

Test Report Serial Number: Test Report Date: Project Number: 45461575 R2.0 18 February 2020 1489

SAR Test Report - New Certification

Applicant:

Garmin International Inc. 1200 East 151 St Olathe, KS, 66062 USA

	Maximum	Reported	1g SAR	
	DTS (WiFi)	Extremity:	0.44	
FCC	DXX (BT)	Extremity:	0.01	
FCC	DXX (ANT)	Extremity:	0.02	
	Sim	ultaneous:	0.45	
	DTS (WiFi) Extremity:		0.44	W/kg
ICED	DXX (BT) Extremity:		0.01	
ISED	DXX (ANT)	Extremity:	0.02	
	Sim	ultaneous:	0.45	
Ge	eneral Populat	ion Limit:	4.00	

FCC ID:

IPH-03847

Product Model Number / HVIN

A03847

		٠.		
•	1792	A-	-03	847

Product Name / PMN

IC ID:

A03847

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

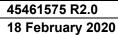
Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8

Canada


Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: 714830

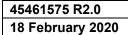
This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

Table of Contents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
4.0 NORMATIVE REFERENCES	7
5.0 STATEMENT OF COMPLIANCE	8
6.0 SAR MEASUREMENT SYSTEM	9
7.0 RF CONDUCTED POWER MEASUREMENT	10
TABLE 7.0 CONDUCTED POWER MEASUREMENTS	11
8.0 NUMBER OF TEST CHANNELS (Nc) AND CONFIGURATIONS	13
9.0 SAR MEASUREMENT SUMMARY	
Table 9.0: Measured Results	14
10.0 SCALING OF MAXIMUM MEASURED SAR	15
Table 10.0 SAR Scaling	15
11.0 SAR EXPOSURE LIMITS	21
Table 11.0 Exposure Limits	21
12.0 DETAILS OF SAR EVALUATION	22
12.0 Day Log	22
12.1 DUT SETUP AND CONFIGURATION	
12.2 DUTY CYCLE EVALUATION	
12.4 GENERAL PROCEDURES AND REPORT	
12.5 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK	
12.6 SCAN RESOLUTION 100MHz TO 2GHz	
12.7 Scan Resolution 2GHz to 3GHz	
13.0 MEASUREMENT UNCERTAINTIES	
Table 13.0 Measurement Uncertainty	30
Table 13.1 Calculation of Degrees of Freedom	
14.0 FLUID DIELECTRIC PARAMETERS	32
Table 14.0 Fluid Dielectric Parameters 2450MHz HEAD TSL	32
TABLE 14.1 FLUID DIELECTRIC PARAMETERS 2450MHz HEAD TSL	
TABLE 14.2 FLUID DIELECTRIC PARAMETERS 5250MHz HEAD TSL	
TABLE 14.3 FLUID DIELECTRIC PARAMETERS 5750MHz HEAD TSL	
15.0 SYSTEM VERIFICATION TEST RESULTS	
TABLE 15.0 SYSTEM VERIFICATION RESULTS 2450MHz HEAD TSL	
TABLE 15.1 SYSTEM VERIFICATION RESULTS 5750MHz HEAD TSL	
16.0 SYSTEM VALIDATION SUMMARY	42

Test Report S/N:
Test Report Issue Date:

45461575 R2.0 18 February 2020


Table 16.0 System Validation Summary	42
17.0 MEASUREMENT SYSTEM SPECIFICATIONS	43
Table 17.0 Measurement System Specifications	43
18.0 TEST EQUIPMENT LIST	45
Table 18.0 Equipment List and Calibration	45
19.0 FLUID COMPOSITION	46
TABLE 19.0 FLUID COMPOSITION 2450MHz HEAD TSL TABLE 19.1 FLUID COMPOSITION 5250MHz HEAD TSL TABLE 19.2 FLUID COMPOSITION 5750MHz HEAD TSL	46 46
APPENDIX A – SYSTEM VERIFICATION PLOTS	47
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR	53
APPENDIX C - SETUP PHOTOS	61
APPENDIX D – DUT AND ACCESSORY PHOTOS	
APPENDIX E – PROBE CALIBRATION	76
APPENDIX F – DIPOLE CALIBRATION	77
APPENDIX G - PHANTOM	78

45461575 R2.0 18 February 2020

1.0 DOCUMENT CONTROL

	Revision History								
Samples Tested By: Trevor Whillock			Dat	te(s) of Evaluation:	28 Jan - 6 Feb 2020				
Rep	ort Prepared By:	Art Voss	Re	port Reviewed By:	Trevor Whillock				
Report	Description of Revision		Revised	Revised	Revision Date				
Revision			Section	Ву	Revision Date				
1.0		Initial Release	n/a	Art Voss	6 February 2020				
1.1	Correcte	d Frequency Reference	2.0 Art Voss		7 February 2020				
2.0	Correcte	ed Terms-PMN to HVIN	Cover Page	Trevor Whillock	18 February 2020				

2.0 CLIENT AND DEVICE INFORMATION

Client Information							
Applicant Name	Garmin International Inc.						
	1200 East 151st St.						
Applicant Address	Olathe, KS, 66062						
	USA						
	DUT Information						
Davisa Identificate).	FCC ID: IPH-03847						
Device Identifier(s):	IC ID: 1792A-03847						
Device Marketing Name / PMN:	A03847						
Device Model(s) / HVIN:	A03847						
	Unlicensed National Information Infrastructure (NII) - WiFi						
	Digital Transmission System (DTS) - BLE / WiFi						
	Digital Spread Spectrum (DSS) - BT						
Type of Equipment:	Low Power Communication Device Transmitter (DXX)						
Type of Equipment.	WiFi Device						
	BlueTooth Device						
	Lower Power Transmitter (2400-2483.5MHz)						
	, ,						
	DUT Information (Cont.)						
	UNII-1: 5180-5240MHz						
	UNII-3: 5745-5825MHz						
Transmit Frequency Range:	DTS (WiFi): 2412-2462MHz						
Transmitted queries y trainger	DXX (BLE): 2402-2480MHz						
	DXX (BT): 2402-2480						
	DXX (ANT): 2402-2480						
Number of Channels:	Programmable						
Max Rated Output Power:	UNII-1: 5180-5240MHz: 14.25dBm						
- Includes Tune-Up Tolerance	UNII-3: 5745-5825MHz: 14.6dBm						
- Antenna Port Conducted	DTS (WiFi): 2412-2462MHz: 17.2dBm						
- Detector: Average (RMS)	DXX (BLE): 2402-2480MHz: -0.8dBm						
	DXX (BT): 2402-2480: 1.26dBm						
	DXX (ANT): 2402-2480: 1.26dBm						
Antenna 1:	PCB Inverted "F", 3.9dBi, UNII-1 & UNII-3						
Antenna Type / Gain Antenna 2:	, , , , , , , , , , , , , , , , , , , ,						
Duty Cycle:	PCB Inverted "F", 2.2dBi, DXX (BT) & DXX (BLE) 100%						
DUT Power Source:	5VDC USB, Internal Li-lon						
DUT Dimensions: (L x W x H)	146 x 87 x 23						
Deviation(s) from standard/procedure:	None						
Modification of DUT:	None						

45461575 R2.0 18 February 2020

3.0 SCOPE OF EVALUATION

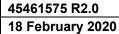
This Certification Report was prepared on behalf of:

Garmin International Inc.

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC 47 CFR Part §2.1091 and §2.1093, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in this report.

Equipment:


The A03847 is a *mobile* or *portable* GPS transceiver. The device contains several different transmitters namely: 5GHz UNII-1 and UNII-3, 2.4GHz WiFi, BT, BLE and ANT. The transmitters transmit over three antennas some of which can simultaneously transmit. The Simultaneous Transmission Evaluation can be found in Section 11.0.

Application:

This is an application for a new FCC and ISED certification.

Scope:

Since this device can be handheld while transmitting, the device will be evaluated for SAR in the Extremity configuration. The device cannot be worn on the body and is not intended to be held to the ear. Since the overall diagonal dimension is less than 20cm, the test configurations described in KDB 941225 D07v01r02 "UMPC Mini-Tablet" will be considered. Additionally, since simultaneous transmission conditions are possible, Simultaneous Transmission SAR will be evaluated. Where applicable, SAR test reduction or SAR test exclusion applied.

4.0 NORMATIVE REFERENCES

	Normative References*
ANSI / ISO 17025:2017	General Requirements for competence of testing and calibration laboratories
FCC CFR Title 47 Part 2	Code of Federal Regulations
Title 47:	Telecommunication
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices
Health Canada	
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range
	from 3kHz to 300GHz
Industry Canada Spectrum	Management & Telecommunications Policy
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
IEEE International Committ	ee on Electromagnetic Safety
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR)
	in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC International Standard	
IEC 62209-2	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication
Edition 1.1 2019	devices - Part 2
FCC KDB	
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz
FCC KDB	
KDB 447498 D01v06r02	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
FCC KDB	
KDB 248227 D01v02r02	SAR Guidance for IEEE 802.11 (WiFi) Transmitters
* When the issue number	or issue date is omitted, the latest version is assumed.

45461575 R2.0 18 February 2020

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

<u>'</u>							
Applicant:	Model Name / PMN:						
Garmin International Inc.	A03847						
Standard(s) Applied:	Measurement Procedure(s):						
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FCC F	KDB 248227					
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5						
	IEEE Standard 1528-2013, IEC 62209-2						
Reason For Issue:	Use Group:	Limits Applied:					
X New Certification	X General Population / Uncontrolled	1.6W/kg - 1g Volume					
Class I Permissive Change		8.0W/kg - 1g Volume					
Class II Permissive Change	Occupational / Controlled	X 4.0W/kg - 10g Volume					
Reason for Change:		Date(s) Evaluated:					
None		28 Jan - 6 Feb, 2019					

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

- whe Yours

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

6 February 2020

Date

6.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 SAR System with SAM Phantom

DASY 6 Measurement Controller

18 February 2020

7.0 RF CONDUCTED POWER MEASUREMENT

Table 7.0 Conducted Power Measurements

	A03847 - Conducted Power Measurements - Average										
Channel	Frequency (MHz)	Measured Power (dBm)	Max Rated Power (dBm)	Rated Power (W)	Delta	SAR Test Channel (Y/N)		Modulation	Bandwidth (MHz)		
36	5180	13.73	14.25	0.027	-0.52	-		OFDM-6Mbps	(101112)		
38	5190	14.19	14.25	0.027	-0.06	_	•	OFDM-6Mbps			
40	5200	14.24	14.25	0.027	-0.01	Υ		OFDM-6Mbps			
42	5210	14.16	14.25	0.027	-0.09	-		OFDM-6Mbps			
44	5220	14.19	14.25	0.027	-0.06	-		OFDM-6Mbps			
46	5230	14.21	14.25	0.027	-0.04	-		OFDM-6Mbps			
48	5240	14.09	14.25	0.027	-0.16	-		OFDM-6Mbps	1		
149	5745	14.39	14.60	0.029	-0.21	-		OFDM-6Mbps	1		
151	5755	14.43	14.60	0.029	-0.17	-		OFDM-6Mbps	1		
153	5765	14.45	14.60	0.029	-0.15	-		OFDM-6Mbps	1		
155	5775	14.46	14.60	0.029	-0.14	-		OFDM-6Mbps			
157	5785	14.49	14.60	0.029	-0.11	-		OFDM-6Mbps			
159	5795	14.59	14.60	0.029	-0.01	Υ		OFDM-6Mbps	1		
161	5805	14.58	14.60	0.029	-0.02	-		OFDM-6Mbps			
165	5825	14.49	14.60	0.029	-0.11	-		OFDM-6Mbps			
40	5200	14.04	14.25	0.027	-0.21	-		OFDM-54Mbps			
44	5220	14.17	14.25	0.027	-0.08	-	WiFi 802.11(a)	OFDM-54Mbps	20		
46	5230	14.15	14.25	0.027	-0.10	-		OFDM-54Mbps			
159	5765	14.49	14.60	0.029	-0.11	-		OFDM-54Mbps			
161	5795	14.49	14.60	0.029	-0.11	-		OFDM-54Mbps			
165	5825	14.57	14.60	0.029	-0.03	-		OFDM-54Mbps			
40	5200	13.73	14.25	0.027	-0.52	-		MCS-0			
44	5200	13.74	14.25	0.027	-0.51	-					
46	5230	13.74	14.25	0.027	-0.51	-					
159	5795	14.08	14.60	0.029	-0.52	-		WIGG 0			
161	5805	14.06	14.60	0.029	-0.54	-					
165	5825	13.86	14.60	0.029	-0.74	-					
40	5200	13.57	14.25	0.027	-0.68	-					
44	5200	13.75	14.25	0.027	-0.50	-					
46	5230	13.73	14.25	0.027	-0.52	-		MCS-7			
159	5795	14.52	14.60	0.029	-0.08	-					
161	5805	14.53	14.60	0.029	-0.07	-					
165	5825	14.56	14.60	0.029	-0.04	-					
40	5200	14.1	14.25	0.027	-0.15	-			20		
40	5200	13.75	14.25	0.027	-0.50	-	WiFi 802.11(n)		40		
159	5795	14.05	14.60	0.029	-0.55	-	(' '		20		
159	5795	14.09	14.60	0.029	-0.51	-			40		
40	5200	14.27	14.25	0.027	0.02	-	ME: 000 44/	MCS-7	20		
40	5200	13.87	14.25	0.027	-0.38	-	WiFi 802.11(ac)		40		
40	5200	13.66	14.25	0.027	-0.59	-			80		
159	5795	14.06	14.60	0.029	-0.54	-	\\/;E; 000 44/- \		20		
159	5795	14.13	14.60	0.029	-0.47	-	WiFi 802.11(ac)		40		
159	5795	14.06	14.60	0.029	-0.54	-			80		

Table 7.1 Conducted Power Measurements

A03847 - Conducted Power Measurements - Average										
	Frequency	Measured	Max Rated	Rated	Delta	SAR Test			Bandwidth	
Channel	Frequency	Power	Power	Power	Deita	Channel	Mode	Modulation	Danuwium	
	(MHz)	(dBm)	(dBm)	(W)	(dB)	(Y/N)			(MHz)	
1	2412	16.89	17.20	0.052	-0.31	-		DSS-1Mbps		
2	2417	16.23	17.20	0.052	-0.97	-		DSS-1Mbps		
3	2422	16.25	17.20	0.052	-0.95	-		DSS-1Mbps		
4	2427	16.34	17.20	0.052	-0.86	-		DSS-1Mbps		
5	2432	16.35	17.20	0.052	-0.85	-		DSS-1Mbps		
6	2437	16.42	17.20	0.052	-0.78	-		DSS-1Mbps		
7	2442	16.38	17.20	0.052	-0.82	-		DSS-1Mbps		
8	2447	16.38	17.20	0.052	-0.82	-	802.11b	DSS-1Mbps		
9	2452	16.42	17.20	0.052	-0.78	-	002.116	DSS-1Mbps		
10	2457	16.37	17.20	0.052	-0.83	-		DSS-1Mbps		
11	2462	16.44	17.20	0.052	-0.76	-		DSS-1Mbps		
12	2467	16.15	17.20	0.052	-1.05	-		DSS-1Mbps		
13	2472	15.99	17.20	0.052	-1.21	-		DSS-1Mbps		
		16.28	17.20	0.052	-0.92	-		DSS-2Mbps		
		17.10	17.20	0.052	-0.10	-		DSS-5.5Mbps		
		17.08	17.20	0.052	-0.12	-		DSS-11Mbps		
1	2417	13.41	17.20	0.052	-3.79	-	802.11g	OFDM-6Mbps		
		13.91	17.20	0.052	-3.29	-	002.119	OFDM-54Mbps		
		13.26	17.20	0.052	-3.94	-	802.11n	MCS-0		
		13.61	17.20	0.052	-3.59	-	002.1111	MCS-7		
		16.47	17.20	0.052	-0.73	-		DSS-2Mbps		
		17.21	17.20	0.052	0.01	-	802.11b	DSS-5.5Mbps		
		17.18	17.20	0.052	-0.02	-		DSS-11Mbps		
6	2437	16.58	17.20	0.052	-0.62	-	802.11g	OFDM-6Mbps		
		14.10	17.20	0.052	-3.10	-	002.119	OFDM-54Mbps		
		16.54	17.20	0.052	-0.66	-	802.11n	MCS-0		
		13.83	17.20	0.052	-3.37	-	002.1111	MCS-7	20MHz	
		16.46	17.20	0.052	-0.74	-		DSS-2Mbps	20111112	
		17.22	17.20	0.052	0.02	-	802.11b	DSS-5.5Mbps		
		17.15	17.20	0.052	-0.05	-		DSS-11Mbps		
11	2462	13.66	17.20	0.052	-3.54	-	802.11g	OFDM-6Mbps		
		14.16	17.20	0.052	-3.04	-		OFDM-54Mbps		
		13.54	17.20	0.052	-3.66	-	802.11n	MCS-0		
		13.82	17.20	0.052	-3.38	-		MCS-7		
		16.12	17.20	0.052	-1.08	-		DSS-2Mbps		
		16.56	17.20	0.052	-0.64	-	802.11b	DSS-5.5Mbps		
		16.60	17.20	0.052	-0.60	-		DSS-11Mbps		
13	2472	16.10	17.20	0.052	-1.10	-	802.11g	OFDM-6Mbps		
		13.55	17.20	0.052	-3.65	-		OFDM-54Mbps		
		15.82	17.20	0.052	-1.38	-	802.11n	MCS-0		
		13.17	17.20	0.052	-4.03	-		MCS-7		
1	2412	17.03	17.20	0.052	-0.17	-		DSS-11Mbps		
2	2417	16.96	17.20	0.052	-0.24	-		DSS-11Mbps		
3	2422	17.05	17.20	0.052	-0.15	-		DSS-11Mbps		
4	2427	17.04	17.20	0.052	-0.16	-		DSS-11Mbps		
5	2432	17.16	17.20	0.052	-0.04	-		DSS-11Mbps		
6	2437	17.12	17.20	0.052	-0.08	-	000 / //	DSS-11Mbps		
7	2442	17.17	17.20	0.052	-0.03	-	802.11b	DSS-11Mbps		
8	2447	17.19	17.20	0.052	-0.01	Υ		DSS-11Mbps		
9	2452	17.13	17.20	0.052	-0.07	-		DSS-11Mbps		
10	2457	17.15	17.20	0.052	-0.05	-		DSS-11Mbps		
11	2462	17.12	17.20	0.052	-0.08	-		DSS-11Mbps		
12	2467	16.99	17.20	0.052	-0.21	-		DSS-11Mbps		
13	2472	17.02	17.20	0.052	-0.18	-		DSS-11Mbps		

45461575 R2.0 18 February 2020

Table 7.2 Conducted Power Measurements

	A03847 - Conducted Power Measurements - Average									
Channel	Frequency (MHz)	Measured Power (dBm)	Max Rated Power (dBm)	Rated Power (W)	Delta (dB)	SAR Test Channel (Y/N)	Mode	Modulation		
2	2402	0.36	1.26	0.001	-0.90	Υ	ВТ			
41	2441	0.23	1.26	0.001	-1.03	-		BT(GFSK)		
80	2480	0.22	1.26	0.001	-1.04	-				
		-1.68	-0.80	0.001	-0.88	-		BT(PI/4-DQPSK)		
2	2402	-1.89	-0.80	0.001	-1.09	-	BLE	BT(8DPSK)		
	2402	-1.35	-0.80	0.001	-0.55	-		BLE(GMSK)		
					0.00	-	ANT	ANT(GFSK)		

The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using the power level setting specified by the manufacture to be the max output power and produce the most conservative SAR. SAR was evaluated at the <u>maximum average</u> tune up tolerance. See section 2.0 Client and Device Information for details. The <u>reported SAR</u> was not scaled down.

45461575 R2.0

18 February 2020

8.0 NUMBER OF TEST CHANNELS (Nc) AND CONFIGURATIONS

This device is intended to be mounted on a vehicle dashboard; optionally, the device can be hand-held. Additional evaluations were done on select edges and sides that were in close proximity to the transmitter. Note: FCC KDB 941225D07V01r02 was used as guidance for the selection of test positions for SAR evaluation. Please see section 12.1 for details.

As per FCC KDB 24827, the required 802.11 test channels are Ch1, Ch6 and Ch 11; however, higher conducted output power was found on channel 3 in the lower 2.4GHz WIFI frequency band. As a result, the channels selected for SAR evaluation included Ch3, Ch8, and Ch10.

When applicable, SAR test reduction methods may be utilized.

802.11b DSSS SAR test reduction is determined according to the following:

- a) When the <u>reported</u> SAR of the highest measured maximum output power channel is ≤ to 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b) When the <u>reported</u> SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest output power channel. When any <u>reported</u> SAR is > 1.2 W/kg, SAR is required for the third channel.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

- a) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

See 12.1 for details.

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. An initial test position was established for Both UNII1 and UNII 3 bands.

When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Test Report S/N: Test Report Issue Date: 18 February 2020

45461575 R2.0

9.0 SAR MEASUREMENT SUMMARY

Table 9.0: Measured Results

			ľ	Measured S	SAR Results	s (10g) -	Extremi	ty Con	figurati	on (FC	CC/ISED)			
		DU1	-	Test			Access	ories		DUT	Spacing	Conducted	Measured SAR (10g)	SAR
Date	Plot	D01		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(dB)
30 Jan 2020	B1	A03847	GPS	2447	DSSS-11Mbps	n/a	n/a	n/a	n/a	0	0	17.19	0.189	-0.640
31 Jan 2020	B2	A03847	GPS	2447	DSSS-11Mbps	n/a	n/a	n/a	n/a	0	0	17.19	0.168	1.490
31 Jan 2020	В3	A03847	GPS	2447	DSSS-11Mbps	n/a	n/a	n/a	n/a	0	0	17.19	0.400	-0.260
31 Jan 2020	B4	A03847	GPS	2447	DSSS-11Mbps	n/a	n/a	n/a	n/a	0	0	17.19	0.081	0.170
31 Jan 2020	B5	A03847	GPS	2447	DSSS-11Mbps	n/a	n/a	n/a	n/a	0	0	17.19	0.388	0.260
31 Jan 2020	В6	A03847	GPS	2402	BT-GFSK	n/a	n/a	n/a	n/a	0	0	0.39	0.006	1.340
31 Jan 2020	B7*	A03847	GPS	2402	ANT	n/a	n/a	n/a	n/a	0	0	1.26	0.023	0.000
04 Feb 2020	B8	A03847	GPS	5200	OFDM-6Mbps	n/a	n/a	n/a	n/a	0	0	14.24	0.193	1.750
04 Feb 2020	В9	A03847	GPS	5200	OFDM-6Mbps	n/a	n/a	n/a	n/a	0	0	14.24	0.019	0.000
04 Feb 2020	B10	A03847	GPS	5200	OFDM-6Mbps	n/a	n/a	n/a	n/a	0	0	14.24	0.121	0.100
04 Feb 2020	B11	A03847	GPS	5200	OFDM-6Mbps	n/a	n/a	n/a	n/a	0	0	14.24	0.031	0.000
06 Feb 2020	B12	A03847	GPS	5795	OFDM-6Mbps	n/a	n/a	n/a	n/a	0	0	14.59	0.086	-0.020
06 Feb 2020	B13	A03847	GPS	5795	OFDM-6Mbps	n/a	n/a	n/a	n/a	0	0	14.59	0.122	0.000
06 Feb 2020	B14	A03847	GPS	5795	OFDM-6Mbps	n/a	n/a	n/a	n/a	0	0	14.59	0.037	0.000
06 Feb 2020	B15	A03847	GPS	5795	OFDM-6Mbps	n/a	n/a	n/a	n/a	0	0	14.59	0.164	0.000
	SAR Limit				Sp	atial Pe	ak	Hea	d/Body	RI	Exposure Category			
F	CC 47 C	FR 2.1093		Health Ca	anada Safety	Code 6	10 G	ram Ave	rage	4.0	W/kg	Gene	ral Population Extremi	ty

^{*}Estimated SAR Value

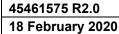
10.0 SCALING OF MAXIMUM MEASURED SAR

Table 10.0 SAR Scaling

	Scaling of Ma	aximum Measu	red SAR (10g)		
D.	Measured Parameters		Configuration		
IV	neasured Parameters	Extremity	Extremity	Head	
	Plot ID	B15	B8		
Max	ximum Measured SAR _M	0.164	0.193		(W
	Frequency	5795	5200		(M
	Power Drift	0.001 (1)	1.750 (1)		(dE
	Conducted Power	14.590	14.240		(dE
	Fluid	Deviation from	Target		
Δe	Permitivity	-3.54%	-5.00%		
Δσ	Conductivity	6.08%	1.51%		

Note(1): Power Drift is Positive, Drift Adjustment not Required.

Flu	id Sensitivity Calculation	IEC 62209	-2 Annex F			
	Delta SAR = Ce * Δe + Cσ * Δσ					
	$Ce = (-0.0007854*f^3) + (0.009402*f^2) - (0.02742*f) - 0.2026$					
$C\sigma = (0.009804*f^3) - (0.08661*f^2) + (0.02981*f) + 0.7829$ (F.3)						
f	Frequency (GHz)	5.795	5.2			
	Ce	-0.199	-0.201			
	Сσ	-0.045	-0.026			
	Ce * ∆e	0.007	0.010			
	Cσ * Δσ	-0.003	0.000			
	ΔSAR	0.004	0.010			


Manufacturer's Tuneup Tolerance						
Measured Conducted Power	14.590		14.240			(dBm)
Rated Conducted Power	14.600		14.250			(dBm)
ΔΡ	-0.010	(4)	-0.010	(4)		(dB)

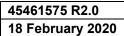
Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

SAR Adju			
$SAR_1 = SAR_M * \Delta SAR$	0.165	0.195	(W/kg)
SAR Adju	stment for Tune	eup Tolerance	
$SAR_2 = SAR_1 + [\Delta P]$	0.165	0.195	(W/kg)
	D.A.P ((6		

SAR Adjustment for Drift				
$SAR_3 = SAR_2 + Drift$	0.165	0.195		(W/kg)
				_

	reported SAR			
FCC = SAR ₂	0.17	0.20	(W	V/kg)
ISED = SAR ₃	0.17	0.20	(W	V/kg)

Scaling of Maximum Measured SAR (10g)						
N/	Measured Parameters		Configuration			
IV	leasured Parameters	Extremity	Extremity	Head		
	Plot ID	B7	B3			
Max	ximum Measured SAR _M	0.023	0.400		(W/kg	
	Frequency	2402	2447		(MHz	
	Power Drift	0.001 (1)	-0.260		(dB)	
	Conducted Power	1.260	17.190		(dBm	
	Fluid	Deviation from	Target			
Δe	Permitivity	-4.10%	-4.44%			
Δσ	Conductivity	5.11%	7.23%			


Note(1): Power Drift is Positive, Drift Adjustment not Required.

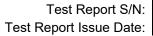
Flu	Fluid Sensitivity Calculation (1g) IEC 62209-2					
	Delta SAR = 0	Ce * Δe + Cσ * Δ	σ	(F.1)		
	$Ce = (-0.0007854*f^3) + (0.009402*f^2) - (0.02742*f) - 0.2026$					
$C\sigma = (0.009804*f^3) - (0.08661*f^2) + (0.02981*f) + 0.7829$ (F.3)						
f	Frequency (GHz)	2.402	2.447			
	Ce	-0.225	-0.225			
	Сσ	0.491	0.481			
	Ce * ∆e	0.009	0.010			
•	Cσ * Δσ	0.025	0.035			
	ΔSAR	0.034	0.045			

Manufacturer's Tuneup Tolerance					
Measured Conducted Power	1.260	17.190	((dBm)	
Rated Conducted Power	1.260	17.190	((dBm)	
ΔΡ	0.000 (4)	0.000 (4)	((dB)	

Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

SAR Adii	stment for Flui	d Sansitivity	
SAR ₁ = SAR _M * ΔSAR	0.024	0.418	(W
	1	<u>I</u>	`
SAR Adjus	stment for Tune	up Tolerance	
$SAR_2 = SAR_1 + [\Delta P]$	0.024	0.418	(W
SA	R Adjustment fo	or Drift	
SAR ₃ = SAR ₂ + Drift	0.024	0.444	(V
	reported SAI	₹	
FCC = SAR ₂	0.02	0.42	(V
ISED = SAR ₃	0.02	0.44	(W

	Scaling of Ma	ximum Measu	red SAR (10g)		
D/	Measured Parameters		Configuration		
IV	leasured Parameters	Extremity	Body	Head	
	Plot ID	B6			
Max	ximum Measured SAR _M	0.006			(W/k
	Frequency	2402			(MH
	Power Drift	1.340 (1)	(1)		(dB)
	Conducted Power	0.390			(dBı
	Fluid	Deviation from	Target		
Δе	Permitivity	-4.10%			
Δσ	Conductivity	5.11%			


Note(1): Power Drift is Positive, Drift Adjustment not Required.

Flu	Fluid Sensitivity Calculation (1g)			-2 Annex F		
	Delta SAR = 0	σ	(F.1)			
Ce = $(-0.0007854*f^3) + (0.009402*f^2) - (0.02742*f) - 0.2026$ (F						
$C\sigma = (0.009804*f^3) - (0.08661*f^2) + (0.02981*f) + 0.7829$ (F.3)						
f	Frequency (GHz)	2.402				
Ce		-0.225				
	Сσ	0.491				
	Ce * ∆e	0.009				
	Cσ * Δσ	0.025				
	ΔSAR	0.034				

Manufacturer's Tuneup Tolerance					
Measured Conducted Power 0.390					
Rated Conducted Power	1.260				(dBm)
ΔΡ	-0.870	(4)	(4)		(dB)

Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

is not Required.			
SAR Adju	stment for Flu	id Sensitivity	
$SAR_1 = SAR_M * \Delta SAR$	0.006		(W/kg)
SAR Adjus	stment for Tune	eup Tolerance	
$SAR_2 = SAR_1 + [\Delta P]$	0.008		(W/kg)
SA	R Adjustment f	or Drift	
SAR ₃ = SAR ₂ + Drift	0.008		(W/kg)
	reported SA	R	
FCC = SAR ₂	0.01		(W/kg)
ISED = SAR ₃	0.01		(W/kg)

45461575 R2.0 18 February 2020

Simultaneous Transmission Analysis

The A03847 employs Wi-Fi, BlueTooth, BLE and ANT transmitters some of which are capable of simultaneously transmitting across three antennas. **Antenna 1** supports the 5GHz UNII-1 and UNII-3 transmitter. **Antenna 2** supports the 2.4GHz WiFi and ANT transmitters. **Antenna 3** supports the BT and BLE transmitters. The simultaneous transmission combinations are listed below.

When the Sum-of-the-SARs exceeds the General Population Limit of 4.0 (Extremity), the SAR to Peak Location Separation Ration (SPLSR) may be used to determine simultaneous transmission SAR test exclusion. However, the Sum-of-the-SAR did not exceed this limit therefore SPLSR is not applicable.

SAR for each transmission band and applicable transmission mode was evaluated in the Extremity configuration with no applicable accessories. Only the Maximum <u>reported</u> SAR for these configurations are used in the Simultaneous Transmission SAR Evaluation.

List of Possible Transmitters							
	Frequency Range						
Type	Class	Lower	Power				
		(MHz)	(MHz)	(dBm)			
WiFi 5-1	UNII	5150.0	5240.0	14.25			
WiFi 5-3	UNII	5745.0	5825.0	14.60			
WiFi 2.4	DTS	2412.0	2462.0	17.20			
BlueTooth	DXX	2402.0	2480.0	1.26			
BLE	DXX	2402.0	2480.0	-0.80			
ANT	DXX	2402.0	2480.0	1.26			

	Simultaneous Transmitter Combinations								
L C	Ante	nna 1	Ante	nna 2	Antenna 3				
Configuration Number	UNII 5-1	UNII 5-3	WiFi 2.4	ANT	ВТ	BLE			
1	Χ			Х	Х				
2	Χ			Х		Χ			
3		Х		Χ	Х				
4		Х		Х		Χ			
5	X		Х		Х				
6			Χ			Χ			

Indicates configuration not supported

45461575 R2.0 18 February 2020

	Analysis of Sum-of-the-Ratios												
	For All Transmitters and Configurations												
<u>-</u>					Transmi	tter Type						Cum	Cum
Number	_	WiFi 5-	1	WiFi 5-	-3	WiFi 2.	.4	BlueTod	oth	ANT		Sum	Sum
Ž	tior	stand-alone	Ratio	stand-alone	Ratio	stand-alone	Ratio	stand-alone	Ratio	stand-alone	Ratio	of	of
io	ura	SAR	to	SAR	to	SAR	to	SAR	to	SAR	to	Datina	CADa
ırat	Configuration	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	Ratios	SARs
Configuration	ပိ	SAR Limit = 1.6W/kg (General Population)								(W/kg)			
1		0.200	0.125					0.010	0.006			0.131	0.210
2	Extremity	0.200 0.125 0.020 0.013							0.138	0.220			
3	LAUGIIILY			0.170	0.106			0.010	0.006			0.113	0.180
4		0.170 0.106 0.020 0.013									0.119	0.190	
5	Extremity					0.440	0.275	0.010	0.006			0.281	0.450

Indicates this combination is not supported

Note: Due to the low power of the BLE Transmitter, simultaneous transmission SAR of the BLE transmitter was not considered.

45461575 R2.0 18 February 2020

NOTES to Table 10.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 5. The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 5 may not apply and are identified by light gray text.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 11.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Sten 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 4

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 5 are reported on Page 1 of this report.

I attest that the data reported herein is true and accurate w ithin the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance w ith accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance w ith ISO/IEC 17025.

Trevor Whillock
Test Lab Engineer
Celltech Labs Inc.

06 February 2020

Date

45461575 R2.0 18 February 2020

11.0 SAR EXPOSURE LIMITS

Table 11.0 Exposure Limits

SAR RF EXPOSURE LIMITS						
FCC 47 CFR§2.1093 Health Canada Safety Code 6		General Population / Uncontrolled Exposure ⁽⁴⁾	Occupational / Controlled Exposure ⁽⁵⁾			
	tial Average ⁽¹⁾ over the whole body)	0.08 W/kg	0.4 W/kg			
	oatial Peak ⁽²⁾ eraged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg			
•	oatial Peak ⁽³⁾ t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg			

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

45461575 R2.0

18 February 2020

12.0 DETAILS OF SAR EVALUATION

12.0 Day Log

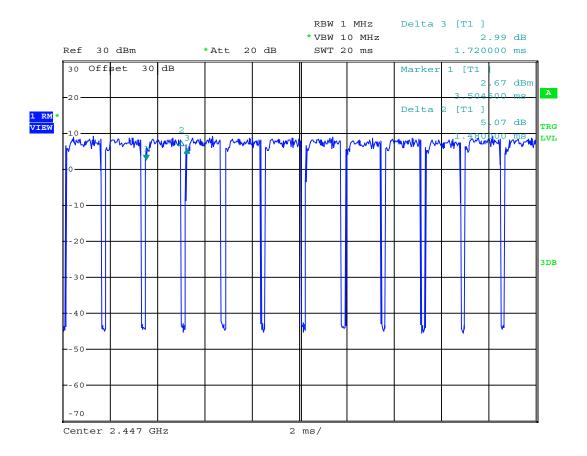
	AY LOG	;		Dielectric				
	Ambient	Fluid	Relative	Barometric	Die			
Date	Temp	Temp	Humidity	Pressure	Fluid	ပ	٦ţ	
	(°C)	(° C)	(%)	(kPa)	≝	SPC	Test	Task
30 Jan 2020	24	23.6	25%	102.8	Х	Х	Х	2450H Fluids/SPC & SAR Eval
31 Jan 2020	22	22.9	27%	101.9			Х	2450H SAR Evaluation
03 Feb 2020	23	23.7	27%	102.6	Х		Х	2450H SAR Evaluation & Fluids per IEEE 1528
03 Feb 2020	23	22.8	27%	102.6	Х	Х	Х	5250H SAR Fluids/SPC & SAR Eval
04 Feb 2020	24	22.8	27%	103.0			Х	5250H SAR Eval
05 Feb 2020	24	22.5	25%	101.6	Х	Х		5750H Fluids/SPC
06 Feb 2020	24	22.9	26%	101.8			Х	5750H SAR Eval

^{*}Per IEEE 1528 Test Series was started within 24 hours of Fluid Parameter Measurement

^{**} Per IEEE 1528 Fluid Parameters were measured at the end of test series

45461575 R2.0 18 February 2020

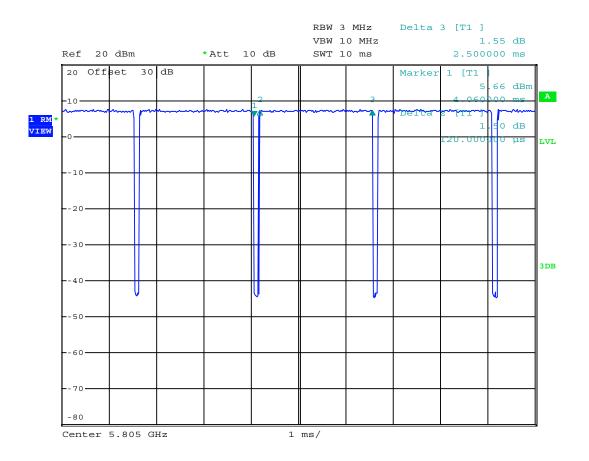
12.1 DUT Setup and Configuration


	DUT Setup and Configuration						
1	The DUT was evaluated for SAR in accordance with the procedures described in IEEE 1528, FCC KDB 865646, 447498, 941225, 248227, and RSS-102. The device was evaluated at a phantom separation distance of 0mm.						
2	The intended use of the device is to be hand held or mounted. The DUT was additionally evaluated for SAR in accordance with the procedures described in KDB 941225D07V01r02. Since the overall diagonal dimension of the display is < than 20cm, additional sides or edges of the device were required for SAR evaluation. All sides and edges of the device within 25mm of an antenna trasmitter were selected for SAR evaluation. Reference Appendix D, Figures D5, D6& D7.						
3	2.4GHz 802.11g/n OFDM SAR Test Exclusion As Per KDB 248227 D01v02r02 - 5.2.2, b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. Maximum 802.11g/n OFDM specified power(POFDM)= 16.58dBm Maximum 802.11b DSSS specified power (PDSSS)= 17.2dBm Ratio OFDM/DSSS power = -0.62dBm(87%) Highest reported* SAR (SARMAX)= 0.418 W/kg POFDM/PDSSS X SARMAX = 0.364 W/kg ≤ 1.2 W/kg Since the ratio of the ODFM/DSSS specified power is less than one (0dB), the reported SAR would not exceed 1.2W/kg *The reported SAR in this case is the measured SAR adjusted for fluid sensitivity.						
4	The Device was capable of transmitting at various modulations and data rates. The Conducted Power was higher when measured in DSS Mode-11Mbps for 2.4GHz ,OFDM Mode-6Mbps for UNII-1 and UNII-3 than any other configuration. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer. Each SAR evaluation was performed with a fully charged battery.						

45461575 R2.0

18 February 2020

12.2 Duty Cycle Evaluation



Date: 30.JAN.2020 14:43:42

DSSS at 11 Mbps was found to be the worst case test mode for 2.4GHZ WIFi. The transmit Duty cycle was 86% as indicated in the above plot. This duty cycle cannot be altered by the user. A measurement Crest factor of 1.16 was used by the SAR measurement server. The measured SAR in Table 10.0 is the post-processed SAR adjusted by the Crest Factor.

18 February 2020

Date: 4.FEB.2020 13:08:50

OFDM at 6Mbps was found to be the worst case test mode for 5GHZ UNII 1 WiFi. The transmit Duty cycle was 96% as indicated in the above plot. This duty cycle cannot be altered by the user. A measurement Crest factor of 1.04 was used by the SAR measurement server. The measured SAR in Table 10.0 is the post-processed SAR adjusted by the Crest Factor.

45461575 R2.0

18 February 2020

12.3 DUT Positioning

DUT Positioning

Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

This device is not intended to be held to the face and was not tested in the FACE configuration.

BODY/Extremity

The DUT was securely clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact with the bottom of the phantom, or 0mm separation from the DUTs accessory to the phantom.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

45461575 R2.0 18 February 2020

12.4 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 2.0^{\circ}$ C throughout the test series. The liquid parameters shall be measured within 24 hours before the start of a test series and if it takes longer than 48 hours, the liquid parameters shall also be measured at the end of the test series.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the Maximum Distance to Phantom Surface to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the reported SAR which appears on the Cover Page of this report.

45461575 R2.0 18 February 2020

12.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

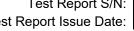
Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 10% of the measured and normalize SAR of the validation source's Calibration Certificate.


The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

12.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz				
Maximum distance from the closest measurement point to phantom surface:	4 + 4			
(Geometric Center of Probe Center)	4 ± 1 mm			
Maximum probe angle normal to phantom surface.	5° ± 1°			
(Flat Section ELI Phantom)				
Area Scan Spatial Resolution ΔX, ΔΥ	15 mm			
Zoom Scan Spatial Resolution ΔX, ΔY	7.5 mm			
Zoom Scan Spatial Resolution ∆Z	5 mm			
(Uniform Grid)	5 111111			
Zoom Scan Volume X, Y, Z	30 mm			
Phantom	ELI			
Fluid Depth	150 ± 5 mm			

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

12.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz					
Maximum distance from the closest measurement point to phantom surface: (Geometric Center of Probe Center)	4 ± 1 mm				
Maximum probe angle normal to phantom surface. (Flat Section ELI Phantom)	5° ± 1°				
Area Scan Spatial Resolution ΔX, ΔΥ	12 mm				
Zoom Scan Spatial Resolution ΔX, ΔY	5 mm				
Zoom Scan Spatial Resolution ∆Z (Uniform Grid)	5 mm				
Zoom Scan Volume X, Y, Z	30 mm				
Phantom	ELI				
Fluid Depth	150 ± 5 mm				

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

12.8 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz					
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm				
(Geometric Center of Probe Center)	41111111				
Maximum probe angle normal to phantom surface.	5° ± 1°				
(Flat Section ELI Phantom)	5 I I				
Area Scan Spatial Resolution ΔX, ΔΥ	10 mm				
Zoom Scan Spatial Resolution ΔX, ΔΥ	4 mm				
Zoom Scan Spatial Resolution ∆Z	2 mm				
(Uniform Grid)	2 111111				
Zoom Scan Volume X, Y, Z	22 mm				
Phantom	ELI				
Fluid Depth	100 ± 5 mm				

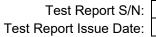
An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.0 MEASUREMENT UNCERTAINTIES

Table 13.0 Measurement Uncertainty

UNCERTAINTY BUDGET FOR DEVICE EVALUATION (IEEE 1528-2013 Table 9)									
	IEEE						Stand	Stand	Vi
Source of Uncertainty	1528	Toler	Prob	Div	Ci	Ci	Unct	Unct	or
	Section	±%	Dist				±%	±%	V_{eff}
Measurement System					(1g)	(10g)	(1g)	(10g)	
EX3DV4 Probe Calibration** (k=1)	E.2.1	6.7	N	1	1	1	6.7	6.7	∞
Axial Isotropy** (k=1)	E.2.2	0.6	R	√3	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy** (k=1)	E.2.2	3.2	R	√3	0.7	0.7	1.3	1.3	∞
Boundary Effect*	E.2.3	1.0	R	√3	1	1	0.6	0.6	∞
Linearity** (k=1)	E.2.4	0.5	R	√3	1	1	0.3	0.3	∞
System Detection Limits*	E.2.4	1.0	R	√3	1	1	0.6	0.6	∞
Modulation Response** (k=1)	E.2.5	8.3	R	√3	1	1	4.8	4.8	∞
Readout Electronics*	E.2.6	0.3	N	1	1	1	0.3	0.3	8
Response Time*	E.2.7	8.0	R	√3	1	1	0.5	0.5	∞
Integration Time*	E.2.8	2.6	R	√3	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	0.0	R	√3	1	1	0.0	0.0	10
RF Ambient Conditions - Reflection	E.6.1	0.0	R	√3	1	1	0.0	0.0	10
Probe Positioner Mechanical Tolerance*	E.6.2	0.0	R	√3	1	1	0.0	0.0	8
Probe Positioning wrt Phantom Shell*	E.6.3	0.4	R	√3	1	1	0.2	0.2	~
Post-processing*	E.5	2.0	R	√3	1	1	1.2	1.2	∞
Test Sample Related									
Test Sample Positioning	E.4.2	2.2	N	1	1	1	2.2	2.2	5
Device Holder Uncertainty*	E.4.1	3.6	N	1	1	1	3.6	3.6	∞
SAR Drift Measurement ⁽²⁾	E.2.9	0.0	R	√3	1	1	0.0	0.0	∞
SAR Power Scaling ⁽³⁾	E.6.5	0.0	R	√3	1	1	0.0	0.0	∞
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	6.1	R	√3	1	1	3.5	3.5	∞
SAR Correction Uncertainty	E.3.2	1.6	N	1	1	0.84	1.6	1.3	8
Liquid Conductivity (measurement)	E.3.3	5.0	N	1	0.78	0.71	3.9	3.6	10
Liquid Permittivity (measurement)	E.3.3	5.0	N	1	0.23	0.26	1.2	1.3	10
Liquid Conductivity (Temperature)	E.3.2	0.4	R	√3	0.78	0.71	0.2	0.2	10
Liquid Permittivity Temperature) E.3.2 0.2				√3	0.23	0.26	0.0	0.0	10
Effective Degrees of Freedom	1)							V _{eff} =	114
Combined Standard Uncertainty	RSS				11.1	11.0			
Expanded Uncertainty (95% Confiden	k=2				22.2	21.9			

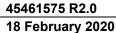

⁽¹⁾ The Effective Degrees of Freedom is > 30

Therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

⁽²⁾ The SAR Value is compensated for Drift

⁽³⁾ SAR Power Scaling not Required

^{*} Provided by SPEAG for DASY4



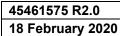
45461575 R2.0 18 February 2020

Table 13.1 Calculation of Degrees of Freedom

Calculation of the Degrees and Effective Degrees of Freedom								
	_	Uc ⁴						
	v _{eff} =	m						
v _i = n - 1		$\sum \frac{c_i^A u_i^A}{a_i}$						
		∠ v _i i=1						

14.0 FLUID DIELECTRIC PARAMETERS

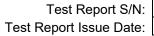
Table 14.0 Fluid Dielectric Parameters 2450MHz HEAD TSL



Aprel Laboratory
Test Result for UIM Dielectric Parameter
Thu 30/Jan/2020 12:03:16
Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test s Sigma of UIM


Freq FCC eHFCC sHTest e Test s 2.3500 39.38 1.71 37.81 1.79 2.3600 39.36 37.88 1.72 1.82 2.3700 39.34 37.83 1.82 1.73 2.3800 39.32 1.74 37.88 1.82 2.3900 39.31 1.75 37.75 1.84 2.4000 39.29 37.68 1.85 1.76 2.4100 39.27 37.56 1.88 1.76 2.4200 39.25 1.77 37.49 1.88 37.41 2.4300 39.24 1.78 1.89 2.4400 37.53 1.92 39.22 1.79 2.4500 39.20 1.80 37.44 1.93 2.4600 39.19 1.81 37.36 1.93 2.4700 39.17 1.82 37.48 1.93 2.4800 39.16 1.83 37.25 1.95 2.4900 39.15 1.84 37.10 1.97 2.5000 39.14 37.18 1.98 1.85 37.09 2.5100 39.12 1.87 1.98 2.5200 39.11 1.88 36.99 2.00 2.5300 37.02 2.00 39.10 1.89 1.90 2.5400 39.09 36.85 2.00 2.5500 39.07 1.91 36.92 2.05

FLUID DIELECTRIC PARAMETERS								
Date:	30 Jan 2020	Fluid Temp: 23.6		Frequency: 2450MHz		Tissue:	Head	
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	
2350.0000		37.8100	1.7900	39.3800	1.71	-3.99%	4.68%	
2360.0000		37.8800	1.8200	39.3600	1.72	-3.76%	5.81%	
2370.0000		37.8300	1.8200	39.3400	1.73	-3.84%	5.20%	
2380.0000		37.8800	1.8200	39.3200	1.74	-3.66%	4.60%	
2390.0000		37.7500	1.8400	39.3100	1.75	-3.97%	5.14%	
2400.0000		37.6800	1.8500	39.2900	1.76	-4.10%	5.11%	
2402.0000		37.6800	1.8500	39.2900	1.76	-4.10%	5.11%	
2410.0000		37.5600	1.8800	39.2700	1.76	-4.35%	6.82%	
2420.0000		37.4900	1.8800	39.2500	1.77	-4.48%	6.21%	
2422.0000	*	37.4740	1.8820	39.2480	1.77	-4.52%	6.21%	
2430.0000		37.4100	1.8900	39.2400	1.78	-4.66%	6.18%	
2440.0000		37.5300	1.9200	39.2200	1.79	-4.31%	7.26%	
2447.0000	*	37.4670	1.9270	39.2060	1.80	-4.44%	7.23%	
2450.0000		37.4400	1.9300	39.2000	1.80	-4.49%	7.22%	
2457.0000	*	37.3840	1.9300	39.1930	1.81	-4.62%	6.81%	
2460.0000		37.3600	1.9300	39.1900	1.81	-4.67%	6.63%	
2462.0000	*	37.3840	1.9300	39.1860	1.81	-4.60%	6.51%	
2470.0000		37.4800	1.9300	39.1700	1.82	-4.31%	6.04%	
2472.0000	*	37.4340	1.9340	39.1680	1.82	-4.43%	6.15%	
2480.0000		37.2500	1.9500	39.1600	1.83	-4.88%	6.56%	
2490.0000		37.1000	1.9700	39.1500	1.84	-5.24%	7.07%	
2500.0000		37.1800	1.9800	39.1400	1.85	-5.01%	7.03%	
2510.0000		37.0900	1.9800	39.1200	1.87	-5.19%	5.88%	
2520.0000		36.9900	2.0000	39.1100	1.88	-5.42%	6.38%	
2530.0000		37.0200	2.0000	39.1000	1.89	-5.32%	5.82%	
2540.0000		36.8500	2.0000	39.0900	1.90	-5.73%	5.26%	
2550.0000		36.9200	2.0500	39.0700	1.91	-5.50%	7.33%	

*Channel Frequency Tested

45461575 R2.0 18 February 2020

Celltech
Testing and Engineering Services Lab

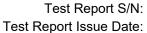
Table 14.1 Fluid Dielectric Parameters 2450MHz HEAD TSL

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Mon 03/Feb/2020 11:19:20

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM


******	*********	******	******	******
Freq	FCC_eH	IFCC_sl	HTest_e	Test_s
2.3500	39.38	1.71	36.95	1.84
2.3600	39.36	1.72	36.77	1.87
2.3700	39.34	1.73	36.74	1.86
2.3800	39.32	1.74	36.81	1.87
2.3900	39.31	1.75	36.74	1.88
2.4000	39.29	1.76	36.58	1.90
2.4100	39.27	1.76	36.62	1.93
2.4200	39.25	1.77	36.54	1.92
2.4300	39.24	1.78	36.54	1.93
2.4400	39.22	1.79	36.44	1.95
2.4500	39.20	1.80	36.36	1.97
2.4600	39.19	1.81	36.28	1.97
2.4700	39.17	1.82	36.40	2.00
2.4800	39.16	1.83	36.35	1.99
2.4900	39.15	1.84	36.28	2.00
2.5000	39.14	1.85	36.17	2.00
2.5100	39.12	1.87	36.27	2.03
2.5200	39.11	1.88	36.13	2.04
2.5300	39.10	1.89	36.03	2.05
2.5400	39.09	1.90	35.93	2.08
2.5500	39.07	1.91	35.90	2.06

^{*}Per IEEE 1528 Fluid Parameters were measured at the end of test series.

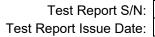
FLUID DIELECTRIC PARAMETERS									
Date:	3 Feb 2020	Fluid Temp: 23.7		Frequency:	2450MHz	Tissue:	Head		
Freq (MHz)		Test_e	Test_s		Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	
2350.0000		36.9500	1.8	400	39.3800	1.71	-6.17%	7.60%	
2360.0000		36.7700	1.8700		39.3600	1.72	-6.58%	8.72%	
2370.0000		36.7400	1.8	600	39.3400	1.73	-6.61%	7.51%	
2380.0000		36.8100	1.8	700	39.3200	1.74	-6.38%	7.47%	
2390.0000		36.7400	1.8	800	39.3100	1.75	-6.54%	7.43%	
2400.0000		36.5800	1.9	000	39.2900	1.76	-6.90%	7.95%	
2402.0000	*	36.5880	1.9	060	39.2860	1.76	-6.87%	8.30%	
2410.0000		36.6200	1.9300		39.2700	1.76	-6.75%	9.66%	
2420.0000		36.5400	1.9200		39.2500	1.77	-6.90%	8.47%	
2422.0000	*	36.5400	1.9220		39.2480	1.77	-6.90%	8.47%	
2430.0000		36.5400	1.9300		39.2400	1.78	-6.88%	8.43%	
2440.0000		36.4400	1.9500		39.2200	1.79	-7.09%	8.94%	
2447.0000	*	36.3840	1.9	640	39.2060	1.80	-7.20%	9.29%	
2450.0000		36.3600	1.9	700	39.2000	1.80	-7.24%	9.44%	
2457.0000	*	36.3040	1.9	700	39.1930	1.81	-7.37%	9.02%	
2460.0000		36.2800	1.9	700	39.1900	1.81	-7.43%	8.84%	
2470.0000		36.4000	2.0	000	39.1700	1.82	-7.07%	9.89%	
2472.0000	*	36.3900	1.9	980	39.1680	1.82	-7.09%	9.66%	
2480.0000		36.3500	1.9	900	39.1600	1.83	-7.18%	8.74%	
2490.0000		36.2800	2.0000		39.1500	1.84	-7.33%	8.70%	
2500.0000		36.1700	2.0000		39.1400	1.85	-7.59%	8.11%	
2510.0000		36.2700	2.0	300	39.1200	1.87	-7.29%	8.56%	
2520.0000		36.1300	2.0	400	39.1100	1.88	-7.62%	8.51%	
2530.0000		36.0300	2.0	500	39.1000	1.89	-7.85%	8.47%	
2540.0000		35.9300	2.0	800	39.0900	1.90	-8.08%	9.47%	
2550.0000		35.9000	2.0	600	39.0700	1.91	-8.11%	7.85%	

*Channel Frequency Tested

45461575 R2.0

18 February 2020

Table 14.2 Fluid Dielectric Parameters 5250MHz HEAD TSL


Aprel Laboratory Test Result for UIM Dielectric Parameter Tue 28/Jan/2020 15:17:32

Frequency(GHz) Freq

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

******	******	*****	*********	*******
Freq	FCC_eH	FCC_sh	Test_e	Test_s
5.1500	36.04	4.60	35.13	4.83
5.1600	36.03	4.61	34.61	4.81
5.1700	36.02	4.62	34.91	4.78
5.1800	36.01	4.63	34.94	4.88
5.1900	36.00	4.64	34.49	4.82
5.2000	35.99	4.65	34.67	4.81
5.2100	35.97	4.67	34.45	4.85
5.2200	35.96	4.68	34.67	4.83
5.2300	35.95	4.69	34.61	4.85
5.2400	35.94	4.70	34.36	4.88
5.2500	35.93	4.71	34.55	4.98
5.2600	35.92	4.72	34.46	4.97
5.2700	35.91	4.73	34.39	4.89
5.2800	35.89	4.74	34.39	4.95
5.2900	35.88	4.75	34.38	5.00
5.3000	35.87	4.76	34.18	5.01
5.3100	35.86	4.77	34.23	4.91
5.3200	35.85	4.78	34.23	4.91
5.3300	35.84	4.79	34.07	4.96
5.3400	35.83	4.80	34.27	4.97
5.3500	35.81	4.81	34.28	5.06

FLUID DIELECTRIC PARAMETERS								
Date:	3 Feb 2020	Fluid To	emp: 22.8		Frequency:	5250MHz	Tissue:	Head
Freq (I	VIHz)	Test_e	Tes	t_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
5150.0000		34.1300	4.66	300	36.0400	4.60	-5.30%	1.30%
5160.0000		34.3500	4.62	200	36.0300	4.61	-4.66%	0.22%
5170.0000		34.3800	4.69	900	36.0200	4.62	-4.55%	1.52%
5180.0000		34.3700	4.59	900	36.0100	4.63	-4.55%	-0.86%
5190.0000		34.0300	4.70	000	36.0000	4.64	-5.47%	1.29%
5200.0000	*	34.1900	4.72	200	35.9900	4.65	-5.00%	1.51%
5210.0000		33.9700	4.75	500	35.9700	4.67	-5.56%	1.71%
5220.0000	*	33.9300	4.74	400	35.9600	4.68	-5.65%	1.28%
5230.0000	*	34.1700	4.71	100	35.9500	4.69	-4.95%	0.43%
5240.0000		34.2100	4.74	400	35.9400	4.70	-4.81%	0.85%
5250.0000		34.2000	4.79	900	35.9300	4.71	-4.81%	1.70%
5260.0000		33.9300	4.77	700	35.9200	4.72	-5.54%	1.06%
5270.0000		33.9400	4.80	000	35.9100	4.73	-5.49%	1.48%
5280.0000		34.1300	4.76	300	35.8900	4.74	-4.90%	0.42%
5290.0000		34.0200	4.87	700	35.8800	4.75	-5.18%	2.53%
5300.0000		33.9400	4.83	300	35.8700	4.76	-5.38%	1.47%
5310.0000		33.9600	4.83	300	35.8600	4.77	-5.30%	1.26%
5320.0000		33.9800	4.82	200	35.8500	4.78	-5.22%	0.84%
5330.0000		33.8500	4.84	400	35.8400	4.79	-5.55%	1.04%
5340.0000		34.2300	4.87	700	35.8300	4.80	-4.47%	1.46%
5350.0000		34.0900	4.87	700	35.8100	4.81	-4.80%	1.25%

*Channel Frequency Tested

Celltech
Testing and Engineering Services Lab

Table 14.3 Fluid Dielectric Parameters 5750MHz HEAD TSL

Aprel Laboratory Test Result for UIM Dielectric Parameter Wed 05/Feb/2020 13:41:43

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	******	******	******
Freq	_	IFCC_sl	_	Test_s
5.6500	35.44	5.14	34.18	5.39
5.6550	35.44	5.14	34.18	5.39
5.6750	35.44	5.14	34.18	5.39
5.6850	35.43	5.15	34.36	5.46
5.6950	35.42	5.16	34.44	5.48
5.7050	35.41	5.17	34.28	5.47
5.7150	35.40	5.18	34.06	5.55
5.7250	35.39	5.19	34.15	5.45
5.7350	35.37	5.20	34.60	5.40
5.7450	35.36	5.21	34.20	5.49
5.7550	35.35	5.22	34.14	5.52
5.7650	35.34	5.23	34.00	5.49
5.7750	35.33	5.24	34.08	5.56
5.7850	35.32	5.25	34.09	5.59
5.7950	35.31	5.26	34.06	5.58
5.8050	35.29	5.28	33.86	5.67
5.8150	35.28	5.29	34.06	5.55
5.8250	35.27	5.30	34.13	5.62
5.8350	35.26	5.31	34.07	5.62
5.8450	35.25	5.32	33.99	5.64
5.8500	35.24	5.33	33.91	5.58

15.0 SYSTEM VERIFICATION TEST RESULTS

Table 15.0 System Verification Results 2450MHz HEAD TSL

System Verification Test Results								
Dete		Frequency	Valid	dation Sour	се			
Date		(MHz)	P/N		S/N			
30 Jan 20	20	2450	D2450	V2	825			
	Fluid	Ambient	Ambient	Forward	Source			
Fluid Type	Temp	Temp	Humidity	Power	Spacing			
	°C	°C	(%)	(mW)	(mm)			
Head	23.6	24	25%	250	10			
	Fluid Parameters							
P	ermittivity	/	Conductivity					
Measured	Target	Deviation	Measured	Target	Deviation			
37.44	39.20	-4.49%	1.93	1.80	7.22%			
		Measu	red SAR					
	1 gram		10 gram					
Measured	Target	Deviation	Measured	Target	Deviation			
14.10	13.30	6.02%	6.44	6.16	4.55%			
	M	easured SAR N	ormalized to 1.0	W				
	1 gram			10 gram				
Normalized	Target	Deviation	Normalized	Target	Deviation			
56.40	52.10	8.25%	25.76	24.30	6.01%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Table 15.1 System Verification Results 5250MHz HEAD TSL

System Verification Test Results								
Date		Frequency	Valid	Validation Source				
Date		(MHz)	P/N		S/N			
03 Feb 20)20	5250	D5GHz	:V2	1031			
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Forward Humidity Power (%) (mW)		Source Spacing (mm)			
Head	22.8	23	27%	67	10			
	Fluid Parameters							
P	ermittivity	1	Conductivity					
Measured	Target	Deviation	Measured Targe		Deviation			
34.20	35.93	-4.81%	4.79 4.71		1.70%			
		Measur	ed SAR					
	1 gram			10 gram				
Measured	Target	Deviation	Measured	Target	Deviation			
5.38	5.35	0.56%	1.54	1.53	0.65%			
	M	easured SAR N	ormalized to 1.0	W				
	1 gram		10 gram					
Normalized	Target	Deviation	Normalized	Target	Deviation			
80.00	79.85	0.02%	23.00	22.84	0.70%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

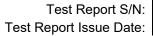
The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Note: System verifications for 5GHZ and above are assessed at a lesser power and results are interpolated to validate the calibration dipole target. Data values in this table are with respect to the input power achieved and do not match the calibration certificate target values.

Table 15.2 System Verification Results 5750MHz HEAD TSL

System Verification Test Results								
Dete		Frequency	Validation Source					
Date		(MHz)	P/N		S/N			
05 Feb 20	20	5750	D5GHz	:V2	1031			
	Fluid	Ambient	Ambient	Forward	Source			
Fluid Type	Temp	Temp	Humidity	Power	Spacing			
	°C	°C	(%)	(mW)	(mm)			
Head	22.5	24	25%	73	10			
Fluid Parameters								
P	ermittivity	/	Conductivity					
Measured	Target	Deviation	Measured	Target	Deviation			
34.17	35.36	-3.35%	5.51	5.22	5.56%			
		Measu	red SAR					
	1 gram			10 gram				
Measured	Target	Deviation	Measured	Target	Deviation			
6.10	5.86	4.09%	1.71	1.77	-3.39%			
	Measured SAR Normalized to 1.0W							
	1 gram		10 gram					
Normalized	Target	Deviation	Normalized	Target	Deviation			
83.56	80.27	4.01%	23.42	24.25	3.42%			


Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Note: System verifications for 5GHZ and above are assessed at a lesser power and results are interpolated to validate the calibration dipole target. Data values in this table are with respect to the input power achieved and do not match the calibration certificate target values.

45461575 R2.0

18 February 2020

16.0 SYSTEM VALIDATION SUMMARY

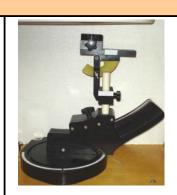
Table 16.0 System Validation Summary

	System Validation Summary										
Frequency	Validation	Probe	Probe	Validation	Source	Tissue	Tissue [Dielectrics	Validation Results		
(MHz)	Date	Model	S/N	Source	S/N	iissue	Permitivity	Conductivity	Sensitivity	Linearity	Isotropy
150	12-Aug-19	EX3DV4	3600	CLA-150	4007	Head	49.46	0.79	Pass	Pass	Pass
450	13-Aug-19	EX3DV4	3600	D450V3	1068	Head	43.70	0.83	Pass	Pass	Pass
835	15-Aug-19	EX3DV4	3600	D835V2	4d075	Head	42.01	0.89	Pass	Pass	Pass
900	2-Aug-19	EX3DV4	3600	D900V2	045	Head	39.10	0.93	Pass	Pass	Pass
1640	7-May-18	EX3DV4	3600	1620-S-2	207-00102	Head	39.87	1.27	Pass	Pass	Pass
1800	18-Jun-19	EX3DV4	3600	D1800V2	247	Head	41.20	1.39	Pass	Pass	Pass
2450	2-Apr-19	EX3DV4	3600	D2450V2	825	Head	36.58	1.85	Pass	Pass	Pass
5250	24-Jul-19	EX3DV4	3600	D5GHzV2	1031	Head	35.96	4.93	Pass	Pass	Pass
5750	25-Jul-19	EX3DV4	3600	D5GHzV2	1031	Head	34.10	5.60	Pass	Pass	Pass

17.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 17.0 Measurement System Specifications

	Measurement System Specification					
Specifications						
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL					
Repeatability	+/- 0.035 mm					
No. of axis	6.0					
Data Acquisition Electronic (I	DAE) System					
Cell Controller						
Processor	Intel(R) Core(TM) i7-7700					
Clock Speed	3.60 GHz					
Operating System	Windows 10 Professional					
Data Converter						
Features	Signal Amplifier, multiplexer, A/D converter, and control logic					
Software	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V52.10.0.1446					
Software	Postprocessing Software: SEMCAD X, V14.6.10(Deployment Build)					
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock					
DASY Measurement Server						
Function	Real-time data evaluation for field measurements and surface detection					
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM					
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface					
E-Field Probe						
Model	EX3DV4					
Serial No.	3600					
Construction	Triangular core fiber optic detection system					
Frequency	10 MHz to 6 GHz					
Linearity	±0.2 dB (30 MHz to 3 GHz)					
Phantom						
Туре	ELI Elliptical Planar Phantom					
Shell Material	Fiberglass					
Thickness	2mm +/2mm					
Volume	> 30 Liter					


	Measurement System Specification					
	Probe Specification					
	Symmetrical design with triangular core;					
Construction:	Built-in shielding against static charges					
	PEEK enclosure material (resistant to organic solvents, glycol)					
	In air from 10 MHz to 2.5 GHz					
Calibration:	In head simulating tissue at frequencies of 900 MHz					
	and 1.8 GHz (accuracy \pm 8%)					
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)					
Directivity	± 0.2 dB in head tissue (rotation around probe axis)					
Directivity:	±0.4 dB in head tissue (rotation normal to probe axis)					
Dynamic Range:	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB	THE STATE OF THE S				
Surface Detect:	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces					
	Overall length: 330 mm; Tip length: 16 mm;					
Dimensions:	Body diameter: 12 mm; Tip diameter: 6.8 mm					
	Distance from probe tip to dipole centers: 2.7 mm	11-10-2				
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe				
	Phantom Specification					

The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.

Device Positioner Specification

The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

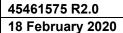
Device Positioner

18.0 TEST EQUIPMENT LIST

Table 18.0 Equipment List and Calibration

Te	est Equi	oment List		
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE
Schmid & Partner DASY 6 System	-	-	-	-
-DASY Measurement Server	00158	1078	CNR	CNR
-Robot	00046	599396-01	CNR	CNR
-DAE4	00019	353	19-Mar-19	19-Mar-20
-EX3DV4 E-Field Probe	00213	3600	26-Mar-19	26-Mar-20
-CLA 30 Validation Dipole	00300	1005	23-Nov-17	23-Nov-20
-CLA150 Validation Dipole	00251	4007	27-Apr-17	27-Apr-20
-D450V3 Validation Dipole	00221	1068	23-Apr-18	23-Apr-21
-D750V3 Validation Dipole	00238	1061	19-Mar-19	19-Mar-22
-D835V2 Validation Dipole	00217	4D075	20-Apr-18	20-Apr-21
-D900V2 Validation Dipole	00020	54	24-Apr-17	24-Apr-20
-D1640/1620-S-2 Validation Dipole	00299	207-00102	07-Nov-17	07-Nov-20
-D2450V2 Validation Dipole*	00219	825	24-Apr-18	24-Apr-21
-D5GHzV2 Validation Dipole	00126	1031	26-Apr-18	26-Apr-21
ELI Phantom	00247	1234	CNR	CNR
SAM Phantom	00154	1033	CNR	CNR
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
Gigatronics 8652A Power Meter	00007	1835801	26-Mar-19	26-Mar-22
Gigatronics 80701A Power Sensor	00186	1837002	COU	COU
Gigatronics 80334A Power Sensor	00237	1837001	26-Mar-19	26-Mar-22
HP 8753ET Netw ork Analyzer	00134	US39170292	29-Dec-17	29-Dec-20
Rohde & Schw arz SMR20 Signal Generator	00006	100104	29-May-17	29-May-20
Amplifier Research 10W1000C Pow er Amplifier	00041	27887	CNR	CNR
Amplifier Research 5S1G4 Pow er Amplifier	00106	26235	CNR	CNR
Narda Directional Coupler 3020A	00064	-	CNR	CNR
Traceable VWR Thermometer	00334	192385455	06-Aug-19	06-Aug-21
Traceable VWR Jumbo Humidity/Thermometer	00295	170120555	17-Feb-17	17-Feb-20
Digital Multi Meter DMR-1800	00250	TE182	6-22-17	6-22-20
Bipolar Pow er Supply 6299A	00086	1144A02155	CNR	CNR
DC-18G 10W 30db Attenuator	00102	-	COU	COU
R&S FSP40 Spectrum Analyzer	00241	100500	15-May-18	15-May-21
RF Cable-SMA	00311	-	CNR	CNR
HP Calibration Kit	00145	-	10-Feb-17	10-Feb-20
	Rental Ed	uipment		
R&S Base Station (Mobile Phone)	n/a	153128	08-Apr-19	08-Apr-20

CNR = Calibration Not Required


SB=Stand By

COU = Calibrate on Use

* Per KDB 865664 3.2.2; Supporting documentation is included in the report for validation dipoles exceeding the recommended anual calibration cycle.

When applicable, reference Appendix F

Note: Per KDB 865664, Dipoles are evaluated annually for return loss and impedance. The dipole's SAR target can only be assessed by the SAR equipment manufacturer and remains the target until the dipole is recalibrated by the manufacturer. The dipole's SAR is evaluated and compared to this target during each and every System Verification which is performed prior to and/or during each DUT SAR evaluation. The results of these verifications are shown in Section 15.0

19.0 FLUID COMPOSITION

Note: Effective February 19, 2019 TCB Workshop: FCC has permitted the use of single head-tissue simulating liquid specified in IEC 62209-1 for all SAR tests.

Table 19.0 Fluid Composition 2450MHz HEAD TSL

Table x		2450MHz Head						
Tissue Simulating Liquid (TSL) Composition								
	Component by Percent Weight							
Water	Glycol	HEC ⁽²⁾	Bacteriacide ⁽³⁾					
52.0	48.0	0.0	0.0	0.0				

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

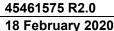

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 19.1 Fluid Composition 5250MHz HEAD TSL

This is a proprietary composition by SPEAG.

Table 19.2 Fluid Composition 5750MHz HEAD TSL

This is a proprietary composition by SPEAG.

APPENDIX A - SYSTEM VERIFICATION PLOTS

Date/Time: 1/30/2020 1:34:28 PM

Test Laboratory: Celltech Labs

SPC-2450H Jan 30 2020

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825

Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 2450 MHz; Communication System

PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; σ = 1.93 S/m; ϵ_{r} = 37.44; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.46, 6.46, 6.46) @ 2450 MHz; Calibrated: 3/26/2019
 - Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = -1.5, 31.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 3/19/2019
- Phantom: Twin-SAM V4.0 (30deg probe tilt); Type: QD 000 P40 CC; Serial: xxxx
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

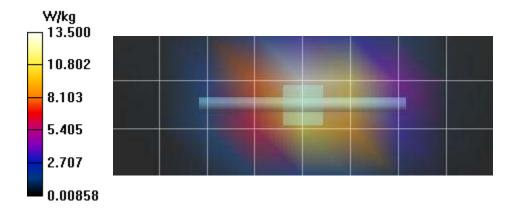
SPC/SPC 2450H Input=250mw, Target=13.3W/kg/Area Scan (4x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 13.5 W/kg

SPC/SPC 2450H Input=250mw, Target=13.3W/kg/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.04 V/m; Power Drift = 0.02 dB

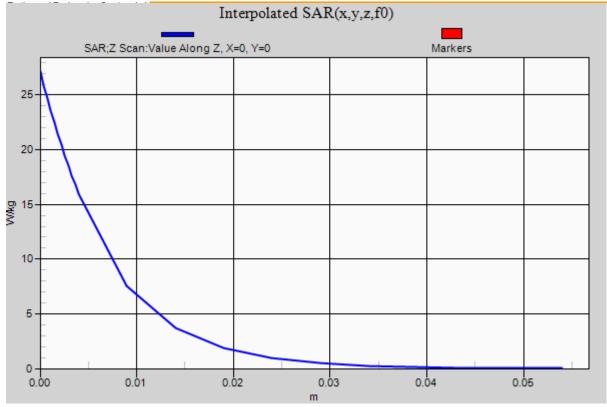
Peak SAR (extrapolated) = 30.7 W/kg

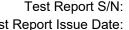
SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.44 W/kg


Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 47.4%

Maximum value of SAR (measured) = 16.0 W/kg


SPC/SPC 2450H Input=250mw, Target=13.3W/kg/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm


Penetration depth = 7.058 (6.711, 7.188) [mm] Maximum value of SAR (interpolated) = 27.1 W/kg

Test Report S/N: Test Report Issue Date:

Date/Time: 2/3/2020 12:46:44 PM

Test Laboratory: Celltech Labs

SPC-5250H Jan 28 2020

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031

Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 5250 MHz; Communication System

PAR: 0 dB; PMF: 1

Medium parameters used: f = 5250 MHz; σ = 4.79 S/m; ε_r = 34.2; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.6, 4.6, 4.6) @ 5250 MHz; Calibrated: 4/25/2018
 - Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -1.5, 25.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 4/20/2018
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

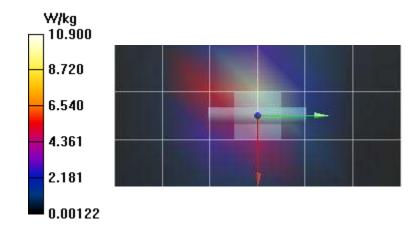
SPC/SPC 5250H Input=67 mw, Target= 5.35W/kg, Target=7.99W/kg@100mw/Area Scan (4x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 10.2 W/kg

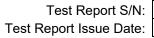
SPC/SPC 5250H Input=67 mw, Target= 5.35W/kg, Target=7.99W/kg@100mw/Zoom Scan (9x9x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 32.44 V/m; Power Drift = 0.30 dB

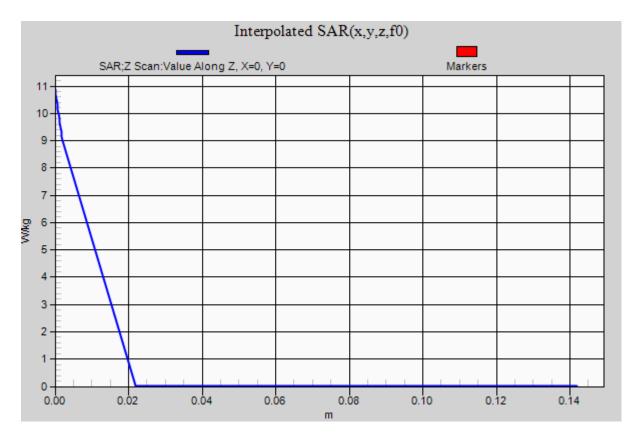
Peak SAR (extrapolated) = 22.4 W/kg

SAR(1 g) = 5.38 W/kg; SAR(10 g) = 1.54 W/kg


Smallest distance from peaks to all points 3 dB below = 7.2 mm


Ratio of SAR at M2 to SAR at M1 = 54.4%

Maximum value of SAR (measured) = 11.2 W/kg


SPC/SPC 5250H Input=67 mw, Target= 5.35W/kg, Target=7.99W/kg@100mw/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm Penetration depth = n/a (n/a, 3.297) [mm]

Maximum value of SAR (interpolated) = 10.9 W/kg

Test Report S/N: Test Report Issue Date:

45461575 R2.0 18 February 2020

Date/Time: 2/5/2020 2:45:12 PM

Test Laboratory: Celltech Labs

SPC-5750H Feb 05 2020

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 5750 MHz; Communication System

PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.505 \text{ S/m}$; $\epsilon_r = 34.17$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3600; ConvF(4.08, 4.08, 4.08) @ 5750 MHz; Calibrated: 3/26/2019

- O Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -1.5, 25.0, 101.0
- Electronics: DAE4 Sn353; Calibrated: 3/19/2019
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

SPC/SPC 5750H Input=73 mw, Target 5.86 Target=8.04W/kg@100mw/Area Scan (4x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 11.9 W/kg

SPC/SPC 5750H Input=73 mw, Target 5.86 Target=8.04W/kg@100mw/Zoom Scan (7x7x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm

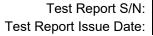
Reference Value = 32.17 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 27.4 W/kg

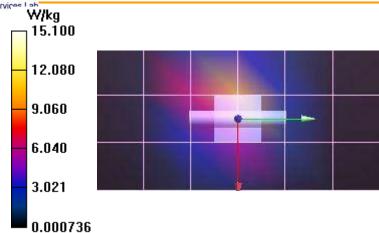
SAR(1 g) = 6.1 W/kg; SAR(10 g) = 1.71 W/kg

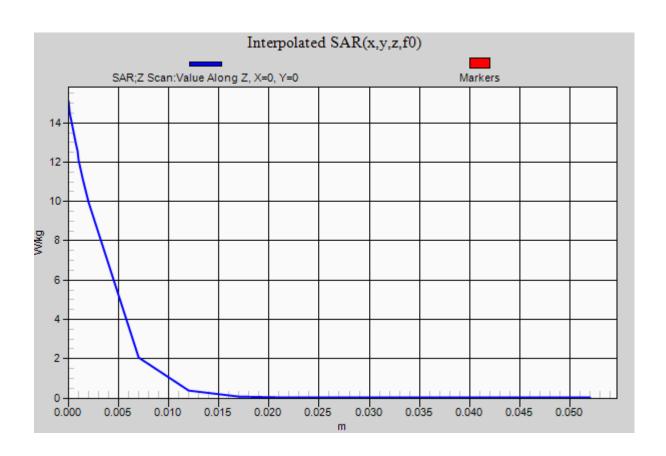
Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 51.9%


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 12.9 W/kg


SPC/SPC 5750H Input=73 mw, Target 5.86 Target=8.04W/kg@100mw/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm


Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = 2.961 (3.180, 2.954) [mm] Maximum value of SAR (interpolated) = 15.1 W/kg

APPENDIX B - MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR

Plot B3

Date/Time: 1/31/2020 10:06:42 AM

Test Laboratory: Celltech Labs

Garmin A03847 -2450H Jan 31 2020

DUT: A03847; Type: Transmitter; Serial:

Communication System: UID 10574 - AAA, IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle); Communication System Band: WLAN

2.4GHz (2412.0 - 2484.0 MHz); Frequency: 2447 MHz; Communication System PAR: 1.98 dB; PMF: 1.06414

Medium parameters used (interpolated): f = 2447 MHz; σ = 1.927 S/m; ϵ_r = 37.467; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.46, 6.46, 6.46) @ 2447 MHz; Calibrated: 3/26/2019
 - Modulation Compensation: PMR for UID 10574 AAA, Calibrated: 3/26/2019
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = -1.5, 31.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 3/19/2019
- Phantom: Twin-SAM V4.0 (30deg probe tilt); Type: QD 000 P40 CC; Serial: xxxx
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

2450H/B3-A03847, Extremity-Top Side, 2447MHz,WIFI/Area Scan (6x16x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.16 W/kg

2450H/B3-A03847, Extremity-Top Side, 2447MHz,WIFI/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.665 V/m; Power Drift = -0.26 dB

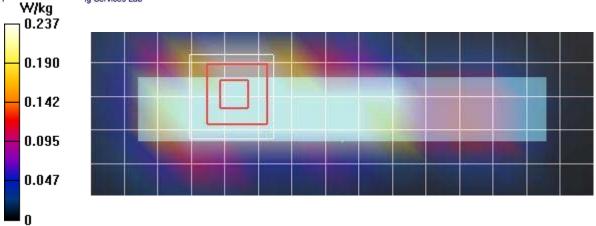
Peak SAR (extrapolated) = 2.24 W/kg

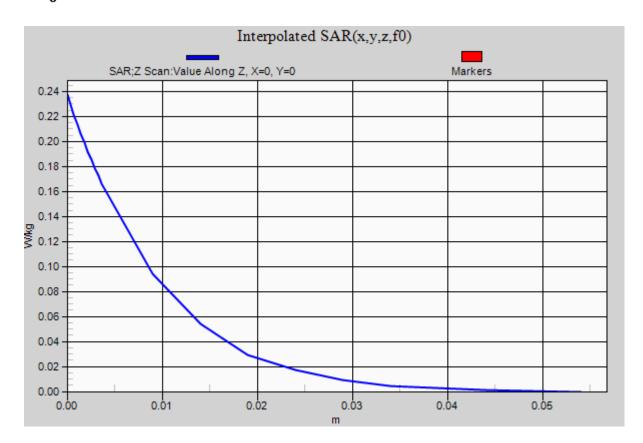
SAR(1 g) = 0.958 W/kg; SAR(10 g) = 0.400 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 44.9%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 1.11 W/kg


2450H/B3-A03847, Extremity-Top Side, 2447MHz,WIFI/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = 9.070 (9.448, 8.117) [mm] Maximum value of SAR (interpolated) = 0.237 W/kg

Test Report S/N: Test Report Issue Date:

45461575 R2.0 18 February 2020

Plot B6

Date/Time: 1/31/2020 2:29:12 PM

Test Laboratory: Celltech Labs

Garmin A03847 -2450H Jan 31 2020

DUT: A03847; Type: Transmitter; Serial:

Communication System: UID 10030 - CAA, IEEE 802.15.1 Bluetooth (GFSK, DH1); Communication System Band: ISM 2.4 GHz Band (2400.0 - 2483.5

MHz); Frequency: 2402 MHz; Communication System PAR: 5.3 dB; PMF: 1.83865

Medium parameters used (interpolated): f = 2402 MHz; $\sigma = 1.856$ S/m; $\epsilon_r = 37.656$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.46, 6.46, 6.46) @ 2402 MHz; Calibrated: 3/26/2019
 - O Modulation Compensation: PMR for UID 10030 CAA, Calibrated: 3/26/2019
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = -1.5, 31.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 3/19/2019
- Phantom: Twin-SAM V4.0 (30deg probe tilt); Type: QD 000 P40 CC; Serial: xxxx
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

2450H/B6-A03847, Extremity-Bottom Side, 2402MHz,BT/Area Scan (6x16x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0253 W/kg

2450H/B6-A03847, Extremity-Bottom Side, 2402MHz,BT/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.791 V/m; Power Drift = 1.34 dB

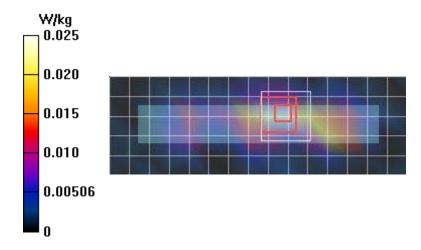
Peak SAR (extrapolated) = 0.0470 W/kg

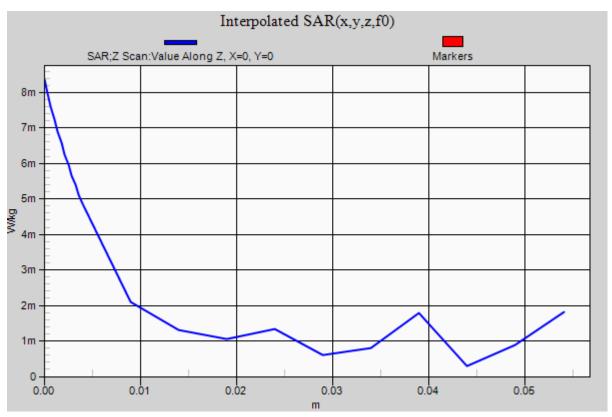
SAR(1 g) = 0.016 W/kg; SAR(10 g) = 0.00626 W/kg

Ratio of SAR at M2 to SAR at M1 = 47.1%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0211 W/kg


2450H/B6-A03847, Extremity-Bottom Side, 2402MHz,BT/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm


Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = 10.71 (5.935, 22.60) [mm]

Maximum value of SAR (interpolated) = 0.00835 W/kg

Plot B8

Date/Time: 2/4/2020 9:06:58 AM

Test Laboratory: Celltech Labs

Garmin A03847-5250H Feb 04 2020

DUT: A03847; Type: Transmitter; Serial:

Communication System: UID 10317 - AAC, IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle); Communication System Band: U-NII-1, U-NII-

2A (5170 - 5330 MHz); Frequency: 5200 MHz; Communication System PAR: 8.36 dB; PMF: 1.04954

Medium parameters used: f = 5200 MHz; $\sigma = 4.72$ S/m; $\varepsilon_r = 34.19$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.41, 4.41, 4.41) @ 5200 MHz; Calibrated: 3/26/2019
 - o Modulation Compensation: PMR for UID 10317 AAC, Calibrated: 3/26/2019
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = -1.5, 25.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 3/19/2019
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

5250H/B8-A03536, Body-Back Side, 5200MHz,WIFI 2/Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.570 W/kg

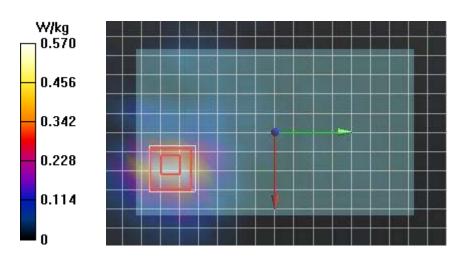
5250H/B8-A03536, Body-Back Side, 5200MHz,WIFI 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 1.669 V/m; Power Drift = 1.75 dB

Peak SAR (extrapolated) = 1.76 W/kg

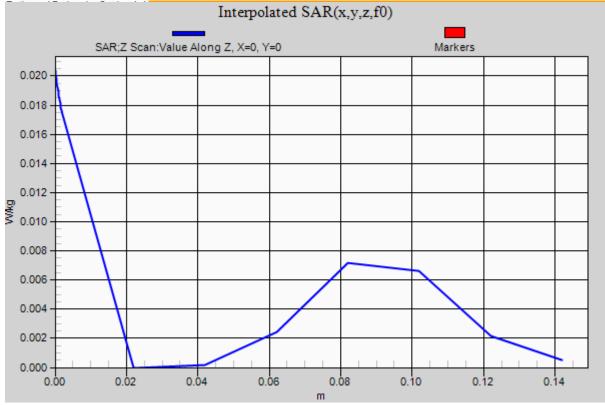
SAR(1 g) = 0.512 W/kg; SAR(10 g) = 0.193 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm


Ratio of SAR at M2 to SAR at M1 = 66%

Maximum value of SAR (measured) = 1.10 W/kg

5250H/B8-A03536, Body-Back Side, 5200MHz,WIFI 2/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm


Penetration depth = n/a (n/a, 0) [mm]

Maximum value of SAR (interpolated) = 0.0203 W/kg

Test Report S/N: Test Report Issue Date:

Plot B15

Date/Time: 2/6/2020 12:49:15 PM

Test Laboratory: Celltech Labs

Garmin A03847-5750H Feb 06 2020

DUT: A03847; Type: Transmitter; Serial:

Communication System: UID 10317 - AAC, IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle); Communication System Band: U-NII-3

Standalone (5735 - 5835 MHz); Frequency: 5795 MHz; Communication System PAR: 8.36 dB; PMF: 1.04954

Medium parameters used: f = 5795 MHz; $\sigma = 5.58$ S/m; $\varepsilon_r = 34.06$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.08, 4.08, 4.08) @ 5795 MHz; Calibrated: 3/26/2019
 - o Modulation Compensation: PMR for UID 10317 AAC, Calibrated: 3/26/2019
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = -1.5, 25.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 3/19/2019
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

5750H/B15-A03847, **Body-Left Side**, **5795MHz,WIFI/Area Scan (8x23x1)**: Measurement grid: dx=8mm, dy=8mm Maximum value of SAR (measured) = 1.83 W/kg

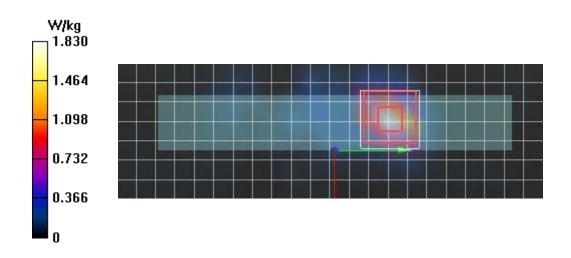
5750H/B15-A03847, Body-Left Side, 5795MHz, WIFI/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

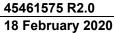
Reference Value = 0.9470 V/m; Power Drift = 10.87 dB

Peak SAR (extrapolated) = 2.60 W/kg

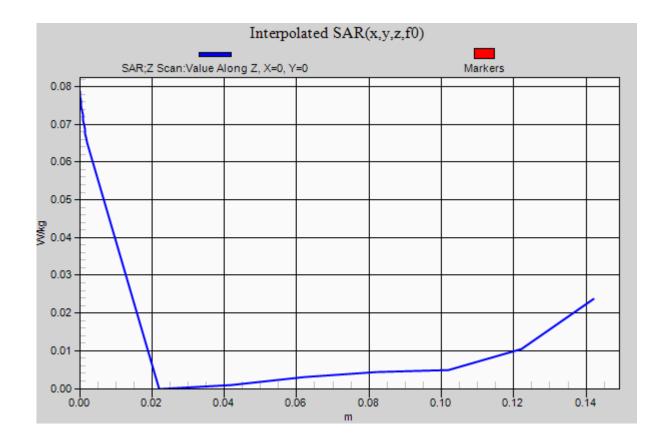
SAR(1 g) = 0.568 W/kg; SAR(10 g) = 0.164 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm


Ratio of SAR at M2 to SAR at M1 = 60.6%


Maximum value of SAR (measured) = 1.49 W/kg

5750H/B15-A03847, Body-Left Side, 5795MHz,WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm


Penetration depth = n/a (n/a, 0) [mm]

Maximum value of SAR (interpolated) = 0.0786 W/kg

