

Appendix C – Highest Test Plots

Date: 2024/10/24

1_WLAN2.4G_802.11b_Bottom of laptop_0 mm_Ch11_ANT 0_Sample 1

DUT: FX607V

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1.006

Medium parameters used: $f = 2462 \text{ MHz}$; $\sigma = 1.788 \text{ S/m}$; $\epsilon_r = 39.504$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5

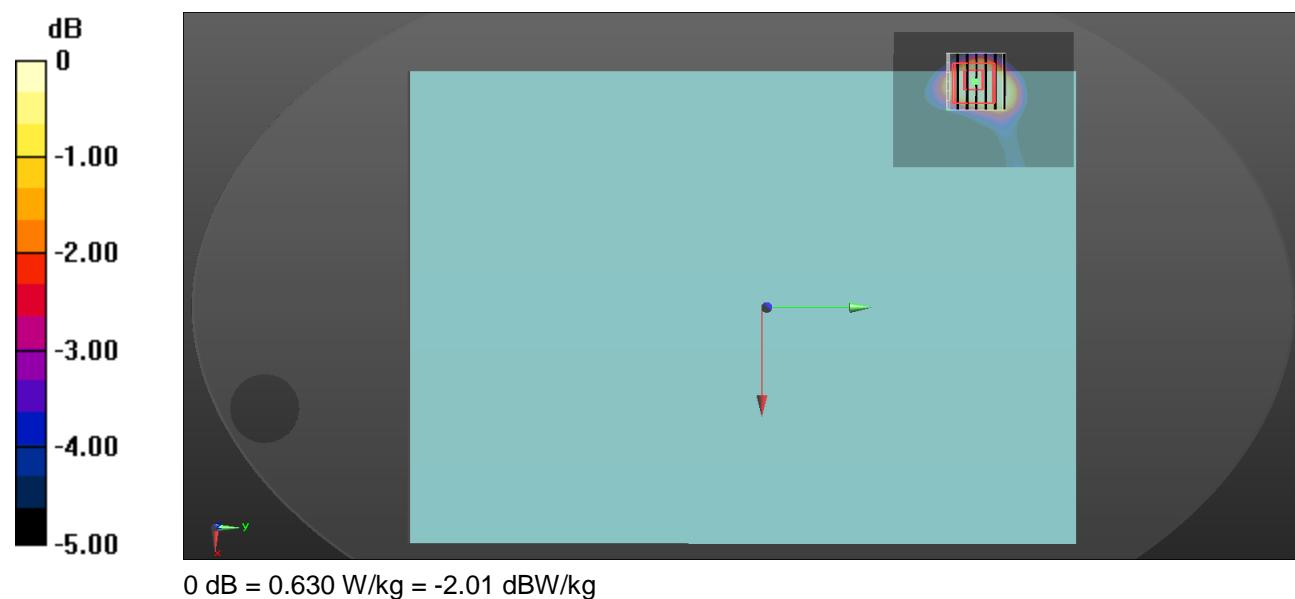
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(7.73, 7.11, 7.58) @ 2462 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (61x81x1): Interpolated grid: $dx=1.200 \text{ mm}$, $dy=1.200 \text{ mm}$
Maximum value of SAR (interpolated) = 0.926 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 17.23 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 0.785 W/kg

SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.198 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 0.630 W/kg

Date: 2024/10/25

14_WLAN5.3G_802.11ac VHT160_Front edge of laptop_0 mm_Ch50_ANT 0_Sample 1

DUT: FX607V

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5250 MHz; Duty Cycle: 1:1.019
Medium parameters used: $f = 5250$ MHz; $\sigma = 4.441$ S/m; $\epsilon_r = 35.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

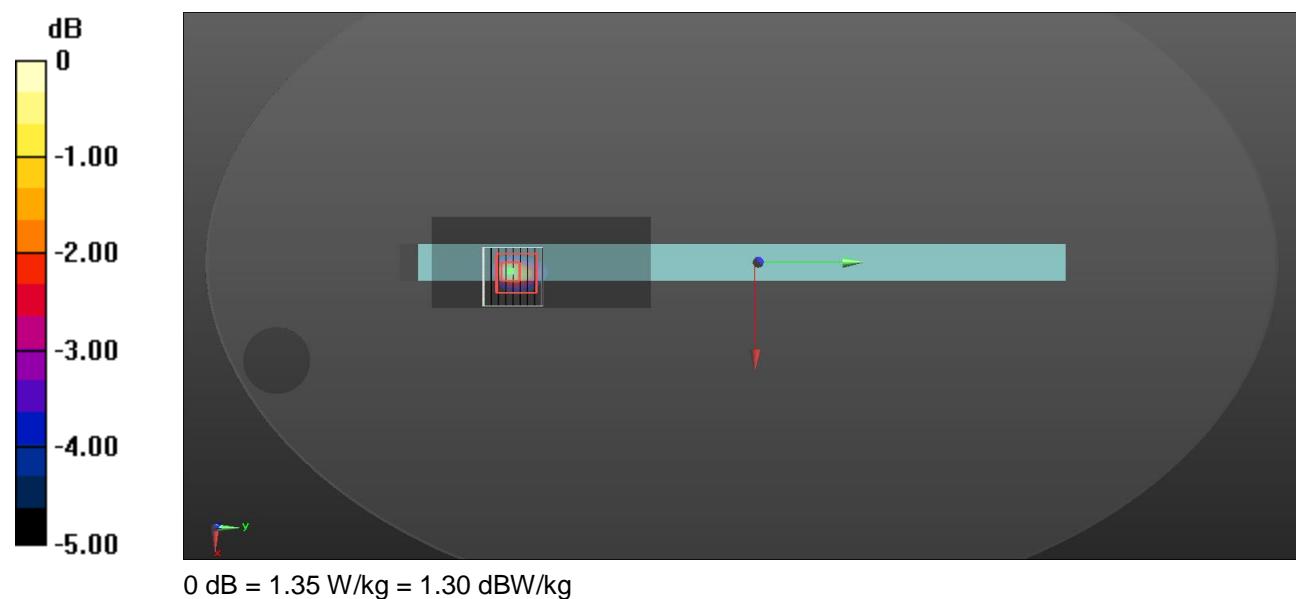
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(5.68, 5.15, 5.5) @ 5250 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (51x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 1.39 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 12.61 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 0.572 W/kg; SAR(10 g) = 0.190 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 64.4%

Maximum value of SAR (measured) = 1.35 W/kg

Date: 2024/10/26

24_WLAN5.6G_802.11ac VHT160_Front edge of laptop_0 mm_Ch114_ANT 1_Sample 1

DUT: FX607V

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5570 MHz; Duty Cycle: 1:1.018
Medium parameters used: $f = 5570$ MHz; $\sigma = 4.742$ S/m; $\epsilon_r = 35.063$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

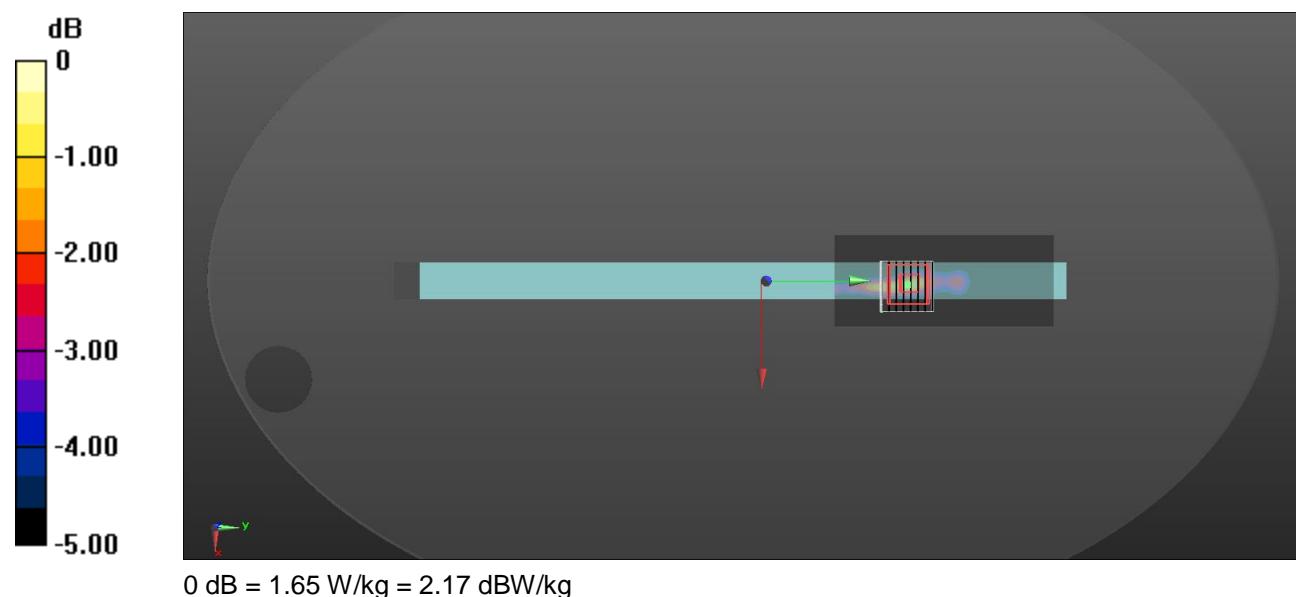
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(4.9, 4.47, 4.74) @ 5570 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (51x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 1.44 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 9.331 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 2.81 W/kg

SAR(1 g) = 0.631 W/kg; SAR(10 g) = 0.193 W/kg

Smallest distance from peaks to all points 3 dB below = 5.6 mm

Ratio of SAR at M2 to SAR at M1 = 62.2%

Maximum value of SAR (measured) = 1.65 W/kg

Date: 2024/10/27

41_WLAN5.8G_802.11ac VHT160_Front edge of laptop_0 mm_Ch163_ANT 1_Sample 1

DUT: FX607V

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5815 MHz; Duty Cycle: 1:1.018
Medium parameters used: $f = 5815$ MHz; $\sigma = 4.954$ S/m; $\epsilon_r = 34.618$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

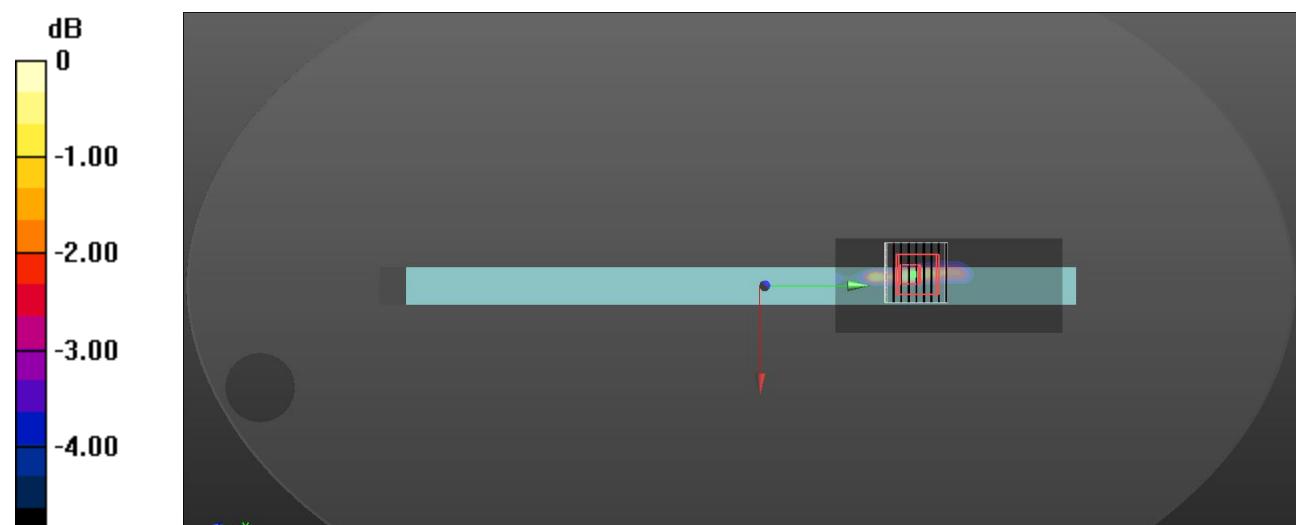
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(5.03, 4.62, 4.96) @ 5815 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (51x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 2.09 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 15.29 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 3.82 W/kg

SAR(1 g) = 0.767 W/kg; SAR(10 g) = 0.235 W/kg

Smallest distance from peaks to all points 3 dB below = 5.1 mm

Ratio of SAR at M2 to SAR at M1 = 60.8%

Maximum value of SAR (measured) = 1.98 W/kg

0 dB = 1.98 W/kg = 2.97 dBW/kg

Date: 2024/10/24

57_Bluetooth_GFSK_Bottom of laptop_0 mm_Ch78_ANT 1_Sample 1

DUT: FX607V

Communication System: UID 0, Bluetooth 3.0 (0); Frequency: 2480 MHz; Duty Cycle: 1:1.302

Medium parameters used: $f = 2480$ MHz; $\sigma = 1.801$ S/m; $\epsilon_r = 39.473$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

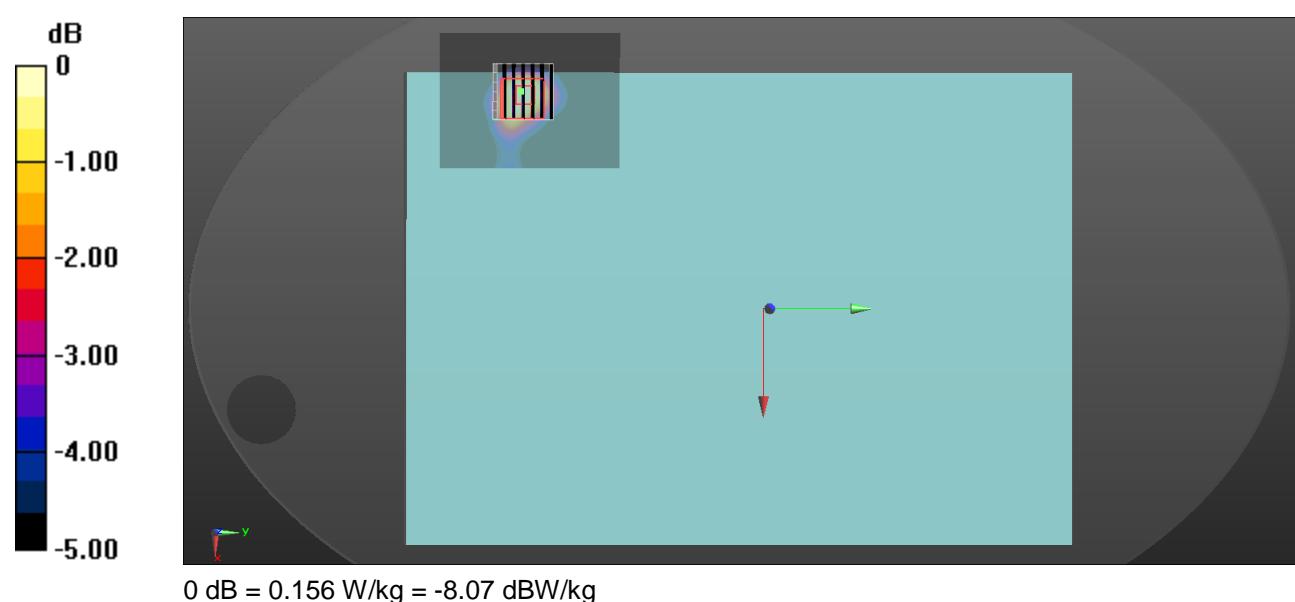
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(7.73, 7.11, 7.58) @ 2480 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.174 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.493 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.106 W/kg; SAR(10 g) = 0.066 W/kg

Smallest distance from peaks to all points 3 dB below = 12 mm

Ratio of SAR at M2 to SAR at M1 = 54.8%

Maximum value of SAR (measured) = 0.156 W/kg

Date: 2024/10/24

64_WLAN2.4G_802.11b_Top side of the keyboard_0 mm_Ch1_ANT 1_Sample 1

DUT: FX607V

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1.007

Medium parameters used: $f = 2412 \text{ MHz}$; $\sigma = 1.755 \text{ S/m}$; $\epsilon_r = 39.563$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5

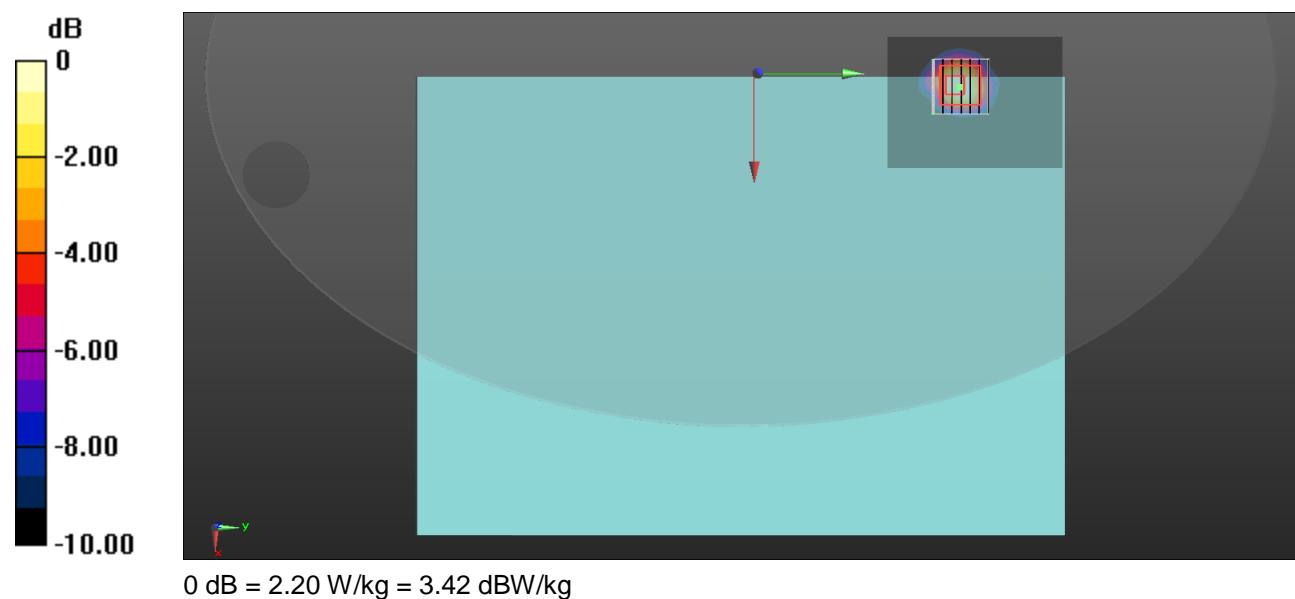
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(7.73, 7.11, 7.58) @ 2412 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (61x81x1): Interpolated grid: $dx=1.200 \text{ mm}$, $dy=1.200 \text{ mm}$
Maximum value of SAR (interpolated) = 2.54 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 3.539 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 2.85 W/kg

SAR(1 g) = 1.33 W/kg; SAR(10 g) = 0.624 W/kg

Smallest distance from peaks to all points 3 dB below = 8.1 mm

Ratio of SAR at M2 to SAR at M1 = 48.8%

Maximum value of SAR (measured) = 2.20 W/kg

Date: 2024/10/25

70_WLAN5.3G_802.11ac VHT160_Top side of the keyboard_0 mm_Ch50_ANT 0_Sample 1

DUT: FX607V

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5250 MHz; Duty Cycle: 1:1.019
Medium parameters used: $f = 5250$ MHz; $\sigma = 4.441$ S/m; $\epsilon_r = 35.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

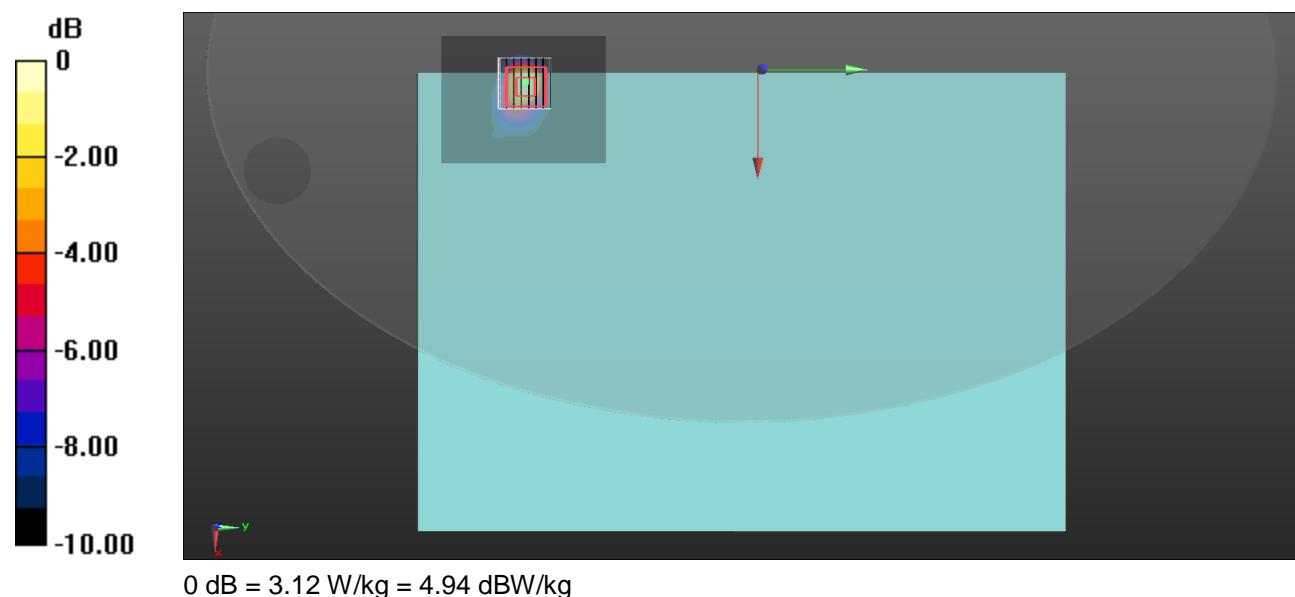
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(5.68, 5.15, 5.5) @ 5250 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 3.56 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 17.91 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 5.51 W/kg

SAR(1 g) = 1.32 W/kg; SAR(10 g) = 0.467 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 62.1%

Maximum value of SAR (measured) = 3.12 W/kg

Date: 2024/10/26

76_WLAN5.6G_802.11ac VHT160_Top side of the keyboard_0 mm_Ch114_ANT 0_Sample 1

DUT: FX607V

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5570 MHz; Duty Cycle: 1:1.019
Medium parameters used: $f = 5570$ MHz; $\sigma = 4.742$ S/m; $\epsilon_r = 35.063$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

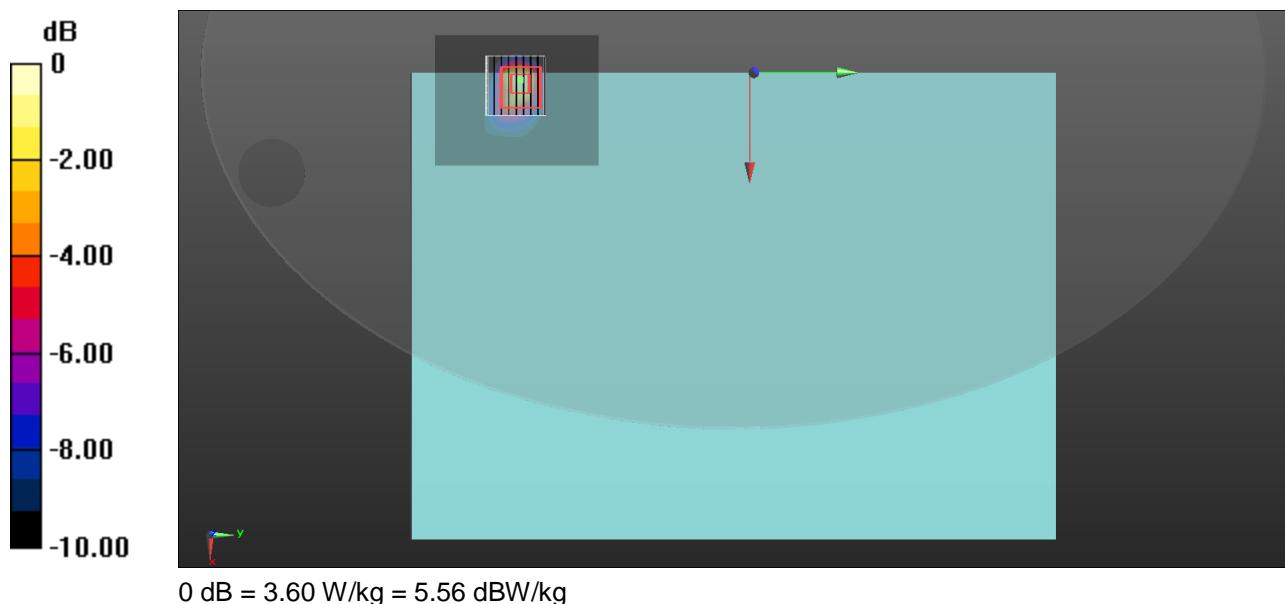
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(4.9, 4.47, 4.74) @ 5570 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 4.05 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 19.68 V/m; Power Drift = 0.14 dB


Peak SAR (extrapolated) = 6.75 W/kg

SAR(1 g) = 1.49 W/kg; SAR(10 g) = 0.525 W/kg

Smallest distance from peaks to all points 3 dB below = 6.1 mm

Ratio of SAR at M2 to SAR at M1 = 61.7%

Maximum value of SAR (measured) = 3.60 W/kg

Date: 2024/10/27

89_WLAN5.8G_802.11ac VHT160_Top side of the keyboard_0 mm_Ch163_ANT 0_Sample 1

DUT: FX607V

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5815 MHz; Duty Cycle: 1:1.019
Medium parameters used: $f = 5815 \text{ MHz}$; $\sigma = 4.954 \text{ S/m}$; $\epsilon_r = 34.618$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5

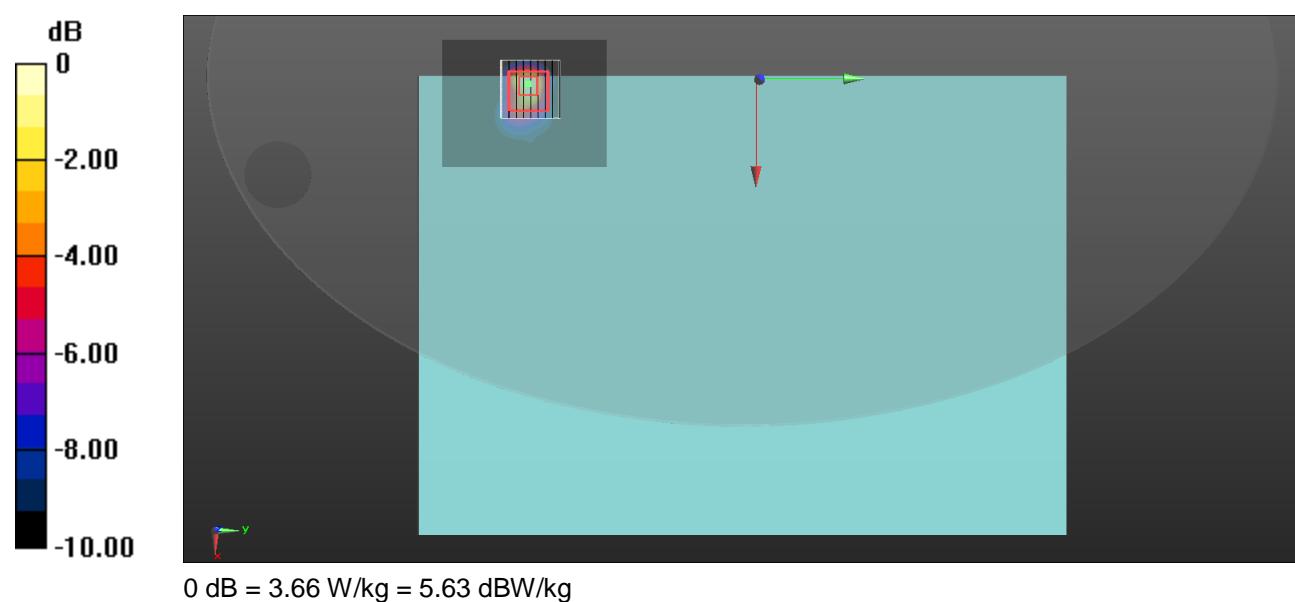
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(5.03, 4.62, 4.96) @ 5815 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (71x91x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$
Maximum value of SAR (interpolated) = 4.01 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 19.04 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 6.96 W/kg

SAR(1 g) = 1.42 W/kg; SAR(10 g) = 0.494 W/kg

Smallest distance from peaks to all points 3 dB below = 5.8 mm

Ratio of SAR at M2 to SAR at M1 = 60.1%

Maximum value of SAR (measured) = 3.66 W/kg

Date: 2024/10/24

102_Bluetooth_GFSK_Top side of the keyboard_0 mm_Ch0_ANT 1_Sample 1

DUT: FX607V

Communication System: UID 0, Bluetooth 3.0 (0); Frequency: 2402 MHz; Duty Cycle: 1:1.302

Medium parameters used: $f = 2402 \text{ MHz}$; $\sigma = 1.747 \text{ S/m}$; $\epsilon_r = 39.578$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5

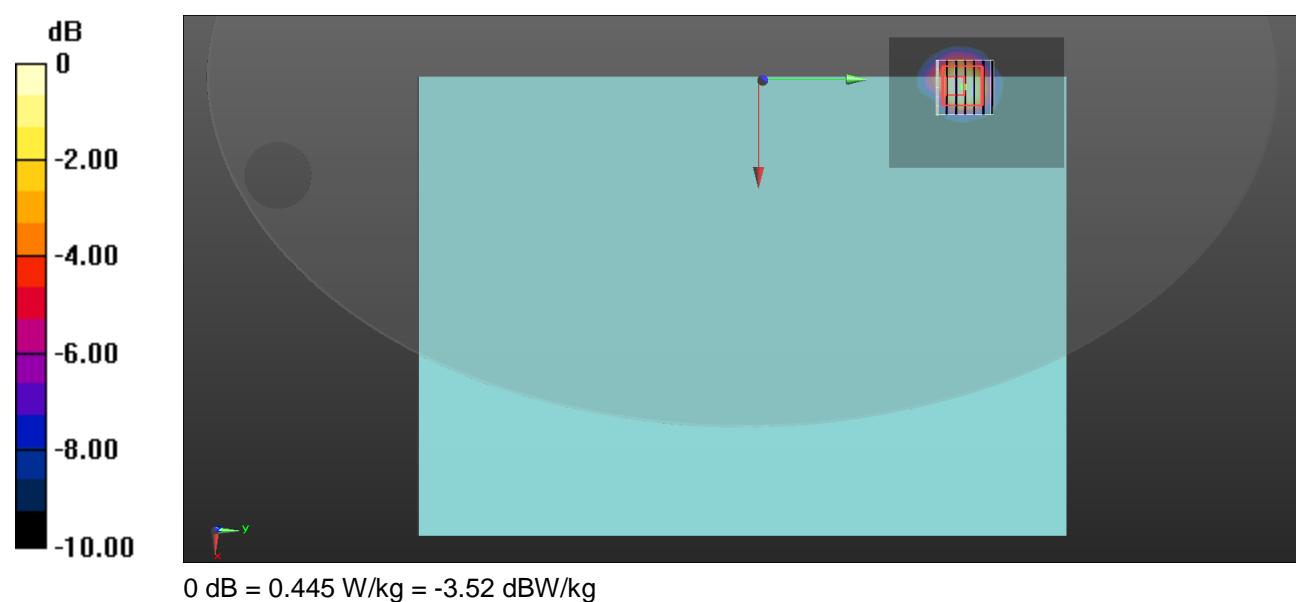
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN3977; ConvF(7.73, 7.11, 7.58) @ 2402 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2024/6/5
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (61x81x1): Interpolated grid: $dx=1.200 \text{ mm}$, $dy=1.200 \text{ mm}$
Maximum value of SAR (interpolated) = 0.530 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 12.30 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 0.593 W/kg

SAR(1 g) = 0.284 W/kg; SAR(10 g) = 0.140 W/kg

Smallest distance from peaks to all points 3 dB below = 6.3 mm

Ratio of SAR at M2 to SAR at M1 = 54%

Maximum value of SAR (measured) = 0.445 W/kg

