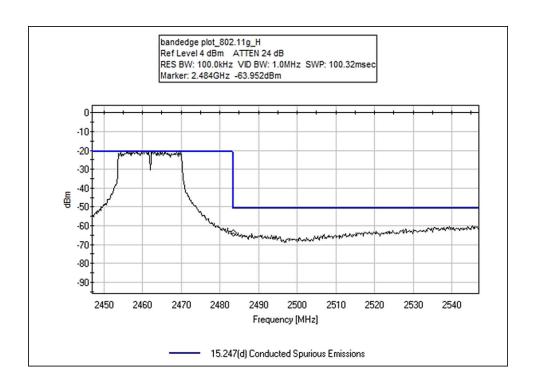
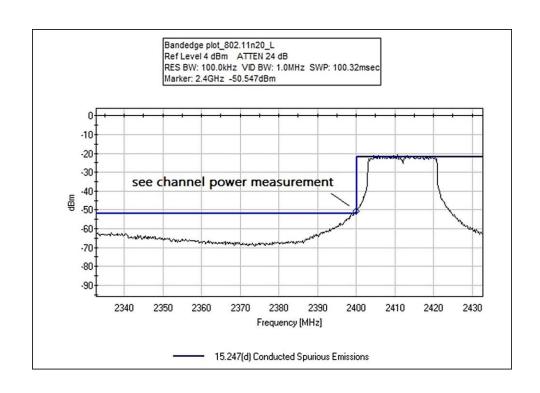
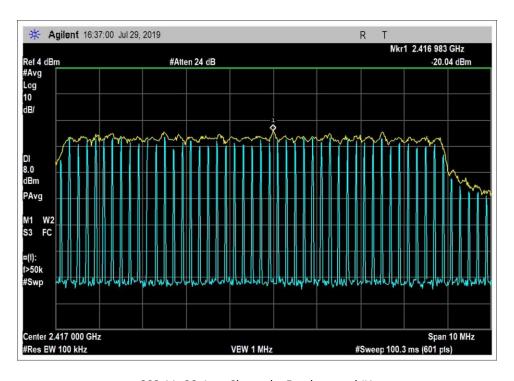
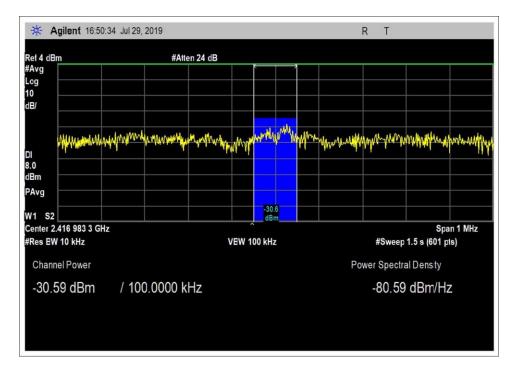


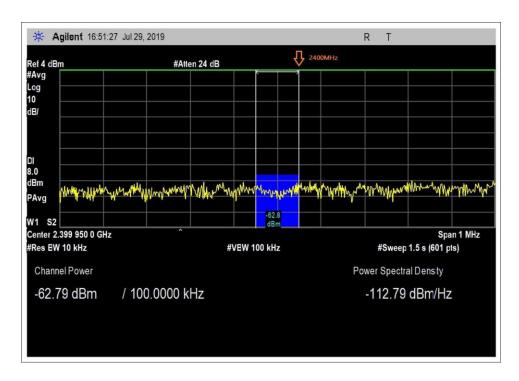
802.11g, Low Channel – Fundamental #1



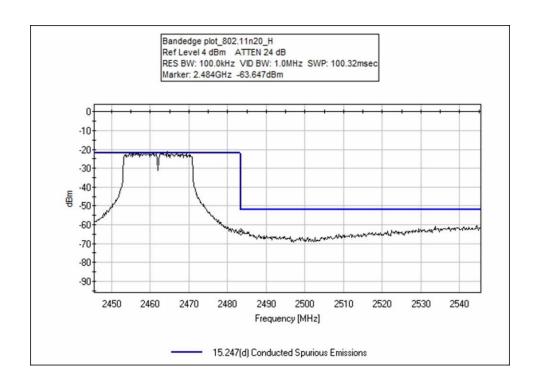

802.11g, Low Channel – Fundamental #2


802.11g, Low Channel





802.11n20, Low Channel – Fundamental #1



802.11n20, Low Channel – Fundamental #2

802.11n20, Low Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Venstar, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

 Work Order #:
 102914
 Date: 7/30/2019

 Test Type:
 Conducted Emissions
 Time: 08:58:53

Tested By: E. Wong Sequence#: 1

Software: EMITest 5.03.12 120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.

Freq range: 2400-2483.5MHz

Freq: 2412- 2462 MHz Protocol: 802.11 b/g/n20

Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting) Firmware Power setting listed below: range 0-15, 0 is max power setting.

802.11 b 2412, 2442, 2462 0,0,0 802.11g 2412, 2442, 2462 1,0,0 802.11n20 2412, 2442, 2462 0,0,0

The EUT has integral antenna however, conducted measurement was made with RF antenna test port.

Frequency range of measurement = Fundamental

Test environment conditions: Temperature: 25°C Relative Humidity: 58%

Atmospheric Pressure: 98.9kPa

All data rates / modulation types were evaluated during preliminary investigation. The test data represents worst case emissions for the investigated operational modes.

558074 D01 15.247 Meas Guidance v05r02April 2, 2019

Includes measurement made with channel power integrated in 100kHz segment with reduced RBW.

Page 50 of 81 Report No.: 102914-8A

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T2	AN03430	Attenuator	75A-10-12	12/19/2017	12/19/2019
T3	ANP07246	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Test Lead: Antenna port				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	2414.500M	-20.5	+0.0	+10.1	+0.3		+0.0	-10.1	-10.1	+0.0	Anten
									802.11g_Fu	ındamen	
									tal		
2	2416.983M	-30.6	+0.0	+10.1	+0.3		+0.0	-20.2	-20.2	+0.0	Anten
									802.11n20_	L_chan	
									nel		
									power_fund		
3	2407.000M	-30.7	+0.0	+10.1	+0.3		+0.0	-20.3	-20.3	+0.0	Anten
									802.11g_ch		
									power_fund	lamental	
									_L_Pset1		
4	2412.670M	-12.6	+0.0	+10.1	+0.3		+0.0	-2.2	-2.2	+0.0	Anten
									802.11b_Fu	ındamen	
									tal		
5	2399.950M	-61.4	+0.0	+10.1	+0.3		+0.0	-51.0	-50.3	-0.7	Anten
									802.11g_ch		
									power_L_P		
6	2399.950M	-62.2	+0.0	+10.1	+0.3		+0.0	-51.8	-50.2	-1.6	Anten
									802.11n20_		
									nel power_l		
7	2483.500M	-63.6	+0.0	+10.2	+0.3		+0.0	-53.1	-41.4	-11.7	Anten
									802.11n20_		
8	2400.000M	-55.7	+0.0	+10.1	+0.3		+0.0	-45.3	-32.3	-13.0	Anten
									802.11b_L		
9	2483.500M	-64.0	+0.0	+10.2	+0.3		+0.0	-53.5	-40.1	-13.4	Anten
									802.11g_H		
10	2483.500M	-60.8	+0.0	+10.2	+0.3		+0.0	-50.3	-32.3	-18.0	Anten
									802.11b_H		

Page 51 of 81 Report No.: 102914-8A

Test Setup Photo

Page 52 of 81 Report No.: 102914-8A

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Venstar, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 102914
 Date:
 7/31/2019

 Test Type:
 Maximized Emissions
 Time:
 13:49:53

Tested By: S. Yamamoto Sequence#: 7

Software: EMITest 5.03.12

Equipment Tested:

<u> </u>				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.

Freq range of test: 9kHz to 25GHz. RBW=100kHz, VBW=1MHz

Freq range of EUT: 2412MHz to 2462 MHz

Protocol: 802.11 b/g/n20

Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting)

Firmware Power setting listed below: 0 is max power setting.

802.11bgn20 2412, 2442, 2462 0,0,0

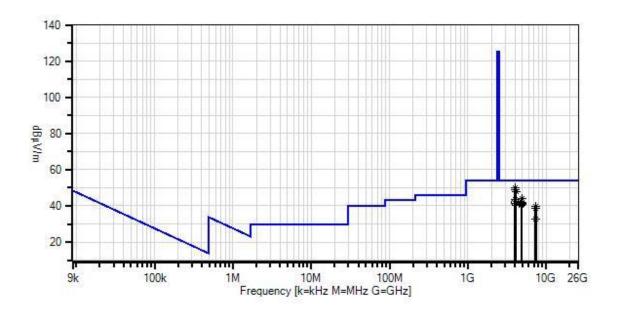
The power setting for radiated measurement differs from conducted measurement. Product is to be certified with power setting used for conducted measurement.

The test data represents worst case emissions for the investigated operational modes.

Test environment conditions:

Temperature: 23°C Relative Humidity: 52% Atmospheric Pressure: 99kPa

All data rates / modulation types were evaluated during preliminary investigation.


ANSI C63.10 2013

558074 D01 15.247 Meas Guidance v05r02April 2, 2019

Page 53 of 81 Report No.: 102914-8A

Venstar, Inc. WO#: 102914 Sequence#: 7 Date: 7/31/2019 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

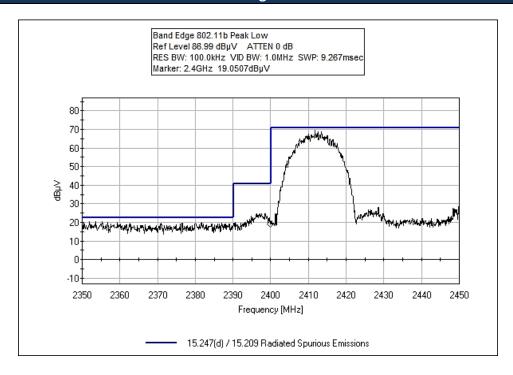
- Readings
 × QP Readings
 ▼ Ambient
- 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings
 Software Version: 5.03.12

	7 - 1				
ID	Asset #	Description	Model	Cal Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T2	ANP07139	Cable	ANDL1-PNMNM-48	3/4/2019	3/4/2021
T3	AN00786	Preamp	83017A	5/12/2018	5/12/2020
T4	ANP07244	Cable	32022-29094K-29094K-	7/5/2018	7/5/2020
			24TC		
T5	AN03385	High Pass Filter	11SH10-3000/T10000-	5/13/2019	5/13/2021
			0/0		
T6	AN00849	Horn Antenna	3115	3/14/2018	3/14/2020
	AN01413	Horn Antenna-ANSI C63.5	84125-80008	10/17/2018	10/17/2020
		(dB/m)			
	AN00314	Loop Antenna	6502	5/13/2018	5/13/2020
	ANP05050	Cable	RG223/U	12/24/2018	12/24/2020
	AN00309	Preamp	8447D	2/19/2018	2/19/2020
	ANP05198	Cable-Amplitude -15C to +15dC	8268	12/4/2018	12/4/2020
		(dB)			
	ANP05198	Cable-Amplitude +15C to +45C	8268	12/4/2018	12/4/2020
		(dB)			
	ANP05275	Attenuator	1W	4/5/2018	4/5/2020
	AN01995	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020

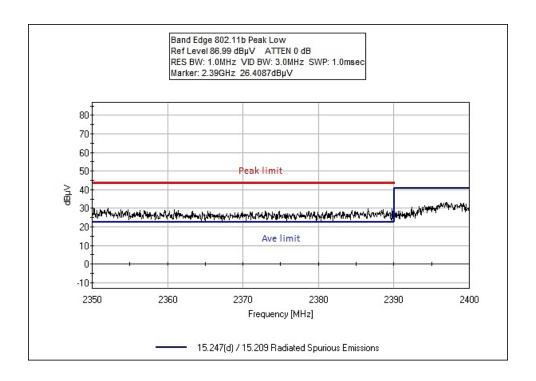
Measi	irement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	4019.800M	50.1	+0.0	+4.2	-38.1	+0.7	+0.0	50.2	54.0	-3.8	Horiz
	Ave		+0.5	+32.8							
^	4019.800M	60.7	+0.0	+4.2	-38.1	+0.7	+0.0	60.8	54.0	+6.8	Horiz
			+0.5	+32.8							
3	4070.000M	48.8	+0.0	+4.3	-38.0	+0.7	+0.0	48.8	54.0	-5.2	Horiz
	Ave		+0.5	+32.5							
^	4070.000M	58.0	+0.0	+4.3	-38.0	+0.7	+0.0	58.0	54.0	+4.0	Horiz
			+0.5	+32.5							
5	4103.500M	47.8	+0.0	+4.4	-38.0	+0.7	+0.0	47.7	54.0	-6.3	Horiz
	Ave		+0.5	+32.3							
^	4103.500M	56.8	+0.0	+4.4	-38.0	+0.7	+0.0	56.7	54.0	+2.7	Horiz
			+0.5	+32.3							
7	4924.000M	42.4	+0.0	+4.8	-37.6	+0.5	+0.0	44.0	54.0	-10.0	Horiz
	Ave		+0.3	+33.6							
^	4924.000M	54.1	+0.0	+4.8	-37.6	+0.5	+0.0	55.7	54.0	+1.7	Horiz
			+0.3	+33.6							
9	4070.000M	43.5	+0.0	+4.3	-38.0	+0.7	+0.0	43.5	54.0	-10.5	Vert
	Ave		+0.5	+32.5							
^	4070.000M	53.8	+0.0	+4.3	-38.0	+0.7	+0.0	53.8	54.0	-0.2	Vert
			+0.5	+32.5							

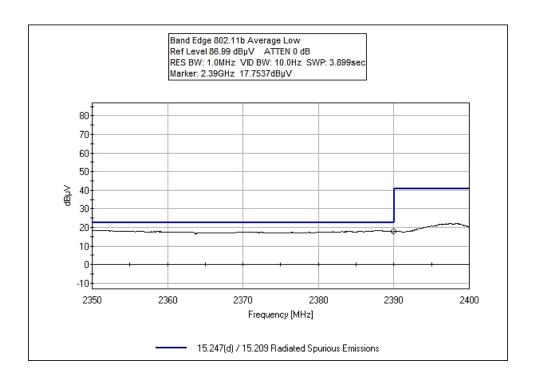
Page 55 of 81 Report No.: 102914-8A

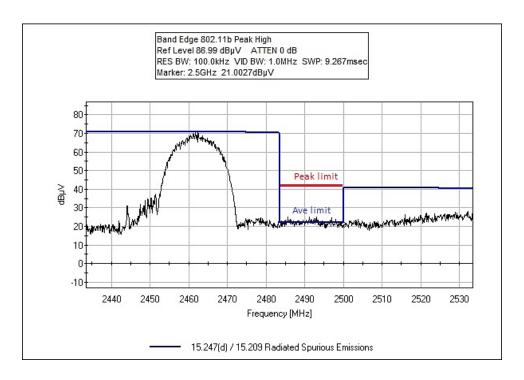
11 4924.000M	40.3	+0.0	+4.8	-37.6	+0.5	+0.0	41.9	54.0	-12.1	Vert
Ave		+0.3	+33.6							
^ 4924.000M	52.6	+0.0	+4.8	-37.6	+0.5	+0.0	54.2	54.0	+0.2	Vert
		+0.3	+33.6							
13 4019.800M	41.8	+0.0	+4.2	-38.1	+0.7	+0.0	41.9	54.0	-12.1	Vert
		+0.5	+32.8							
14 4884.000M	40.1	+0.0	+4.8	-37.6	+0.5	+0.0	41.6	54.0	-12.4	Horiz
Ave		+0.3	+33.5							
^ 4884.000M	52.4	+0.0	+4.8	-37.6	+0.5	+0.0	53.9	54.0	-0.1	Horiz
		+0.3	+33.5							
16 4103.500M	41.4	+0.0	+4.4	-38.0	+0.7	+0.0	41.3	54.0	-12.7	Vert
Ave		+0.5	+32.3							
^ 4103.500M	53.0	+0.0	+4.4	-38.0	+0.7	+0.0	52.9	54.0	-1.1	Vert
		+0.5	+32.3							
18 4824.000M	39.4	+0.0	+4.8	-37.6	+0.6	+0.0	40.9	54.0	-13.1	Horiz
Ave		+0.3	+33.4							
^ 4824.000M	51.3	+0.0	+4.8	-37.6	+0.6	+0.0	52.8	54.0	-1.2	Horiz
		+0.3	+33.4							
20 4884.000M	39.2	+0.0	+4.8	-37.6	+0.5	+0.0	40.7	54.0	-13.3	Vert
Ave		+0.3	+33.5							
^ 4884.000M	51.4	+0.0	+4.8	-37.6	+0.5	+0.0	52.9	54.0	-1.1	Vert
		+0.3	+33.5							
22 4824.000M	38.6	+0.0	+4.8	-37.6	+0.6	+0.0	40.1	54.0	-13.9	Vert
Ave		+0.3	+33.4							
^ 4824.000M	49.9	+0.0	+4.8	-37.6	+0.6	+0.0	51.4	54.0	-2.6	Vert
		+0.3	+33.4							
24 7326.000M	34.8	+0.0	+5.9	-37.4	+0.2	+0.0	39.7	54.0	-14.3	Horiz
Ave		+0.2	+36.0							
^ 7326.000M	44.2	+0.0	+5.9	-37.4	+0.2	+0.0	49.1	54.0	-4.9	Horiz
		+0.2	+36.0							
26 7386.000M	33.5	+0.0	+5.9	-37.4	+0.3	+0.0	38.7	54.0	-15.3	Horiz
Ave		+0.2	+36.2							
^ 7386.000M	46.1	+0.0	+5.9	-37.4	+0.3	+0.0	51.3	54.0	-2.7	Horiz
		+0.2	+36.2							
28 7326.000M	27.8	+0.0	+5.9	-37.4	+0.2	+0.0	32.7	54.0	-21.3	Vert
Ave		+0.2	+36.0							
^ 7326.000M	37.6	+0.0	+5.9	-37.4	+0.2	+0.0	42.5	54.0	-11.5	Vert
		+0.2	+36.0							

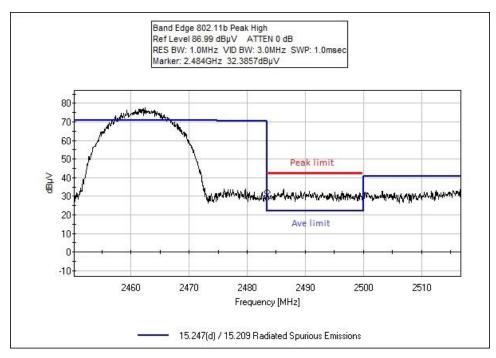

Page 56 of 81 Report No.: 102914-8A

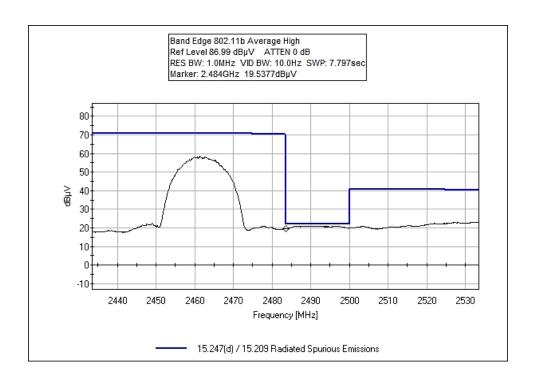
Band Edge

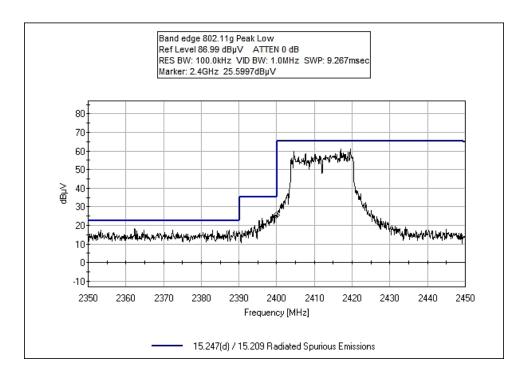

	Band Edge Summary									
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results					
2390.0	802.11b	Integral	49.2	<54	Pass					
2400.0	802.11b	Integral	50.4	<72.3	Pass					
2483.5	802.11b	Integral	51.2	<54	Pass					
2390.0	802.11g	Integral	46.2	<54	Pass					
2400.0	802.11g	Integral	56.9	<66.7	Pass					
2483.5	802.11g	Integral	46.2	<54	Pass					
2390.0	802.11n20	Integral	45.9	<54	Pass					
2400.0	802.11n20	Integral	58.4	<65.6	Pass					
2483.5	802.11n20	Integral	46.7	<54	Pass					

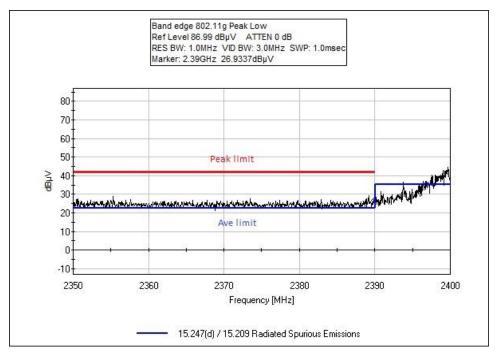

Band Edge Plots

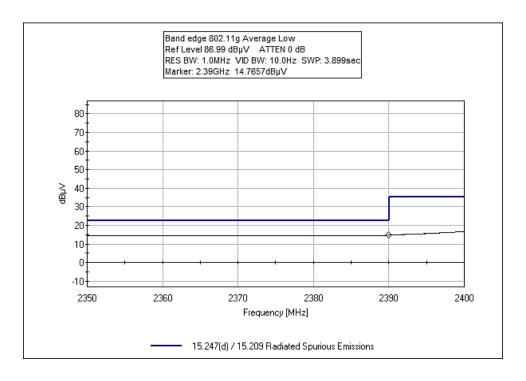

Page 57 of 81 Report No.: 102914-8A

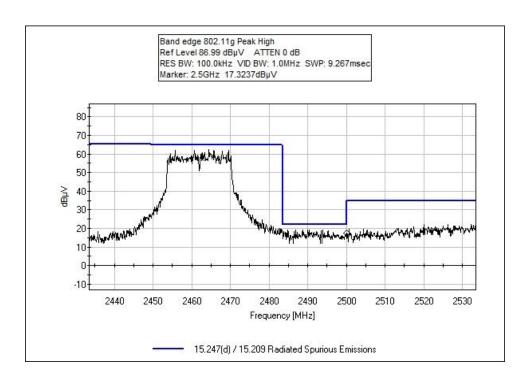


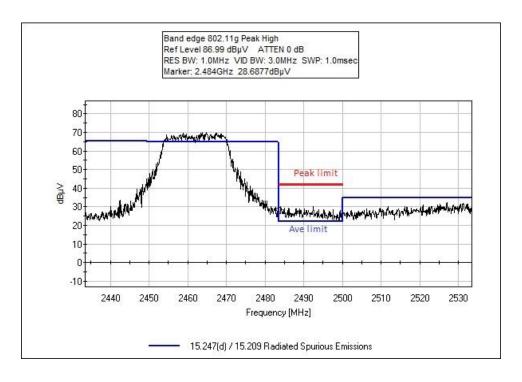


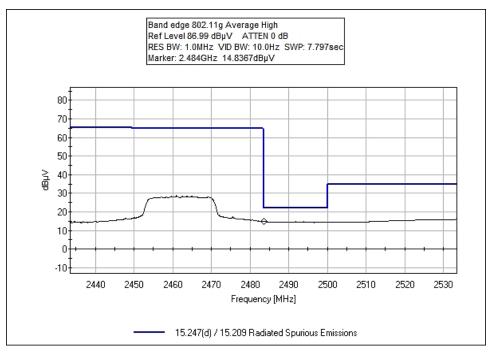


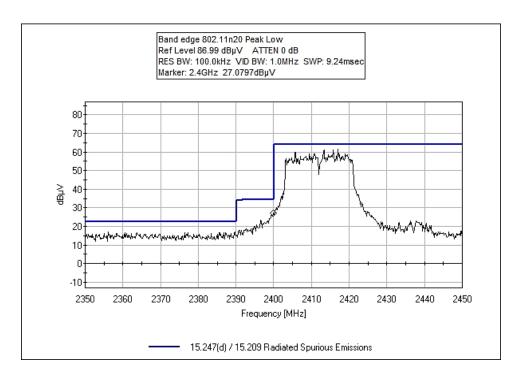


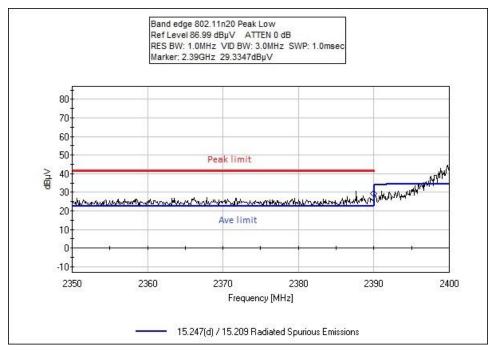

Page 60 of 81 Report No.: 102914-8A

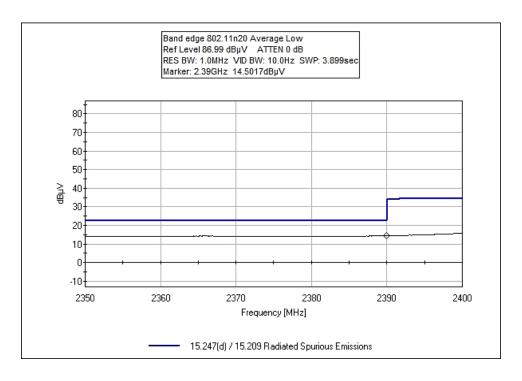


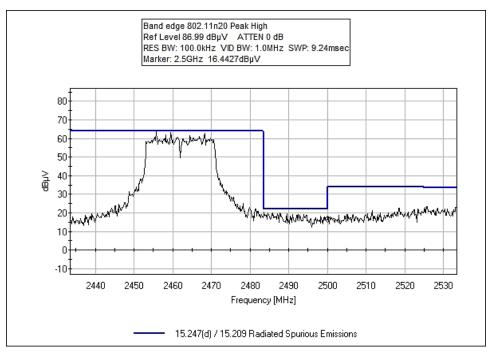


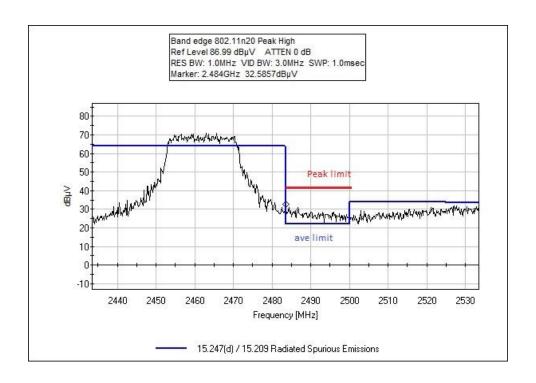












Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Venstar, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 102914 Date: 8/1/2019
Test Type: Maximized Emissions Time: 16:17:12
Tested By: S. Yamamoto Sequence#: 8

Software: EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.

Freq range of test: 2350MHz to 2530MHz

Freq range of EUT: 2412MHz to 2462 MHz

Protocol: 802.11 b/g/n20

Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting) Firmware Power setting listed below: range 0-15, 0 is max power setting.

802.11b 2412, 2442, 2462 0,0,0 802.11g 2412, 2442, 2462 0,0,0 802.11n20 2412, 2442, 2462 0,0,0

The power setting for radiated measurement differs from conducted measurement. Product is to be certified with power setting used for conducted measurement.

The test data represents worst case emissions for the investigated operational modes.

Test environment conditions:

Temperature: 23°C Relative Humidity: 52% Atmospheric Pressure: 99kPa

All data rates / modulation types were evaluated during preliminary investigation.

558074 D01 15.247 Meas Guidance v05r02April 2, 2019

Page 67 of 81 Report No.: 102914-8A

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T2	ANP07139	Cable	ANDL1-PNMNM-48	3/4/2019	3/4/2021
	AN00786	Preamp	83017A	5/12/2018	5/12/2020
	ANP07244	Cable	32022-29094K-29094K-24TC	7/5/2018	7/5/2020
	AN03385	High Pass Filter	11SH10-3000/T10000-O/O	5/13/2019	5/13/2021
T3	AN00849	Horn Antenna	3115	3/14/2018	3/14/2020

Measu	rement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2483.500M	19.5	+0.0	+3.2	+28.5		+0.0	51.2	54.0	-2.8	Vert
	Ave										
2	2390.000M	17.8	+0.0	+3.1	+28.3		+0.0	49.2	54.0	-4.8	Vert
	Ave										
3	2400.000M	27.1	+0.0	+3.1	+28.2		+0.0	58.4	65.6	-7.2	Vert
4	2483.500M	15.0	+0.0	+3.2	+28.5		+0.0	46.7	54.0	-7.3	Vert
	Ave										
5	2483.500M	14.8	+0.0	+3.2	+28.5		+0.0	46.5	54.0	-7.5	Vert
	Ave										
^	2483.500M	32.6	+0.0	+3.2	+28.5		+0.0	64.3	54.0	+10.3	Vert
٨	2483.500M	32.4	+0.0	+3.2	+28.5		+0.0	64.1	54.0	+10.1	Vert
٨	2483.500M	28.7	+0.0	+3.2	+28.5		+0.0	60.4	54.0	+6.4	Vert
9	2390.000M	14.8	+0.0	+3.1	+28.3		+0.0	46.2	54.0	-7.8	Vert
	Ave										
10	2390.000M	14.5	+0.0	+3.1	+28.3		+0.0	45.9	54.0	-8.1	Vert
	Ave										
^	2390.000M	29.3	+0.0	+3.1	+28.3		+0.0	60.7	54.0	+6.7	Vert
^	2390.000M	26.9	+0.0	+3.1	+28.3		+0.0	58.3	54.0	+4.3	Vert
^	2390.000M	26.4	+0.0	+3.1	+28.3		+0.0	57.8	54.0	+3.8	Vert
14	2400.000M	25.6	+0.0	+3.1	+28.2		+0.0	56.9	66.7	-9.8	Vert
15	2400.000M	19.1	+0.0	+3.1	+28.2		+0.0	50.4	72.3	-21.9	Vert

Page 68 of 81 Report No.: 102914-8A

Test Setup Photo(s)

Below 1GHz

Below 1GHz

Above 1GHz

Page 70 of 81 Report No.: 102914-8A

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Venstar, Inc.

Specification: 15.207 AC Mains - Average

 Work Order #:
 102914
 Date:
 7/31/2019

 Test Type:
 Conducted Emissions
 Time:
 08:59:37

Tested By: S. Yamamoto Sequence#: 5

Software: EMITest 5.03.12 120/60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.

Freq range of test: 150kHz to 30MHz RBW=9kHz, VBW=30kHz

Freq range of EUT: 2412MHz to 2462 MHz

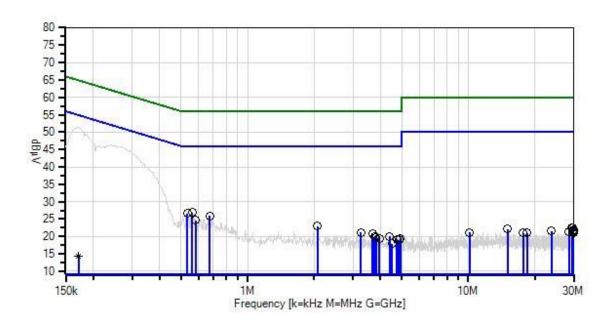
Protocol: 802.11 b

Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting)

Firmware Power setting: 0 (0 is max power setting)

Test environment conditions:

Temperature: 23°C Relative Humidity: 49% Atmospheric Pressure: 99kPa


Site A

Test method ANSI C63.10 2013

Page 71 of 81 Report No.: 102914-8A

Venstar, Inc. WO#: 102914 Sequence#: 5 Date: 7/31/2019 15.207 AC Mains - Average Test Lead: 120/60Hz Line

× QP Readings Software Version: 5.03.12 Readings

* Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient

2 - 15.207 AC Mains - Quasi-peak

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T1	AN02610	High Pass Filter	HE9615-150K-50-720B	10/25/2017	10/25/2019
T2	ANP07338	Cable	2249-Y-240	2/19/2018	2/19/2020
T3	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T4	ANP06986	Cable-Line L1(dB)	90cm-extcord	3/31/2018	3/31/2020
	ANP06986	Cable-Neutral L2(dB)	90cm-extcord	3/31/2018	3/31/2020
T5	AN00969A	50uH LISN-Line (dB)	3816/2NM	3/11/2019	3/11/2021
	AN00969A	50uH LISN-Return (dB)	3816/2NM	3/11/2019	3/11/2021

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Measur	rement Data.	: Re	eading lis	ted by ma	argin.			Test Lead	d: Line		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	Freq	Rdng		T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
+0.0 2 533.601k 20.4 +0.2 +0.1 +5.8 +0.0 +0.0 26.6 46.0 -19.4 Line +0.1 3 675.406k 19.7 +0.2 +0.1 +5.8 +0.0 +0.0 25.9 46.0 -20.1 Line +0.1 4 580.869k 18.5 +0.2 +0.1 +5.8 +0.0 +0.0 24.7 46.0 -21.3 Line +0.1 5 2.068M 16.6 +0.2 +0.1 +5.8 +0.1 +0.0 22.9 46.0 -23.1 Line +0.1 6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line +0.1 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line +0.1 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line +0.2 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line +0.1 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.2 Line +0.1 11 3.945M 13.2 +0.1 +0.1 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line +0.2 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.5 Line +0.2 15 29.824M 14.0 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.5 +5.8 +1.1 +0.0 22.1 50.0 -27.6 Line		MHz	dΒμV		dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
2 533.601k 20.4 +0.2 +0.1 +5.8 +0.0 +0.0 26.6 46.0 -19.4 Line 3 675.406k 19.7 +0.2 +0.1 +5.8 +0.0 +0.0 25.9 46.0 -20.1 Line 4 580.869k 18.5 +0.2 +0.1 +5.8 +0.0 +0.0 24.7 46.0 -21.3 Line 5 2.068M 16.6 +0.2 +0.1 +5.8 +0.1 +0.0 22.9 46.0 -23.1 Line 6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line 9 3.764M	1	560.871k	20.8		+0.1	+5.8	+0.0	+0.0	26.9	46.0	-19.1	Line
+0.1 3 675.406k 19.7 +0.2 +0.1 +5.8 +0.0 +0.0 25.9 46.0 -20.1 Line 4 580.869k 18.5 +0.2 +0.1 +5.8 +0.0 +0.0 24.7 46.0 -21.3 Line +0.1 5 2.068M 16.6 +0.2 +0.1 +5.8 +0.1 +0.0 22.9 46.0 -23.1 Line +0.1 6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line +0.1 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line +0.1 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line +0.2 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line +0.1 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line +0.1 11 3.945M 13.2 +0.1 +0.1 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line +0.2 15 29.824M 14.0 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.5 +5.8 +1.1 +0.0 22.1 50.0 -27.6 Line												
3 675.406k 19.7 +0.2 +0.1 +5.8 +0.0 +0.0 25.9 46.0 -20.1 Line 4 580.869k 18.5 +0.2 +0.1 +5.8 +0.0 +0.0 24.7 46.0 -21.3 Line 5 2.068M 16.6 +0.2 +0.1 +5.8 +0.1 +0.0 22.9 46.0 -23.1 Line 6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line 10 3.810M	2	533.601k	20.4		+0.1	+5.8	+0.0	+0.0	26.6	46.0	-19.4	Line
+0.1 4 580.869k 18.5 +0.2 +0.1 +5.8 +0.0 +0.0 24.7 46.0 -21.3 Line +0.1 5 2.068M 16.6 +0.2 +0.1 +5.8 +0.1 +0.0 22.9 46.0 -23.1 Line +0.1 6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line +0.1 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line +0.1 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line +0.2 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line +0.1 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.2 Line +0.1 11 3.945M 13.2 +0.1 +0.1 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.2 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line +0.2 15 29.824M 14.0 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8		555 40 S1	40.5		0.1	7 0		0.0	27.0	4.5.0	20.1	· ·
+0.1 5 2.068M 16.6 +0.2 +0.1 +5.8 +0.1 +0.0 22.9 46.0 -23.1 Line 6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line +0.1 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line +0.1 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line +0.2 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line +0.1 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.2 Line +0.1 11 3.945M 13.2 +0.1 +0.1 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line +0.2 15 29.824M 14.0 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	3	6/5.406k	19.7		+0.1	+5.8	+0.0	+0.0	25.9	46.0	-20.1	Line
5 2.068M 16.6 +0.2 +0.1 +5.8 +0.1 +0.0 22.9 46.0 -23.1 Line 6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.8 46.0 -26.2 Line 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0	4	580.869k	18.5	+0.2	+0.1	+5.8	+0.0	+0.0	24.7	46.0	-21.3	Line
+0.1 6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line +0.1 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line +0.1 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line +0.2 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line +0.1 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.8 46.0 -26.2 Line +0.1 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.2 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.8 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +1.1 +0.0 22.1 50.0 -27.6 Line												
6 3.259M 14.9 +0.1 +0.1 +5.8 +0.1 +0.0 21.1 46.0 -24.9 Line +0.1 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line +0.1 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line +0.2 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line +0.1 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.8 46.0 -26.2 Line +0.1 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line +0.2 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	5	2.068M	16.6		+0.1	+5.8	+0.1	+0.0	22.9	46.0	-23.1	Line
40.1 7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.2 Line 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 <td< td=""><td></td><td>2 2 7 2 7 7</td><td>110</td><td></td><td>0.1</td><td>7 0</td><td>0.1</td><td>0.0</td><td>21.1</td><td>4.5.0</td><td>240</td><td></td></td<>		2 2 7 2 7 7	110		0.1	7 0	0.1	0.0	21.1	4.5.0	240	
7 3.683M 14.5 +0.1 +0.1 +5.8 +0.1 +0.0 20.7 46.0 -25.3 Line 8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.8 46.0 -26.2 Line 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 <t< td=""><td>6</td><td>3.259M</td><td>14.9</td><td></td><td>+0.1</td><td>+5.8</td><td>+0.1</td><td>+0.0</td><td>21.1</td><td>46.0</td><td>-24.9</td><td>Line</td></t<>	6	3.259M	14.9		+0.1	+5.8	+0.1	+0.0	21.1	46.0	-24.9	Line
+0.1 8	7	3 683M	1.4.5		+0.1	15.9	+0.1	ι Ο Ο	20.7	46.0	25.3	Lino
8 4.396M 13.6 +0.1 +0.2 +5.8 +0.1 +0.0 20.0 46.0 -26.0 Line 9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.8 46.0 -26.2 Line 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line 15 29.824M 14.0 +0.2 +5.8 +1.1 +0.0 22.4 50.0 -27.6	,	3.003IVI	14.5		+0.1	+3.6	+0.1	+0.0	20.7	40.0	-23.3	Line
9 3.764M 13.7 +0.1 +0.1 +5.8 +0.1 +0.0 19.9 46.0 -26.1 Line +0.1 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.8 46.0 -26.2 Line +0.1 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line +0.2 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	8	4.396M	13.6		+0.2	+5.8	+0.1	+0.0	20.0	46.0	-26.0	Line
+0.1 10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.8 46.0 -26.2 Line +0.1 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line +0.2 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line				+0.2								
10 3.810M 13.6 +0.1 +0.1 +5.8 +0.1 +0.0 19.8 46.0 -26.2 Line 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.5 Line 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.5 Line 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0	9	3.764M	13.7		+0.1	+5.8	+0.1	+0.0	19.9	46.0	-26.1	Line
+0.1 11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line +0.1 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line +0.2 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line												
11 3.945M 13.2 +0.1 +0.2 +5.8 +0.1 +0.0 19.5 46.0 -26.5 Line 12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	10	3.810M	13.6		+0.1	+5.8	+0.1	+0.0	19.8	46.0	-26.2	Line
+0.1 12	11	2.04514	12.0		.0.2	. F O	· O 1	.00	10.5	46.0	26.5	T :
12 4.928M 13.0 +0.1 +0.2 +5.8 +0.2 +0.0 19.5 46.0 -26.5 Line 13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	11	3.945M	13.2		+0.2	+5.8	+0.1	+0.0	19.5	46.0	-20.5	Line
+0.2 13	12	4 928M	13.0		+0.2	+5.8	+0.2	+0.0	19.5	46.0	-26.5	Line
13 4.748M 12.7 +0.1 +0.2 +5.8 +0.2 +0.0 19.2 46.0 -26.8 Line +0.2 14 4.856M 12.5 +0.1 +0.2 +5.8 +0.2 +0.0 19.0 46.0 -27.0 Line +0.2 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	12	1.720111	13.0		10.2	13.0	10.2	10.0	17.5	10.0	20.3	Line
+0.2 14	13	4.748M	12.7		+0.2	+5.8	+0.2	+0.0	19.2	46.0	-26.8	Line
+0.2 15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line				+0.2								
15 29.824M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	14	4.856M	12.5		+0.2	+5.8	+0.2	+0.0	19.0	46.0	-27.0	Line
+0.8 16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line												
16 29.406M 14.0 +0.2 +0.5 +5.8 +1.1 +0.0 22.4 50.0 -27.6 Line +0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	15	29.824M	14.0		+0.5	+5.8	+1.1	+0.0	22.4	50.0	-27.6	Line
+0.8 17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	1.0	20.4063.5	140		.0.7		. 1 4	.0.0	22.4	50.0	27.6	T ·
17 15.079M 14.6 +0.2 +0.3 +5.8 +0.7 +0.0 22.1 50.0 -27.9 Line	16	29.406M	14.0		+0.5	+5.8	+1.1	+0.0	22.4	50.0	-27.6	Line
	17	15.079M	14.6		+0.3	+5.8	+0.7	+0.0	22.1	50.0	-27.9	Line
						-						

Page 73 of 81 Report No.: 102914-8A

18	4.513M	11.4	+0.1	+0.2	+5.8	+0.2	+0.0	17.9	46.0	-28.1	Line
10	20.00214	12.4	+0.2	.0.5	. 5 0	. 1 1	.0.0	21.0	50.0	20.2	т •
19	29.902M	13.4	+0.2 +0.8	+0.5	+5.8	+1.1	+0.0	21.8	50.0	-28.2	Line
20	23.758M	13.6	+0.8	+0.4	+5.8	+0.9	+0.0	21.5	50.0	-28.5	Line
20	23.730141	13.0	+0.6	10.4	13.0	10.5	10.0	21.3	30.0	20.3	Line
21	29.846M	13.1	+0.2	+0.5	+5.8	+1.1	+0.0	21.5	50.0	-28.5	Line
			+0.8								
22	29.883M	13.1	+0.2	+0.5	+5.8	+1.1	+0.0	21.5	50.0	-28.5	Line
			+0.8								
23	29.855M	13.0	+0.2	+0.5	+5.8	+1.1	+0.0	21.4	50.0	-28.6	Line
			+0.8								
24	28.648M	13.1	+0.2	+0.5	+5.8	+1.0	+0.0	21.3	50.0	-28.7	Line
25	10.11 <i>c</i> M	14.2	+0.7	+0.2	. 5 0	+0.4	.00	21.2	50 O	20.0	T in a
25	10.116M	14.2	+0.1 +0.4	+0.3	+5.8	+0.4	+0.0	21.2	50.0	-28.8	Line
26	29.803M	12.7	+0.4	+0.5	+5.8	+1.1	+0.0	21.1	50.0	-28.9	Line
20	29.803WI	12.7	+0.2	+0.5	⊤3.6	⊤1.1	+0.0	21.1	30.0	-20.9	Line
27	17.695M	13.3	+0.2	+0.4	+5.8	+0.7	+0.0	21.0	50.0	-29.0	Line
			+0.6								
28	18.417M	13.3	+0.2	+0.4	+5.8	+0.7	+0.0	21.0	50.0	-29.0	Line
			+0.6								
29	29.980M	12.6	+0.2	+0.5	+5.8	+1.1	+0.0	21.0	50.0	-29.0	Line
			+0.8								
30	171.816k	8.2	+0.2	+0.0	+5.8	+0.0	+0.0	14.3	54.9	-40.6	Line
	Ave		+0.1								
^	171.816k	45.2	+0.2	+0.0	+5.8	+0.0	+0.0	51.3	54.9	-3.6	Line
			+0.1								

Page 74 of 81 Report No.: 102914-8A

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Venstar, Inc.

Specification: 15.207 AC Mains - Average

 Work Order #:
 102914
 Date:
 7/31/2019

 Test Type:
 Conducted Emissions
 Time:
 09:03:23

Tested By: S. Yamamoto Sequence#: 6

Software: EMITest 5.03.12 120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.

Freq range of test: 150kHz to 30MHz RBW=9kHz, VBW=30kHz

Freq range of EUT: 2412MHz to 2462 MHz

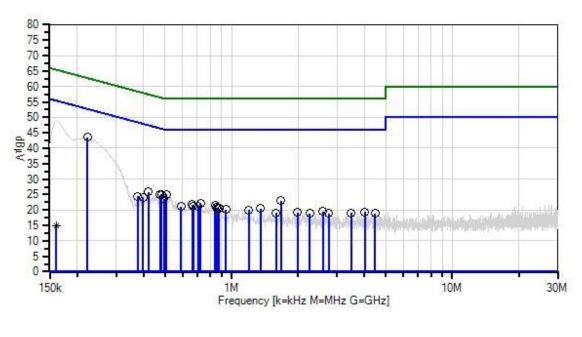
Protocol: 802.11 b

Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting)

Firmware Power setting: 0 (0 is max power setting)

Test environment conditions:

Temperature: 23°C Relative Humidity: 49% Atmospheric Pressure: 99kPa


Site A

Test method ANSI C63.10 2013

Page 75 of 81 Report No.: 102914-8A

Venstar, Inc. WO#: 102914 Sequence#: 6 Date: 7/31/2019 15.207 AC Mains - Average Test Lead: 120/60Hz Neutral

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient
2 - 15.207 AC Mains - Quasi-peak

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T1	AN02610	High Pass Filter	HE9615-150K-50-720B	10/25/2017	10/25/2019
T2	ANP07338	Cable	2249-Y-240	2/19/2018	2/19/2020
T3	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
	ANP06986	Cable-Line L1(dB)	90cm-extcord	3/31/2018	3/31/2020
T4	ANP06986	Cable-Neutral L2(dB)	90cm-extcord	3/31/2018	3/31/2020
	AN00969A	50uH LISN-Line (dB)	3816/2NM	3/11/2019	3/11/2021
T5	AN00969A	50uH LISN-Return (dB)	3816/2NM	3/11/2019	3/11/2021

Measur	rement Data.	: Re	eading lis	ted by ma	argin.	Test Lead: Neutral						
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant	
1	221.993k	37.4	+0.2	+0.0	+5.8	+0.0	+0.0	43.5	52.7	-9.2	Neutr	
			+0.1									
2	507.058k	18.8	+0.2	+0.1	+5.8	+0.0	+0.0	25.0	46.0	-21.0	Neutr	
			+0.1									
3	483.060k	18.8	+0.2	+0.1	+5.8	+0.0	+0.0	25.0	46.3	-21.3	Neutr	
	120 5201	10.0	+0.1	0.0	7.0	0.0	0.0	25.0	47.4	21.5	37 .	
4	420.520k	19.8	+0.2	+0.0	+5.8	+0.0	+0.0	25.9	47.4	-21.5	Neutr	
5	475.061k	18.7	+0.1	+0.1	+5.8	+0.0	+0.0	24.9	46.4	-21.5	Moute	
3	4/3.001K	16.7	+0.2	+0.1	+3.8	+0.0	+0.0	24.9	40.4	-21.3	Neutr	
6	494.695k	17.5	+0.1	+0.1	+5.8	+0.0	+0.0	23.7	46.1	-22.4	Neutr	
	474.075K	17.5	+0.1	10.1	13.0	10.0	10.0	23.1	40.1	22.4	ricuti	
7	1.672M	16.8	+0.2	+0.1	+5.8	+0.0	+0.0	23.0	46.0	-23.0	Neutr	
			+0.1									
8	397.977k	18.0	+0.2	+0.0	+5.8	+0.0	+0.0	24.1	47.9	-23.8	Neutr	
			+0.1									
9	725.219k	15.9	+0.2	+0.1	+5.8	+0.0	+0.0	22.1	46.0	-23.9	Neutr	
			+0.1									
10	374.706k	18.3	+0.2	+0.0	+5.8	+0.0	+0.0	24.4	48.4	-24.0	Neutr	
- 44		4 77 -	+0.1	0.1	7 0	0.0	0.0	21.0	4.5.0	242		
11	662.680k	15.6	+0.2	+0.1	+5.8	+0.0	+0.0	21.8	46.0	-24.2	Neutr	
12	942 2001-	15.2	+0.1	+O 1	15.0	+0.0	+0.0	21.4	46.0	24.6	Moute	
12	842.300k	13.2	+0.2 +0.1	+0.1	+5.8	+0.0	+0.0	21.4	40.0	-24.6	Neutr	
13	704.858k	15.1	+0.2	+0.1	+5.8	+0.0	+0.0	21.3	46.0	-24.7	Neutr	
13	704.030K	13.1	+0.1	10.1	13.0	10.0	10.0	21.3	40.0	24.7	ricuti	
14	671.406k	15.0	+0.2	+0.1	+5.8	+0.0	+0.0	21.2	46.0	-24.8	Neutr	
			+0.1									
15	590.686k	14.9	+0.2	+0.1	+5.8	+0.0	+0.0	21.1	46.0	-24.9	Neutr	
			+0.1									
16	852.480k	14.6	+0.2	+0.1	+5.8	+0.0	+0.0	20.8	46.0	-25.2	Neutr	
			+0.1									
17	859.753k	14.4	+0.2	+0.1	+5.8	+0.0	+0.0	20.6	46.0	-25.4	Neutr	
			+0.1									

Page 77 of 81 Report No.: 102914-8A

18	876.478k	14.3	+0.2	+0.1	+5.8	+0.0	+0.0	20.5	46.0	-25.5	Neutr
			+0.1								
19	1.354M	14.3	+0.2	+0.1	+5.8	+0.0	+0.0	20.5	46.0	-25.5	Neutr
			+0.1								
20	940.995k	14.0	+0.2	+0.1	+5.8	+0.0	+0.0	20.2	46.0	-25.8	Neutr
			+0.1								
21	1.196M	13.8	+0.2	+0.1	+5.8	+0.0	+0.0	20.0	46.0	-26.0	Neutr
			+0.1								
22	2.587M	13.2	+0.2	+0.1	+5.8	+0.1	+0.0	19.5	46.0	-26.5	Neutr
			+0.1								
23	4.024M	13.0	+0.1	+0.2	+5.8	+0.1	+0.0	19.3	46.0	-26.7	Neutr
			+0.1								
24	1.991M	12.9	+0.2	+0.1	+5.8	+0.1	+0.0	19.2	46.0	-26.8	Neutr
			+0.1								
25	1.592M	12.9	+0.2	+0.1	+5.8	+0.0	+0.0	19.1	46.0	-26.9	Neutr
			+0.1								
26	3.480M	12.9	+0.1	+0.1	+5.8	+0.1	+0.0	19.1	46.0	-26.9	Neutr
			+0.1								
27	2.259M	12.6	+0.2	+0.1	+5.8	+0.1	+0.0	18.9	46.0	-27.1	Neutr
			+0.1								
28	2.757M	12.6	+0.2	+0.1	+5.8	+0.1	+0.0	18.9	46.0	-27.1	Neutr
			+0.1								
29	4.471M	12.5	+0.1	+0.2	+5.8	+0.1	+0.0	18.9	46.0	-27.1	Neutr
			+0.2								
30	160.908k	8.4	+0.5	+0.0	+5.8	+0.0	+0.0	14.8	55.4	-40.6	Neutr
	Ave		+0.1								
٨	160.908k	42.6	+0.5	+0.0	+5.8	+0.0	+0.0	49.0	55.4	-6.4	Neutr
			+0.1								

Page 78 of 81 Report No.: 102914-8A

Test Setup Photo(s)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS										
	Meter reading (dBμV)										
+	Antenna Factor	(dB/m)									
+	Cable Loss	(dB)									
-	Distance Correction	(dB)									
-	Preamplifier Gain	(dB)									
=	Corrected Reading	(dBμV/m)									

Page 80 of 81 Report No.: 102914-8A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

<u>Average</u>

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 81 of 81 Report No.: 102914-8A