV/m	dBμV/m	dB	
5452.2	53.0		74.0	21.0	Н
5452.2		42.7	54.0	11.3	Н
15636.5	56.5		74.0	17.5	V
15636.5		47.2	54.0	6.8	V
39618.6	57.2		74.0	16.8	Н
39619.1		46.2	54.0	7.8	Н

1 GHz - 40 GHz, 802.11ax40, HE0, Chain A DIV2

Radiated Spurious - CH38

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBμV/m	dBμV/m	dB	
3236.0	59.0		68.2	9.2	Н
10344.0	61.6		68.2	6.6	Н
15516.1		51.3	54.0	2.7	V
15516.6	58.3		74.0	15.7	V
39609.9	57.8		74.0	16.2	Н
39609.9		46.2	54.0	7.8	Н

Radiated Spurious - CH46

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5452.2	54.0		74.0	20.0	V
5452.2		43.3	54.0	10.7	V
10423.3	48.7		68.2	19.5	V
15636.5	58.2		74.0	15.8	Н
15636.5		48.7	54.0	5.3	Н
39930.6	57.9		74.0	16.1	V
39930.6		45.8	54.0	8.2	V

1 GHz - 40 GHz, 802.11ax80, HE0, Chain A DIV1

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3388.0	59.0		68.2	9.2	Н
15515.7	53.7		74.0	20.3	Н
15515.7		47.0	54.0	7.0	Н
39519.8	57.0		74.0	17.0	Н
39519.8		45.3	54.0	8.7	V

1 GHz - 40 GHz, 802.11ax80, HE0, Chain A DIV2

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBμV/m	dBµV/m	dB	
3874.5	50.5		74.0	23.6	V
3874.5		41.2	54.0	12.8	V
6487.0	47.2		68.2	21.0	Н
10344.0	48.6		68.2	19.6	Н
15515.7		42.6	54.0	11.3	Н
15515.7	52.2		74.0	21.8	Н
39579.6	57.1		74.0	16.9	Н
39592.6		46.0	54.0	8.1	Н

B.3 Test Results Tables U-NII-2A

B.3.1 26dB & 99% Bandwidth

Test procedure

The conducted setup shown in section was used to measure the 26dB & 99% Bandwidth. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

Results tables

Mode	Rate	Antenna	Channel	Freq [MHz]	26dB BW [MHz]	99% BW [MHz]
			52	5260	34.80	19.48
		CHAIN A DIV1	56	5280	29.40	18.80
802.11a	6Mbps		64	5320	23.60	16.56
002.11a	6Mbps		52	5260	32.60	19.40
		CHAIN A DIV2	56	5280	29.80	18.72
			64	5320	23.75	16.64
			52	5260	34.55	19.52
		CHAIN A DIV1	56	5280	32.80	18.48
000 44=00	LITO		64	5320	23.80	17.64
802.11n20	HT0		52	5260	35.75	20.96
		CHAIN A DIV2	56	5280	29.90	18.44
			64	5320	23.85	17.76
		CHAIN A DIVIA	54	5270	43.29	36.16
000 11510	ЦТО	CHAIN A DIV1	62	5310	43.29	36.08
802.11n40	HT0	CHAIN A DIVO	54	5270	43.02	36.16
		CHAIN A DIV2	62	5310	43.47	36.08
000 110000	VUTO	CHAIN A DIV1	EO	F200	88.35	75.00
802.11ac80	VHT0	CHAIN A DIV2	58	5290	87.21	75.00

Max Value

Test Report N° 200928-04.TR01 Rev. 00

Mode	Rate	Antenna	Channel	Freq [MHz]	RU config.	26dB BW [MHz]	99% BW [MHz]					
			52	5260	Full	32.15	19.44					
			56	5280	Full	27.70	19.04					
		CHAIN A			Full	23.15	19.00					
		DIV1	64	5320	26/8	21.00	18.32					
			04	5520	52/40	21.80	18.28					
802.11ax20	HE0				106/54	23.05	17.52					
002.11dX20	ПЕО	CHAIN A DIV2	52	5260	Full	32.20	19.60					
			56	5280	Full	28.80	19.08					
			64		Full	23.55	18.92					
				64	5320	26/8	20.90	18.12				
				04	5320	52/40	22.40	18.40				
					106/54	23.20	18.28					
		OLIAINI A	54	5270	Full	42.93	37.52					
		_	DIV1	_	_	CHAIN A	_	62	F240	Full	42.66	37.60
000 44 5 40	LIFO	DIVI	02	5310	242/62	23.58	18.80					
802.11ax40	HE0	OLIAINI A	54	5270	Full	42.12	37.52					
		CHAIN A DIV2	00	F240	Full	42.93	37.44					
		DIVZ	62	5310	242/62	23.40	18.80					
		CHAIN A			Full	83.79	76.80					
802.11ax80	802.11ax80 HE0	DIV1	58	5290	484/66	43.13	37.44					
002.11ax00	TIEU	CHAIN A	30	5290	Full	83.03	76.68					
		DIV2			484/66	42.94	37.44					

Max Value

See Section B.3.5 for the screenshot results

B.3.2 Power Limits. Maximum Output power & Maximum power spectral density

Test limits

FCC part	Limits
15.407 (a) (2)	For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band.

Test procedure

The Maximum Conducted Output Power was measured using the channel integration method according to section E) 2) e) (Method SA-2 Alternative) of FCC OET KDB 789033 D02

The maximum power spectral density (PSD) was measured using the method according to section F) (Method SA-2 Alternative) of FCC OET KDB 789033 D02

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

The conducted setup shown in section was used to measure the maximum conducted output power and power spectral density. The antenna terminal of the EUT is connected to the spectrum analyser through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

Results tables

Duty cycle

Mode	Rate	Antenna	Duty Cycle [%]		
802.11a	6Mbps	CHAIN A DIV1	94.90%		
		CHAIN A DIV2	94.90%		
802.11n20	HT0	CHAIN A DIV1	98.68%		
		CHAIN A DIV2	98.68%		
802.11ax20	HE0	CHAIN A DIV1	98.68%		
		CHAIN A DIV2	98.68%		
802.11n40	HT0	CHAIN A DIV1	98.68%		
		CHAIN A DIV2	98.68%		
802.11ax40	HE0	CHAIN A DIV1	98.68%		
		CHAIN A DIV2	98.68%		
802.11ac80	VHT0	CHAIN A DIV1	98.60%		
		CHAIN A DIV2	98.60%		
802.11ax80	HE0	CHAIN A DIV1	98.60%		
		CHAIN A DIV2	98.60%		

Maximum output power

Mode	Rate	Channel	Freq [MHz]	Antenna	Average Conducted Ouput Power [dBm]	Avg Max* Conducted Ouput Power [dBm]	Avg Max*. EIRP [dBm]	Avg Max* Conducted Power [mW]
802.11a 6M	6Mbpa	52	5260	CHAIN A DIV1	21.22	21.45	26.45	139.55
				CHAIN A DIV2	20.99	21.22	26.22	132.35
		56	5280	CHAIN A DIV1	20.97	21.20	26.20	131.74
	6Mbps			CHAIN A DIV2	20.76	20.99	25.99	125.53
		64	5320	CHAIN A DIV1	16.73	16.96	21.96	49.63
		04		CHAIN A DIV2	16.50	16.73	21.73	47.07
802.11n20		52	5260	CHAIN A DIV1	21.17	21.17	26.17	130.92
				CHAIN A DIV2	21.27	21.27	26.27	133.97
	НТ0	56	5280	CHAIN A DIV1	20.91	20.91	25.91	123.31
				CHAIN A DIV2	20.67	20.67	25.67	116.68
		64	5320	CHAIN A DIV1	16.64	16.64	21.64	46.13
				CHAIN A DIV2	16.46	16.46	21.46	44.26
802.11n40		54	5270	CHAIN A DIV1	17.62	17.62	22.62	57.81
	LITO			CHAIN A DIV2	17.54	17.54	22.54	56.75
	HT0	62	5310	CHAIN A DIV1	15.00	15.00	20.00	31.62
				CHAIN A DIV2	15.07	15.07	20.07	32.14
802.11ac80	\/LITO	58	5290	CHAIN A DIV1	15.67	15.67	20.67	36.90
	VHT0			CHAIN A DIV2	15.56	15.56	20.56	35.97

^{*}Maximum values are the duty cycle compensated values calculated from the average (measured) values

Max Value Min Value

Rev. 00

Mode	Rate	Channel	Freq [MHz]	Antenna	RU config.	Average Conducted Ouput Power [dBm]	Avg Max* Conducted Ouput Power [dBm]	Avg Max*. EIRP [dBm]	Avg Max* Conducted Power [mW]
		52	5260	CHAIN A DIV1	Full	21.08	21.08	26.08	128.23
		32	5260	CHAIN A DIV2	Full	21.26	21.26	26.26	133.66
		56	5280	CHAIN A DIV1	Full	20.61	20.61	25.61	115.08
		30	3200	CHAIN A DIV2	Full	20.47	20.47	25.47	111.43
				CHAIN A DIV1	Full	16.37	16.37	21.37	43.35
000 4400	1150				26/8	13.81	13.81	18.81	24.04
802.11ax20	HE0	64	5320		52/40	16.44	16.44	21.44	44.06
					106/54	16.41	16.41	21.41	43.75
				CHAIN A DIV2	Full	15.65	15.65	20.65	36.73
					26/8	13.75	13.75	18.75	23.71
					52/40	16.65	16.65	21.65	46.24
					106/54	16.46	16.46	21.46	44.26
		54	E070	CHAIN A DIV1	Full	17.51	17.51	22.51	56.36
		54	5270	CHAIN A DIV2	Full	17.59	17.59	22.59	57.41
802.11ax40	μEΛ			CHAIN A DIV1	Full	15.01	15.01	20.01	31.70
602.11ax40	HE0	62	5310	CHAIN A DIVI	242/62	16.60	16.60	21.60	45.71
		02	5310	CHAIN A DIV2	Full	15.17	15.17	20.17	32.89
				CHAIN A DIVZ	242/62	16.52	16.52	21.52	44.87
				CHAIN A DIV1	Full	15.52	15.52	20.52	35.65
802.11ax80	HE0	58	5290	CHAIN A DIVI	484/66	15.10	15.10	20.10	32.36
002.11000	110	50	5290	CHAIN A DIV2	Full	15.24	15.24	20.24	33.42
			CHAIN A DIV2	484/66	15.07	15.07	20.07	32.14	

^{*}Maximum values are the duty cycle compensated values calculated from the average (measured) values

Max Value Min Value

Maximum Power Spectral Density (PSD)

Mode	Rate	Channel	Freq [MHz]	Antenna	Average conducted PSD [dBm/MHz]	Maximum* conducted PSD [dBm/MHz]	
		52	5260	CHAIN A DIV1	10.38	10.61	
		52	5260	CHAIN A DIV2	10.15	10.38	
802.11a	6Mbpc	56	5280	CHAIN A DIV1	10.13	10.36	
002.11a	6Mbps	30	3200	CHAIN A DIV2	9.93	10.16	
		64	F220	CHAIN A DIV1	5.92	6.15	
		64	5320	CHAIN A DIV2	5.71	5.94	
		50	F000	CHAIN A DIV1	10.13	10.13	
		52	5260	CHAIN A DIV2	10.20	10.20	
000 44=00	LITO	56 64	5000	CHAIN A DIV1	9.88	9.88	
802.11n20	HT0		5280	CHAIN A DIV2	9.65	9.65	
			5000	CHAIN A DIV1	5.64	5.64	
			64	64	5320	CHAIN A DIV2	5.44
		F.4	5070	CHAIN A DIV1	3.16	3.16	
000 44 - 40	LITO	54	5270	CHAIN A DIV2	3.06	3.06	
802.11n40	HT0	60	5240	CHAIN A DIV1	0.60	0.60	
	62	62	5310	CHAIN A DIV2	0.62	0.62	
000 4400	VIITO	VHT0 58	HT0 58		CHAIN A DIV1	-1.85	-1.85
802.11ac80 VHT0	58			58	58	5290	CHAIN A DIV2

^{*} Maximum values are the duty cycle compensated values calculated from the measured average values

0.52

Average Maximum* Freq Mode #Ch conducted PSD Rate Antenna RU config. conducted PSD [MHz] [dBm/MHz] [dBm/MHz] CHAIN A DIV1 Full 9.87 9.87 52 5260 10.03 10.03 CHAIN A DIV2 Full 9.42 CHAIN A DIV1 Full 9.42 56 5280 9.28 CHAIN A DIV2 Full 9.28 Full 5.16 5.16 26/8 10.98 10.98 802.11ax20 HE0 CHAIN A DIV1 52/40 10.68 10.68 106/54 7.58 7.58 64 5320 Full 4.44 4.44 26/8 10.92 10.92 CHAIN A DIV2 52/40 10.88 10.88 106/54 7.62 7.62 CHAIN A DIV1 Full 2.88 2.88 54 5270 CHAIN A DIV2 Full 2.97 2.97 Full 0.44 0.44 802.11ax40 HE0 CHAIN A DIV1 242/62 5.28 5.28 62 5310 Full 0.55 0.55 CHAIN A DIV2 242/62 5.19 5.19 Full -2.07 -2.07 CHAIN A DIV1 484/66 0.45 0.45 802.11ax80 HE0 58 5290 -2.39 -2.39 Full CHAIN A DIV2

See Section B.3.6 for the screenshot results

484/66

0.52

^{*} Maximum values are the duty cycle compensated values calculated from the measured average values

B.3.3 Undesirable emissions limits : out of band (Conducted)

Test limits

FCC part	Limits					
15.407 (b) (2)			5.25–5.35 GHz b of –27 dBm/MHz.	oand: all emission	ns outside of the	5.15–5.35 GHz
			the restricted bar specified in §15.2		n §15.205(a), mu	st also comply
		Freq Range (MHz)	Field Strength (μV/m)	Field Strength (dB _µ V/m)	Meas. Distance (m)	
		30-88	100	40	3	
		88-216	150	43.5	3	
		216-960	200	46	3	
15.209		Above 960	500	54	3	
	quasi-peak dete Radiated emissi detector. For average rad	ctor except for the on limits in these iated emission m	te frequency bands are three bands are neasurements ab	ds 9-90 kHz, 110 based on meas ove 1000 MHz, t	rements employi 0-490 kHz and ab urements employ here is also a lim dB above the ind	oove 1000 MHz. ving an average

Test procedure

The conducted setup shown in section was used to measure undesirable emissions on the Band Edge domain. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss and the declared antenna gain.

Both lower and upper side of the out of band were performed using the integration method as defined in the out of band measurements section (paragraph II.G.3.d) of 789033 D02 v02r01.

In case of out of band measurements falling in restricted bands, the declared antenna gain is also compensated in the graph.

For out of band measurements falling in restricted bands, the following limits in dBm were applied for the average detector after the conversion from the limits detailed above in dBµV/m, according to FCC 47 CFR part 15 - Subpart C – §15.209(a). The limits in dBm for peak detector are 20dB above the indicated values in the table.

	§15.209(a)		Converted values		
Freq Range (MHz)	Distance (m)	Field strength (microvolts/meter)	Field strength (dB microvolts/meter)	Power (dBm)	
960-25000	3	500	53.98	-41.2	

See Section B.3.7 for the screenshot results.

B.3.4 Radiated spurious emission

Standard references

FCC part			Lin	nits					
15.407 (a) (2)	over the freq log B, where	For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band.							
		Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a): Freq Range Field Strength Field Strength Meas. Distance							
		(MHz)	(µV/m)	(dBµV/m)	(m)				
		30-88	100	40	3				
		88-216	150	43.5	3				
		216-960	200	46	3				
15.209		Above 960	500	54	3				
	quasi-peak d MHz. Radiat an average d For average	etector except for ed emission limit detector. radiated emission ring with peak of	or the frequency to s in these three to n measurements	oands 9-90 kHz, oands are based above 1000 MHz	asurements empl 110-490 kHz and on measuremen z, there is also a l to 20 dB above	d above 1000 ats employing imit specified			

Test procedure

The radiated setups shown in section were used to measure the radiated spurious emissions. Depending of the frequency range and bands being tested, different antennas and filters were used.

The final measurement is done by varying the antenna height, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

The radiated spurious emission was measured on the worst case configuration selected from the section B.2.2 and using the low, middle and high channels.

Test Results

Radiated spurious - 30 MHz to 1 GHz

Radiated Spurious - All modes

Frequency	Quasi-Peak	Limit	Margin	Polar
MHz	dBμV/m	dBμV/m	dB	
37.5	30.5	40.0	9.5	V
74.9	31.3	40.0	8.7	V
136.9	37.9	43.5	5.7	Н
261.5	40.6	46.0	5.4	Н

Note 1: The spurious signals detected do not depend on either the operating channel or the modulation mode.

1 GHz - 40 GHz, 802.11a, 6Mbps, Chain A DIV1

Radiated Spurious - CH52

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3387.0	59.2		68.2	8.9	Н
10520.4	49.4		68.2	18.8	V
15777.1	59.5		74.0	14.5	Н
15777.1		50.7	54.0	3.3	Н
21039.7		38.1	54.0	15.9	V
21041.6	49.5		74.0	24.5	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3384.5	58.4		68.2	9.8	V
10560.0	50.4		68.2	17.8	Н
15841.4	55.5		74.0	18.5	V
15841.4		47.9	54.0	6.1	V
21120.0	48.5		74.0	25.5	V
21122.8		38.8	54.0	15.2	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3358.5	59.8		68.2	8.4	V
15960.8	53.3		74.0	20.7	V
15960.8		43.8	54.0	10.2	V
39636.5		46.3	54.0	7.7	Н
39636.5	57.4		74.0	16.6	V

1 GHz - 40 GHz, 802.11a, 6Mbps, Chain A DIV2

Radiated Spurious - CH52

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3374.0	59.4		68.2	8.8	V
10519.9	48.1		68.2	20.1	Н
15780.5	55.3		74.0	18.7	V
15780.5		46.6	54.0	7.4	V
21043.9		41.3	54.0	12.7	V
21051.0	52.2		74.0	21.8	V
31562.5		42.8	54.0	11.2	Н
31562.5	52.5		74.0	21.5	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3364.5	58.9		68.2	9.3	Н
10564.4	49.6		68.2	18.6	Н
15844.3	53.6		74.0	20.4	V
15844.3		45.5	54.0	8.5	V
21124.2		38.3	54.0	15.7	V
21124.2	49.3		74.0	24.7	V
31675.8	51.3		74.0	22.7	Н
31690.3		41.6	54.0	12.4	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3343.5	58.9		68.2	9.3	V
10641.2	48.7		74.0	25.3	V
10641.2		40.5	54.0	13.6	V
15960.3	52.6		74.0	21.4	Н
15960.3		43.9	54.0	10.1	Н
39854.4	58.1		74.0	15.9	Н
39854.9		45.7	54.0	8.3	Н

1 GHz - 40 GHz, 802.11n20, HT0, Chain A DIV1

Radiated Spurious - CH52

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3393.0	58.7		68.2	9.5	Н
10520.4	50.4		68.2	17.8	V
15781.0		47.2	54.0	6.8	V
15781.0	53.8		74.0	20.2	V
21037.3	48.8		74.0	25.2	V
21039.7		38.7	54.0	15.3	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBμV/m	dBμV/m	dBμV/m	dB	
3294.5	59.2		68.2	9.0	V
10563.4	50.9		68.2	17.3	Н
15844.8	56.7		74.0	17.3	V
15844.8		46.4	54.0	7.6	V
21120.0		39.1	54.0	14.9	V
21123.8	49.6		74.0	24.4	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3290.0	58.9		68.2	9.3	Н
15962.3		46.0	54.0	8.0	V
15964.7	57.1		74.0	16.9	V
39631.2		46.0	54.0	8.0	Н
39636.0	56.3		74.0	17.7	Н

1 GHz - 40 GHz, 802.11n20, HT0, Chain A DIV2

Radiated Spurious - CH52

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3293.0	59.1		68.2	9.1	V
10519.5	48.5		68.2	19.7	Н
15780.0		44.9	54.0	9.1	V
15780.5	54.1		74.0	19.9	Н
21035.4		40.5	54.0	13.5	V
21035.9	50.1		74.0	23.9	V
31563.0		43.0	54.0	11.0	Н
31566.8	53.6		74.0	20.4	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3286.0	59.1		68.2	9.1	V
10560.0	48.6		68.2	19.6	Н
15841.0		45.1	54.0	8.9	V
15841.4	53.1		74.0	20.9	V
21120.4	50.1		74.0	23.9	V
21120.4		40.0	54.0	14.0	V
31682.6		42.0	54.0	12.0	Н
31687.4	51.6		74.0	22.4	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3178.0	59.5		68.2	8.7	V
10641.7		40.4	54.0	13.6	V
10641.7	50.4		74.0	23.6	V
15962.8	53.5		74.0	20.4	V
15962.8		44.8	54.0	9.2	V
39528.9	57.2		74.0	16.8	Н
39529.4		44.7	54.0	9.3	V

1 GHz - 40 GHz, 802.11n40, HT0, Chain A DIV1

Radiated Spurious - CH54

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3371.5	59.1		68.2	9.1	Н
10549.4	48.1		68.2	20.1	V
15814.4		43.9	54.0	10.1	V
15820.2	53.9		74.0	20.1	V
21079.8	45.6		74.0	28.4	Н
21079.8		37.3	54.0	16.7	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBμV/m	dBμV/m	dB	
3296.0	59.5		68.2	8.7	Н
15938.1		42.8	54.0	11.2	V
15938.1	53.6		74.0	20.4	Н
39630.2		46.1	54.0	7.9	Н
39647.6	56.6		74.0	17.4	Н

1 GHz - 40 GHz, 802.11n40, HT0, Chain A DIV2

Radiated Spurious - CH54

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
2983.0	59.8		68.2	8.4	V
10545.5	47.7		68.2	20.5	Н
15798.4	52.3		74.0	21.7	V
15799.4		42.0	54.0	12.0	V
39672.6		45.1	54.0	8.9	V
39672.6	56.9		74.0	17.1	Н

Radiated Spurious - CH62

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3394.0	59.4		68.2	8.8	Н
10621.0	47.9		74.0	26.1	V
10623.9		38.5	54.0	15.5	V
15917.8	52.5		74.0	21.5	V
15940.0		41.9	54.0	12.2	V
39648.5		46.1	54.0	7.9	Н
39650.9	56.1		74.0	17.9	V

1 GHz - 40 GHz, 802.11ac80, VHT0, Chain A DIV1

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3043.5	59.7		68.2	8.5	Н
10563.4	50.6		68.2	17.6	V
15863.2	51.3		74.0	22.8	V
15863.2		42.5	54.0	11.5	V
39639.8		46.0	54.0	8.1	Н
39644.7	57.1		74.0	16.9	Н

1 GHz - 40 GHz, 802.11ac80, VHT0, Chain A DIV2

Radiated Spurious - CH58

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
3300.5	59.4		68.2	8.8	V
15870.9	49.7		74.0	24.3	V
15870.9		41.3	54.0	12.7	V
39719.4		46.1	54.0	7.9	Н
39721.8	55.6		74.0	18.4	Н

1 GHz - 40 GHz, 802.11ax20, HE0, Chain A DIV1

Radiated Spurious – CH52

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5003.0	53.3		74.0	20.7	Н
5012.1		42.8	54.0	11.2	Н
5493.2	53.8		68.2	14.4	V
15754.4	55.1		74.0	18.9	V
15754.4		47.9	54.0	6.1	V
39658.6		46.5	54.0	7.5	Н
39660.6	56.4		74.0	17.6	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5030.0	52.6		74.0	21.4	V
5031.3		42.5	54.0	11.5	Н
5512.3	53.0		68.2	15.2	V
15814.9	51.9		74.0	22.1	Н
15814.9		43.6	54.0	10.4	Н
39637.9	56.3		74.0	17.7	Н
39637.9		46.4	54.0	7.6	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5552.4	53.6		68.2	14.6	V
15934.7	54.5		74.0	19.5	Н
15934.7		48.7	54.0	5.3	V
39895.4		44.2	54.0	9.8	Н
39895.4	56.8		74.0	17.2	Н

1 GHz - 40 GHz, 802.11ax20, HE0, Chain A DIV2

Radiated Spurious - CH52

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5491.4	54.4		68.2	13.8	V
15754.9	58.6		74.0	15.4	Н
15754.9		50.1	54.0	3.9	Н
39652.4		46.3	54.0	7.7	V
39661.5	57.4		74.0	16.6	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5511.0	53.1		68.2	15.1	Н
15814.9	56.3		74.0	17.7	Н
15814.9		48.5	54.0	5.5	V
39984.6		46.3	54.0	7.7	V
39986.0	55.8		74.0	18.2	Н

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5551.6	54.7		68.2	13.5	V
15934.7	52.6		74.0	21.4	V
15934.7		45.4	54.0	8.6	V
39640.8		45.5	54.0	8.5	V
39640.8	57.3		74.0	16.7	V

1 GHz - 40 GHz, 802.11ax40, HE0, Chain A DIV1

Radiated Spurious - CH54

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5006.9	53.2		74.0	20.8	V
5011.3		43.0	54.0	11.0	Н
5497.1	54.5		68.2	13.7	Н
15755.9	55.8		74.0	18.2	Н
15755.9		48.4	54.0	5.6	V
39646.1		46.1	54.0	7.9	Н
39691.4	56.8		74.0	17.2	V

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBμV/m	dBµV/m	dBµV/m	dB	
4716.7		42.3	54.0	11.7	Н
4717.6	52.3		74.0	21.7	V
5552.0	54.6		68.2	13.6	V
15876.2	54.9		74.0	19.1	V
15876.2		45.4	54.0	8.7	V
39534.7	56.6		74.0	17.4	Н
39647.6		46.0	54.0	8.0	Н

1 GHz - 40 GHz, 802.11ax40, HE0, Chain A DIV2

Radiated Spurious - CH54

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5491.4	54.4		68.2	13.8	V
15755.4	57.3		74.0	16.7	V
15755.4		50.7	54.0	3.3	Н
39653.3		45.9	54.0	8.1	Н
39654.8	55.8		74.0	18.2	V

Radiated Spurious - CH62

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5538.5	54.0		68.2	14.2	Н
15876.2	54.9		74.0	19.1	Н
15876.2		45.9	54.0	8.1	V
39660.6		46.1	54.0	7.9	Н
39663.9	56.6		74.0	17.4	V

1 GHz - 40 GHz, 802.11ax80, HE0, Chain A DIV1

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBµV/m	dBµV/m	dBµV/m	dB	
5492.3	53.5		68.2	14.7	Н
10563.4	50.6		68.2	17.6	V
15863.2	51.3		74.0	22.8	V
15863.2		42.5	54.0	11.5	V
39541.0	57.9		74.0	16.1	Н
39542.0		44.9	54.0	9.1	V

1 GHz - 40 GHz, 802.11ax80, HE0, Chain A DIV2

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dBμV/m	dBμV/m	dBµV/m	dB	
5492.3	54.4		68.2	13.8	V
15755.9	55.3		74.0	18.7	Н
15755.9		50.3	54.0	3.7	Н
39598.9	57.1		74.0	16.9	V
39599.3		45.0	54.0	8.9	V

System Plots

B.3.5 26dB and 99% bandwidth

U-NII-1

U-NII-2A

B.3.6 Maximum output power

U-NII-1

CHAIN A DIV1-802.11n-40MHz-Ch46-5230MHz-HT0

CHAIN A DIV2-802.11ac-80MHz-Ch42-5210MHz-VHT0

CHAIN A DIV2-802.11ax-20MHz-Ch48-5240MHz-HE0

CHAIN A DIV1-802.11ax-80MHz-Ch42-5210MHz-HE0

U-NII-2A

Date: 20.NOV.2020 11:59:56

CHAIN A DIV1-802.11n-40MHz-Ch54-5270MHz-HT0

CHAIN A DIV1-802.11ac-80MHz-Ch58-5290MHz-VHT0

CHAIN A DIV2-802.11ax-20MHz-Ch52-5260MHz-HE0

CHAIN A DIV2-802.11ax-40MHz-Ch54-5270MHz-HE0

Test Report N° 200928-04.TR01

CHAIN A DIV1-802.11ax-80MHz-Ch58-5290MHz-HE0

B.3.7 Undesirable emission limits: out of band (Conducted)

U-NII-1

BE-R-LOW, DIV-1, 802.11a20-6Mbps, Ch36

BE-R-LOW, DIV-1, 802.11n40-HT0, Ch38

BE-R-LOW, DIV-1, 802.11ax20-HE0, Ch36

BE-R-LOW, DIV-1, 802.11n20-HT0, Ch36

BE-R-LOW, DIV-1, 802.11ac80-VHT0, Ch42

BE-R-LOW, DIV-1, 802.11ax40-HE0, Ch38

BE-R-LOW, DIV-1, 802.11ac80-HE0, Ch42

CHAIN A DIV2

BE-R-LOW, DIV-2, 802.11a20-6Mbps, Ch36

BE-R-LOW, DIV-2, 802.11n40-HT0, Ch38

BE-R-LOW, DIV-2, 802.11n20-HT0, Ch36

BE-R-LOW, DIV-2, 802.11ac80-VHT0, Ch42

Test Report N° 200928-04.TR01

BE-R-LOW, DIV-2, 802.11ax20-HE0, Ch36

BE-R-LOW, DIV-2, 802.11ax40-HE0, Ch38

BE-R-LOW, DIV-2, 802.11ac80-HE0, Ch42

U-NII-2a

BE-R-HIGH, DIV-1, 802.11a20-6Mbps, Ch64

BE-R-HIGH, DIV-1, 802.11n40-HT0, Ch62

BE-R-HIGH, DIV-1, 802.11ax20-HE0, Ch64

BE-R-HIGH, DIV-1, 802.11n20-HT0, Ch64

BE-R-HIGH, DIV-1, 802.11ac80-VHT0, Ch58

BE-R-HIGH, DIV-1, 802.11ax40-HE0, Ch62

BE-R-HIGH, DIV-1, 802.11ac80-HE0, Ch58

BE-R-HIGH, DIV-2, 802.11a20-6Mbps, Ch64

BE-R-HIGH, DIV-2, 802.11n40-HT0, Ch62

BE-R-HIGH, DIV-2, 802.11n20-HT0, Ch64

BE-R-HIGH, DIV-2, 802.11ac80-VHT0, Ch58

Test Report N° 200928-04.TR01

BE-R-HIGH, DIV-2, 802.11ax20-HE0, Ch64

BE-R-HIGH, DIV-2, 802.11ax40-HE0, Ch62

BE-R-HIGH, DIV-2, 802.11ac80-HE0, Ch58