



**CERTIFICATION TEST REPORT  
FOR THE  
BLT TRANSCEIVER, 26-0612  
(TRANSMITTER PORTION ONLY)  
FCC PART 15.247/15.209  
COMPLIANCE**

**DATE OF ISSUE: MARCH 20, 2000**

**PREPARED FOR:**

CellNet Data Systems  
125 Shoreway Road  
San Carlos, CA 94070

W.O. No: 73813

**Report No: FC00-025**

**PREPARED BY:**

Joyce Walker  
CKC Laboratories, Inc.  
5473A Clouds Rest  
Mariposa, CA 95338

Date of test: March 3 & 6, 2000

**DOCUMENTATION CONTROL:**

---

Tracy Phillips  
Documentation Control Supervisor  
CKC Laboratories, Inc.

**APPROVED BY:**

---

Dennis Ward  
Director of Laboratories  
CKC Laboratories, Inc.

This report contains a total of 48 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

## TABLE OF CONTENTS

|                                                                    |    |
|--------------------------------------------------------------------|----|
| Administrative Information .....                                   | 4  |
| Summary Of Results.....                                            | 5  |
| Equipment Under Test (EUT) Description.....                        | 5  |
| Measurement Uncertainty.....                                       | 5  |
| EUT Operating Frequency.....                                       | 5  |
| Peripheral Devices.....                                            | 6  |
| Report Of Measurements.....                                        | 7  |
| Table 1:Peak Output Power of the Fundamental.....                  | 7  |
| Table 2: Six Highest RF Conducted Emission Levels .....            | 8  |
| Table 3: Six Highest Radiated Emission Levels - 450kHz-30 MHz..... | 9  |
| Table 4: Highest Radiated Emission Levels - 30-1000MHz.....        | 10 |
| Table 5: Six Highest Radiated Emission Levels - 1-9.2GHz .....     | 11 |
| Table A : List Of Test Equipment .....                             | 12 |
| EUT Setup .....                                                    | 13 |
| Test Instrumentation And Analyzer Settings.....                    | 13 |
| Table B : Analyzer Bandwidth Settings Per Frequency Range.....     | 13 |
| Spectrum Analyzer Detector Functions.....                          | 14 |
| Peak .....                                                         | 14 |
| Quasi-Peak.....                                                    | 14 |
| Average.....                                                       | 14 |
| Test Methods .....                                                 | 15 |
| Radiated Emissions Testing.....                                    | 15 |
| Transmitter Characteristics.....                                   | 16 |
| Occupied Bandwidth .....                                           | 16 |
| Power Output.....                                                  | 16 |
| Spectral Density.....                                              | 16 |
| Sample Calculations .....                                          | 17 |
| Appendix A: Information About The Equipment Under Test.....        | 18 |
| I/O Ports.....                                                     | 19 |
| Crystal Oscillators .....                                          | 19 |
| Printed Circuit Boards .....                                       | 19 |
| Required EUT Changes To Comply.....                                | 19 |
| Cable Information.....                                             | 20 |
| Equipment Configuration Block Diagram.....                         | 21 |
| Photograph Showing Radiated Emissions.....                         | 22 |
| Photograph Showing Radiated Emissions.....                         | 23 |
| Photograph Showing Radiated Emissions.....                         | 24 |
| Photograph Showing Radiated Emissions.....                         | 25 |
| Appendix B: Measurement Data Sheets .....                          | 26 |
| FCC Part 15.247 – Band Edge.....                                   | 27 |

|                                             |    |
|---------------------------------------------|----|
| FCC Part 15.247 – Band Edge.....            | 28 |
| FCC Part 15.247(a)(2) – Bandwidth.....      | 29 |
| FCC Part 15.247(a)(2) – Bandwidth.....      | 30 |
| FCC Part 15.247(b) – Peak Power.....        | 31 |
| FCC Part 15.247(b) – Peak Power.....        | 32 |
| FCC Part 15.247(c) – RF Conducted.....      | 33 |
| FCC Part 15.247(c) – RF Conducted.....      | 34 |
| FCC Part 15.247(d) – Spectral Density ..... | 35 |
| FCC Part 15.247(d) – Spectral Density ..... | 36 |

**CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies:**  
DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (TaiSIO); HOKLAS (Hong Kong).  
**CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies:**  
ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-Korea; TUV Rheinland-Russia; Radio Communication Agency (RA); NEMKO (Norway).

## ADMINISTRATIVE INFORMATION

**DATE OF TEST:** March 3 & 6, 2000

**PURPOSE OF TEST:** To demonstrate the compliance of the BLT Transceiver, 26-0612, with the requirements for FCC Part 15.247 and 15.209 devices.

**MANUFACTURER:** CellNet Data Systems  
125 Shoreway Road  
San Carlos, CA 94070

**REPRESENTATIVE:** Gordon Furze

**TEST LOCATION:** CKC Laboratories, Inc.  
1653 Los Viboras Road  
Hollister, CA 95023

**TEST PERSONNEL:** Art Rice

**TEST METHOD:** ANSI C63.4 1992

**FREQUENCY RANGE TESTED:** 450 kHz – 9200 MHz

**EQUIPMENT UNDER TEST:**

**BLT Transceiver**

|         |                       |
|---------|-----------------------|
| Manuf:  | CellNet Data Systems  |
| Model:  | 26-0612               |
| Serial: | B001                  |
| FCC ID: | H6N26061200 (pending) |

## **SUMMARY OF RESULTS**

The CellNet Data Systems BLT Transceiver, 26-0612, was tested in accordance with ANSI C63.4 1992 for compliance with FCC Part 15.247 and 15.209.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 15.247 and 15.209. The results in this report apply only to the items tested, as identified herein.

## **EQUIPMENT UNDER TEST (EUT) DESCRIPTION**

Spread spectrum transceiver operating in the 902-928 MHz band. The EUT uses an external 5/4 wavelength whip antenna fed with a 0.25 meter coax cable having 0.8 dB loss. The EUT uses DC power from 10.5 to 15.5V from an external battery.

## **MEASUREMENT UNCERTAINTY**

Associated with data in this report is a  $\pm 4$ dB measurement uncertainty.

## **EUT OPERATING FREQUENCY**

The EUT was operating at 911.58 – 917.58 MHz.

## **TEMPERATURE AND HUMIDITY DURING TESTING**

The temperature during testing was within +15°C and + 35°C. The relative humidity was between 20% and 75%.

## **PERIPHERAL DEVICES**

The EUT was tested with the following peripheral device(s):

### **Battery**

Manuf: Genesis  
Model: G12V12aH10EP  
Serial: none  
FCC ID: N/A

### **Laptop PC**

Manuf: Dell  
Model: PPS  
Serial: 04949  
FCC ID: AK8PD475SC

### **Antenna**

Manuf: Antenna Specialists  
Model: ASPG918  
Serial: none  
FCC ID: N/A

### **AC Adaptor**

Manuf: Dell  
Model: 73463  
Serial: M5055818  
FCC ID: N/A

## REPORT OF MEASUREMENTS

The following tables report the highest worst case levels recorded during the tests performed on the BLT Transceiver, 26-0612. All readings taken are peak readings unless otherwise noted by a "Q" or "A". The data sheets from which these tables were compiled are contained in Appendix B.

**Table 1: Peak Output Power of the Fundamental**

| FREQUENCY<br>MHz | METER<br>READING<br>dBm | CORRECTION FACTORS |           |             |            | CORRECTED<br>READING<br>dBm | SPEC<br>LIMIT<br>dBm | MARGIN<br>dB | NOTES |
|------------------|-------------------------|--------------------|-----------|-------------|------------|-----------------------------|----------------------|--------------|-------|
|                  |                         | Ant<br>dB          | Amp<br>dB | Cable<br>dB | Dist<br>dB |                             |                      |              |       |
| 911.450          | 26.3                    |                    |           |             |            | 26.3                        | 30.0                 | -3.7         | N     |
| 917.539          | 25.6                    |                    |           |             |            | 25.6                        | 30.0                 | -4.4         | N     |

Test Method:

ANSI C63.4 1992

NOTES: H = Horizontal Polarization

Spec Limit :

FCC Part 15.247(b)

V = Vertical Polarization

Test Distance:

No Distance

N = No Polarization

D = Dipole Reading

Q = Quasi Peak Reading

A = Average Reading

COMMENTS: The EUT and ancillary equipment were set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. An RJ45 SIO (Serial Input/Output) cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. Note 1) Testing transmit fundamental peak power in dBm. 30 dBm is 1 watt. 10 dB attenuator external to S.A. Transmitter is connected directly. S.A. resolution BW=3 MHz.

**Table 2: Six Highest RF Conducted Emission Levels**

| FREQUENCY<br>MHz | METER<br>READING<br>dBm | CORRECTION FACTORS |           |             |            | CORRECTED<br>READING<br>dB | SPEC<br>LIMIT<br>dB | MARGIN<br>dB | NOTES |
|------------------|-------------------------|--------------------|-----------|-------------|------------|----------------------------|---------------------|--------------|-------|
|                  |                         | Ant<br>dB          | Amp<br>dB | Cable<br>dB | Dist<br>dB |                            |                     |              |       |
| 1823.140         | -26.6                   |                    |           |             |            | -26.6                      | 1.3                 | -27.9        | N     |
| 1835.160         | -28.3                   |                    |           |             |            | -28.3                      | 1.3                 | -27.0        | N     |
| 2752.670         | -38.5                   |                    |           |             |            | -38.5                      | 1.3                 | -37.2        | N     |
| 8204.271         | -36.8                   |                    |           |             |            | -36.8                      | 1.3                 | -38.1        | N     |
| 8258.340         | -36.6                   |                    |           |             |            | -36.6                      | 1.3                 | -35.3        | N     |
| 9175.870         | -37.7                   |                    |           |             |            | -37.7                      | 1.3                 | -36.4        | N     |

Test Method:

ANSI C63.4 1992

NOTES: H = Horizontal Polarization

Spec Limit :

FCC Part 15.247(c)

V = Vertical Polarization

Test Distance:

No Distance

N = No Polarization

D = Dipole Reading

Q = Quasi Peak Reading

A = Average Reading

COMMENTS: The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. Note 1) Testing transmit harmonics and spurious signals in dBm. 10 dB attenuator external to S.A. Transmitter is connected directly. S.A. resolution BW=100 kHz. Scanned 450 kHz to 9116 MHz. Note 2) Transmit frequency is 911.58 MHz. Measured level at fundamental was 21.3 dBm. Also scanned 450 kHz to 9176 MHz. Note 3) Transmit frequency is 917.58 MHz. Measured level at fundamental was 20.5 dBm. Table represents both scans. See Appendix B for individual data sheets.

**Table 3: Six Highest Radiated Emission Levels - 450kHz-30 MHz**

| FREQUENCY<br>MHz | METER<br>READING<br>dB $\mu$ V | CORRECTION FACTORS |           |             |            | CORRECTED<br>READING<br>dB $\mu$ V/m | SPEC<br>LIMIT<br>dB $\mu$ V/m | MARGIN<br>dB       | NOTES |
|------------------|--------------------------------|--------------------|-----------|-------------|------------|--------------------------------------|-------------------------------|--------------------|-------|
|                  |                                | Mag<br>dB          | Amp<br>dB | Cable<br>dB | Dist<br>dB |                                      |                               |                    |       |
| 0.430            | 40.1                           | 10.0               |           |             |            | 50.1                                 | 94.9                          | -44.8              | N     |
| 0.450            | 40.5                           | 10.0               |           |             |            | 50.5                                 | 94.6                          | -44.1<br>(ambient) | N     |
| 2.000            | 26.4                           | 10.1               |           |             |            | 36.5                                 | 69.5                          | -33.0<br>(ambient) | N     |
| 9.710            | 37.8                           | 9.3                |           |             |            | 47.1                                 | 69.5                          | -22.4              | N     |
| 19.420           | 23.7                           | 8.1                |           |             |            | 31.8                                 | 69.5                          | -37.7              | N     |
| 29.130           | 23.7                           | 6.1                |           |             |            | 29.8                                 | 69.5                          | -39.7              | N     |

Test Method: ANSI C63.4 1992  
 Spec Limit : FCC Part 15.209  
 Test Distance: 3 Meters

NOTES: H = Horizontal Polarization  
 V = Vertical Polarization  
 N = No Polarization  
 D = Dipole Reading  
 Q = Quasi Peak Reading  
 A = Average Reading

**COMMENTS:** The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. A vertical antenna with 5 dBi gain is attached to the EUT. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. "Receiver noise level" data is transferred over the SIO port to the support PC. Note 1) Testing on the OATS for spurious emissions .45 to 30 MHz range while the unit is in the transceive mode when it transmits for 20 mS and receives for 80 mS and then repeats. Note: only worst case readings are included, which were from the 917.58 MHz transmitting frequency (per PCC 15.209, levels 20 dB below spec are not required to be shown).

**Table 4: Highest Radiated Emission Levels - 30-1000MHz**

| FREQUENCY<br>MHz | METER<br>READING<br>dB $\mu$ V | CORRECTION FACTORS<br>Bico<br>n<br>Amp<br>Cable<br>Dist |       |     |    | CORRECTED<br>READING<br>dB $\mu$ V/m | SPEC<br>LIMIT<br>dB $\mu$ V/m | MARGIN<br>dB | NOTES |
|------------------|--------------------------------|---------------------------------------------------------|-------|-----|----|--------------------------------------|-------------------------------|--------------|-------|
|                  |                                | dB                                                      | dB    | dB  | dB |                                      |                               |              |       |
| 73.976           | 52.0                           | 7.9                                                     | -26.6 | 1.1 |    | 34.4                                 | 40.0                          | -5.6         | V     |
| 73.976           | 52.0                           | 7.9                                                     | -26.6 | 1.1 |    | 34.4                                 | 40.0                          | -5.6         | V     |
| 74.986           | 52.5                           | 7.8                                                     | -26.6 | 1.2 |    | 34.9                                 | 40.0                          | -5.1         | V     |
| 74.986           | 52.5                           | 7.8                                                     | -26.6 | 1.2 |    | 34.9                                 | 40.0                          | -5.1         | V     |

Test Method: ANSI C63.4 1992  
 Spec Limit: FCC Part 15.209  
 Test Distance: 3 Meters

NOTES: H = Horizontal Polarization  
 V = Vertical Polarization  
 N = No Polarization  
 D = Dipole Reading  
 Q = Quasi Peak Reading  
 A = Average Reading

COMMENTS: The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. A vertical antenna with 5 dBi gain is attached to the EUT. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. "Receiver noise level" data is transferred over the SIO port to the support PC. Note 1) Testing on the OATS for spurious emissions in the restricted bands from 30-1000 MHz while the unit is in the normal transceive mode where it transmits for 20 mS, and receives for 80 mS, and then repeats. Transmitting at both 911.58 MHz and 917.58 MHz. Note 2). To prevent spurious signals from being generated in test equipment: 10 dB attenuator between antenna and preamp, 10 dB attenuation internal to spectrum analyzer. See Appendix B for individual test data sheets. Note 3) Stewart ferrite 28A2025-0A0 used on DC power cord.

**Table 5: Six Highest Radiated Emission Levels - 1-9.2GHz**

| FREQUENCY<br>MHz | METER<br>READING<br>dB $\mu$ V | CORRECTION FACTORS |           |             |           | CORRECTED<br>READING<br>dB $\mu$ V/m | SPEC<br>LIMIT<br>dB $\mu$ V/m | MARGIN<br>dB | NOTES |
|------------------|--------------------------------|--------------------|-----------|-------------|-----------|--------------------------------------|-------------------------------|--------------|-------|
|                  |                                | Horn<br>dB         | Amp<br>dB | Cable<br>dB | HPF<br>dB |                                      |                               |              |       |
| 2735.020         | 41.4                           | 29.7               | -38.5     | 12.5        | 0.3       | 45.4                                 | 54.0                          | -8.6         | V     |
| 2752.753         | 41.4                           | 29.8               | -38.5     | 12.7        | 0.3       | 45.7                                 | 54.0                          | -8.3         | V     |
| 3646.600         | 37.5                           | 32.5               | -38.6     | 14.8        | 0.3       | 46.5                                 | 54.0                          | -7.5         | V     |
| 4557.980         | 36.4                           | 32.2               | -37.6     | 16.7        | 0.5       | 48.2                                 | 54.0                          | -5.8         | V     |
| 4587.730         | 36.0                           | 32.3               | -37.4     | 16.8        | 0.6       | 48.3                                 | 54.0                          | -5.7         | V     |
| 4587.913         | 36.3                           | 32.3               | -37.4     | 16.8        | 0.6       | 48.6                                 | 54.0                          | -5.4         | H     |

Test Method: ANSI C63.4 1992  
 Spec Limit : FCC Part 15.209  
 Test Distance: 3 Meters

NOTES: H = Horizontal Polarization  
 V = Vertical Polarization  
 N = No Polarization  
 D = Dipole Reading  
 Q = Quasi Peak Reading  
 A = Average Reading

COMMENTS: The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. A vertical antenna with 5 dBi gain is attached to the EUT. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. "Receiver noise level" data is transferred over the SIO port to the support PC. Note 1) Testing on the OATS for spurious emissions in the restricted bands from 1000-9176 MHz range while the unit is in the transceive mode when it transmits for 20 mS and receives for 80 mS, and then repeats. Note 2) To prevent overloading the preamp from the transmit signal at 911.58 to 917.58 MHz, an HP 1.5 GHz High Pass filter is installed at the preamp input. P/N 84300-80037, s/n 3643A00027. Table includes data transmitting at 911.58 and 917.58 MHz. See Appendix B for individual data sheets.

**TABLE A**  
**LIST OF TEST EQUIPMENT**  
**Hollister Site A**

| Function                           | S/N        | Calibration Date | Cal Due Date | Asset # |
|------------------------------------|------------|------------------|--------------|---------|
| HP 85650A QP Adaptor               | 2430A00541 | 04/09/1999       | 04/09/2000   | 0       |
| HP 85662A Display                  | 2112A02174 | 04/09/1999       | 04/09/2000   | 0       |
| HP 85680A S. A.                    | 2049A01408 | 04/09/1999       | 04/09/2000   | 0       |
| HP 8447F Preamp                    | 2944A03850 | 03/22/1999       | 03/22/2000   | 501     |
| HP 8596E S.A.                      | 3346A00225 | 05/10/1999       | 05/10/2000   | 783     |
| Log Periodic, A.H. SAS200/510      | 318        | 04/23/1999       | 04/23/2000   | 0       |
| Mag Loop Ant, Emco 6502            | 2078       | 06/17/1999       | 06/17/2000   | 432     |
| Cable, 10m                         | Cbl10mha00 | 01/18/2000       | 01/18/2001   | 0       |
| Cable, 3m                          | Cbl3mha00  | 01/18/2000       | 01/18/2001   | 0       |
| Cable, 100 ft Andrews FSJ1P-50A-4A | Cable #7   | 09/23/1999       | 09/23/2000   | 0       |
| Cable, 25 ft Andrews FSJ1P-50A-4A  | Cable #12  | 09/23/1999       | 09/23/2000   | 0       |
| Bicon , Emco 3104                  | 2683       | 04/22/1999       | 04/22/2000   | 732     |
| Horn Ant, EMC 3110DRG              | 9602-4660  | 09/23/1999       | 09/23/2000   | 2113    |
| Preamp, HP83017A                   | 3123A00281 | 07/27/1999       | 07/27/2000   | 786     |
| Hollister site A.                  |            | 09/01/1999       | 09/01/2000   |         |
| Test software, EMI Test 3.09.      |            | N/A              | N/A          |         |

## **EUT SETUP**

The equipment under test (EUT) and the peripheral(s) listed were set up in a manner that represented their normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Tables 1-5 for radiated emissions. Additionally, a complete description of all the ports and I/O cables is included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

I/O cables were connected to the EUT and peripherals in the manner required for normal operation of the system. Excess cabling was bundled in the center in a serpentine fashion using 30-40 centimeter lengths.

## **TEST INSTRUMENTATION AND ANALYZER SETTINGS**

The test instrumentation and equipment listed in Table A were used to collect the radiated emissions data for the BLT Transceiver, 26-0612. Frequencies below 30 MHz were scanned using the mag loop antenna. For radiated measurements between 30 to 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. Frequencies above 1000 MHz were scanned using a horn antenna. All antennas were located at a distance of 3 meters from the edge of the EUT.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB $\mu$ V, and a vertical scale of 10 dB per division.

TABLE B : ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE

| TEST               | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
|--------------------|---------------------|------------------|-------------------|
| RADIATED EMISSIONS | 450 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS | 1000 MHz            | 9.2 GHz          | 1 MHz             |

## **SPECTRUM ANALYZER DETECTOR FUNCTIONS**

The notes that accompany the measurements contained in Tables 1-5 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the BLT Transceiver, 26-0612.

### **Peak**

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

### **Quasi-Peak**

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

### **Average**

When the frequencies exceed 1 GHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

## TEST METHODS

The radiated emissions data of the BLT Transceiver, 26-0612, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15.247 and Part 15.209 emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

### Radiated Emissions Testing

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode with the I/O cables and line cords facing the antenna. Frequencies below 30 MHz were scanned using a mag loop antenna. The frequency range of 30 MHz - 88 MHz was then scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks which were at or near the limit were recorded. The frequency range of 100 - 300 MHz was scanned with the biconical antenna in the same manner, and the peaks recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was again scanned. The horn antenna was used to scanned frequencies above 1000 MHz. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned with its I/O and power cables facing the antenna. A thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, antenna height and configuration of the peripheral(s) and cables. Maximizing of the cables was achieved by monitoring the spectrum analyzer on a closed circuit television monitor while the EUT cables were being moved and rearranged on the EUT table for maximum emissions. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

## TRANSMITTER CHARACTERISTICS

### Occupied Bandwidth Measurements

The fundamental frequency was kept within the permitted band 902-928MHz or 2400-2483.5 MHz. Refer to Appendix B for the occupied bandwidth plots.

### Power Output

Frequency of Transmitter: 902 MHz or 2.4 GHz

The RF conducted test, was measured using a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation. The resolution bandwidth was adjusted to greater than the 6 dB bandwidth of the emissions.

| Frequency | Measurement in dBm | Measurement in mW |
|-----------|--------------------|-------------------|
| 911.450   | 26.3               | 426.6             |
| 917.539   | 25.6               | 363.07            |

The limit used was determined by the method stated in FCC Part 15.247(b).

### Spectral Density

Spectral density testing was performed per FCC Public Notice 54797. A span of 3 kHz and resolution BW = 300 Hz was used in order to resolve 5 individual spectral lines. For 911.58 MHz, the power was normalized to 3 kHz bandwidth by adding a power correction factor using  $10\log(5)=7$  dB, since all 5 spectral lines were within 1.3 dB. Therefore, a 7 dB offset was entered into the spectrum analyzer to correct the reading. In addition, a 10 dB of external attenuation was added to the spectrum analyzer to make the measurement. The display line was set to the +8 dBm limit set by FCC Part 15.247(d). For 917.58 MHz, it was assumed all spectral lines were equal to the worst case line. Therefore, a  $10\log(5)=7$  dB correction was also made, in addition to the 10 dB of external attenuation added to the spectrum analyzer.

## SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in Tables 1-5. For radiated emissions in dB $\mu$ V/m, the spectrum analyzer reading in dB $\mu$ V was corrected by using the following formula:

$$\begin{aligned} & \text{Meter reading (dB}\mu\text{V)} \\ & + \text{Antenna Factor (dB)} \\ & + \text{Cable Loss (dB)} \\ & - \text{Distance Correction (dB)} \\ & - \text{Pre-amplifier Gain (dB)} \\ \\ & = \text{Corrected Reading (dB}\mu\text{V/m)} \end{aligned}$$

This reading was then compared to the applicable specification limit to determine compliance.

A typical data sheet will display the following in column format:

| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | Cable | Amp | Bicon | Horn | Mag | Dist | Corr<br>dB $\mu$ V/m | Spec | Margin | Polar |
|---|-------------|--------------------|-------|-----|-------|------|-----|------|----------------------|------|--------|-------|
|   | HPF         |                    |       |     |       |      |     |      |                      |      |        |       |

# means reading number

**Freq MHz** is the frequency in MHz of the obtained reading.

**Rdng dB $\mu$ V** is the reading obtained on the spectrum analyzer in dB $\mu$ V.

**Amp** is short for the preamplifier factor or gain in dB.

**Bicon** is the biconical antenna factor in dB.

**Mag** is the mag loop antenna factor in dB.

**Horn** is the horn antenna factor in dB.

**Cable** is the cable loss in dB of the coaxial cable on the OATS.

**Dist** is the distance factor (in dB). It is used when testing at a different test distance than the one stated in the spec.

**Corr dB $\mu$ V/m** is the corrected reading which is now in dB $\mu$ V/m (field strength).

**Spec** is the specification limit (dB) stated in the agency's regulations.

**Margin** is the closeness to the specified limit in dB; + is over and - is under the limit.

**Polar** is the Polarity of the antenna with respect to earth.

**HPF** is the high pass filter.

**APPENDIX A**  
**INFORMATION ABOUT THE EQUIPMENT UNDER TEST**

| <b>INFORMATION ABOUT THE EQUIPMENT UNDER TEST</b> |     |
|---------------------------------------------------|-----|
| Test Software/Firmware:                           | N/A |
| CRT was displaying:                               | N/A |
| Power Supply Manufacturer:                        | N/A |
| Power Supply Part Number:                         | N/A |
| AC Line Filter Manufacturer:                      | N/A |
| AC Line Filter Part Number:                       | N/A |
| The EUT has no power cord.                        |     |
|                                                   |     |

| <b>I/O PORTS</b>               |   | <b>CRYSTAL OSCILLATORS</b> |              |
|--------------------------------|---|----------------------------|--------------|
| Type                           | # | Type                       | Freq. In MHz |
| DC Power from external battery | 1 | TCXO                       | 38.839364    |
| SIO from/to controller         | 1 |                            |              |
| Antenna(TX/RX Diversity)       | 2 |                            |              |

| <b>PRINTED CIRCUIT BOARDS</b> |             |             |        |          |
|-------------------------------|-------------|-------------|--------|----------|
| Function                      | Model & Rev | Clocks, MHz | Layers | Location |
| LAN Transceiver               | 25-0612     | 38.839364   | 4      |          |

| <b>REQUIRED EUT CHANGES TO COMPLY:</b>                        |
|---------------------------------------------------------------|
| 2 turns through Steward ferrite 28A2025-0A0 on DC power cord. |

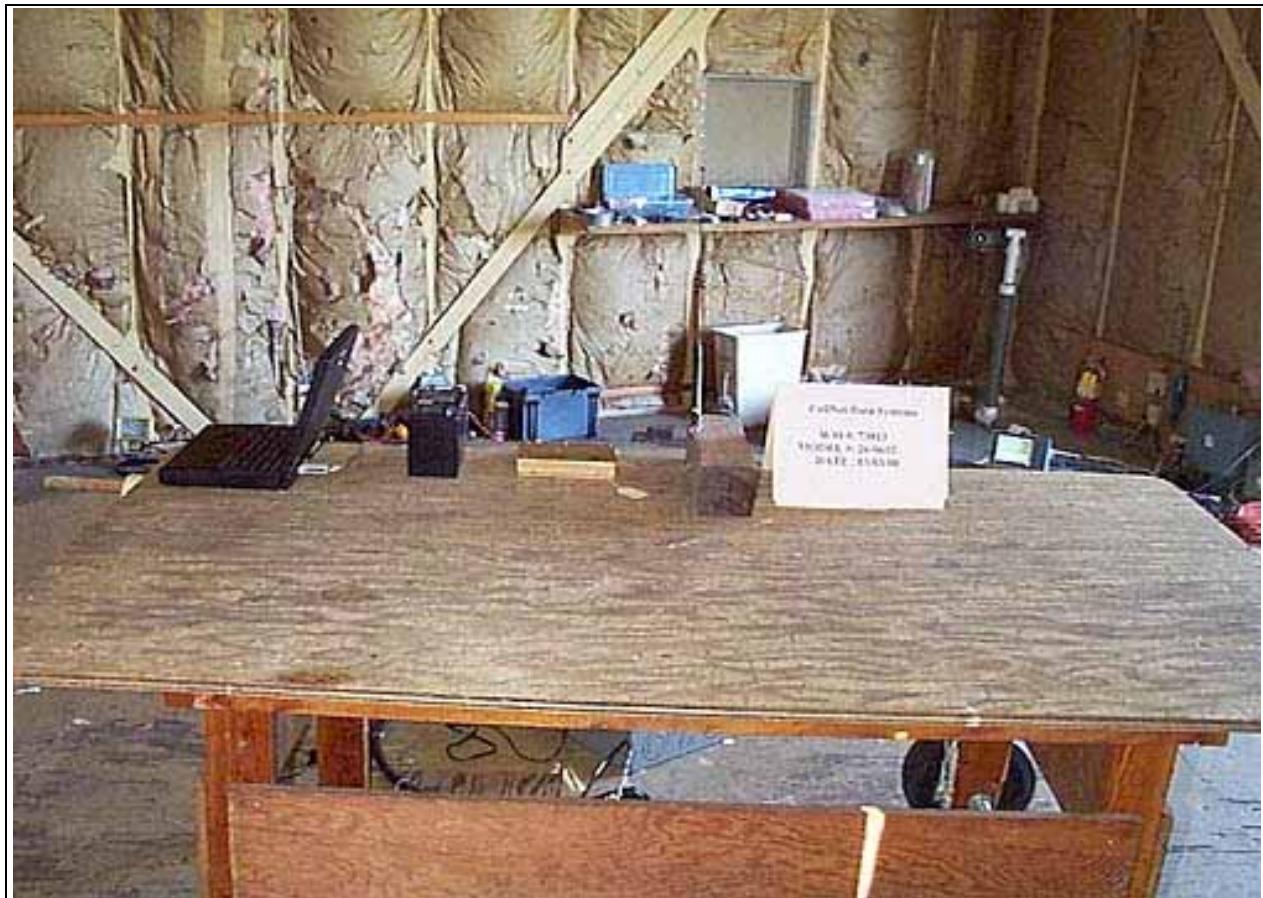
## CABLE INFORMATION

|                         |                                                |                         |          |
|-------------------------|------------------------------------------------|-------------------------|----------|
| RF Cable #:             | 1                                              | Cable(s) of this type:  | 2        |
| Cable Type:             | RG316                                          | Shield Type:            | Braded   |
| Construction:           | Coax                                           | Length In Meters:       | 0.25     |
| Connected To End (1):   | Yes                                            | Connected To End (2):   | Yes      |
| Connector At End (1):   | OSX-M                                          | Connector At End (2):   | Type N-M |
| Shield Grounded At (1): | Yes                                            | Shield Grounded At (2): | Yes      |
| Part Number:            |                                                | Number of Conductors:   |          |
| Notes:                  | Insertion loss at 917 MHz is typically 0.7 dB. |                         |          |

|                                       |                                                            |                         |        |
|---------------------------------------|------------------------------------------------------------|-------------------------|--------|
| SIO Cable #:<br>(Serial Input/Output) | 2                                                          | Cable(s) of this type:  | 1      |
| Cable Type:                           | 8 Cond Ribbon                                              | Shield Type:            | None   |
| Construction:                         | Ribbon                                                     | Length In Meters:       | 0.5    |
| Connected To End (1):                 | Yes                                                        | Connected To End (2):   | Yes    |
| Connector At End (1):                 | RJ45-M                                                     | Connector At End (2):   | RJ45-M |
| Shield Grounded At (1):               | N/A                                                        | Shield Grounded At (2): | N/A    |
| Part Number:                          |                                                            | Number of Conductors:   |        |
| Notes:                                | Control of receive and transmit functions and data in/out. |                         |        |

|                         |                                                   |                         |      |
|-------------------------|---------------------------------------------------|-------------------------|------|
| Power Cable #:          | 3                                                 | Cable(s) of this type:  | 1    |
| Cable Type:             | 2 Cond                                            | Shield Type:            | None |
| Construction:           | Twisted Pair                                      | Length In Meters:       | 0.5  |
| Connected To End (1):   | Yes                                               | Connected To End (2):   | Yes  |
| Connector At End (1):   | Molex Type 5557                                   | Connector At End (2):   |      |
| Shield Grounded At (1): | N/A                                               | Shield Grounded At (2): |      |
| Part Number:            | 39-01-2025                                        | Number of Conductors:   |      |
| Notes:                  | Power (DC) 4 pin connector. Pins 3 & 4 used only. |                         |      |

## EQUIPMENT CONFIGURATION BLOCK DIAGRAM



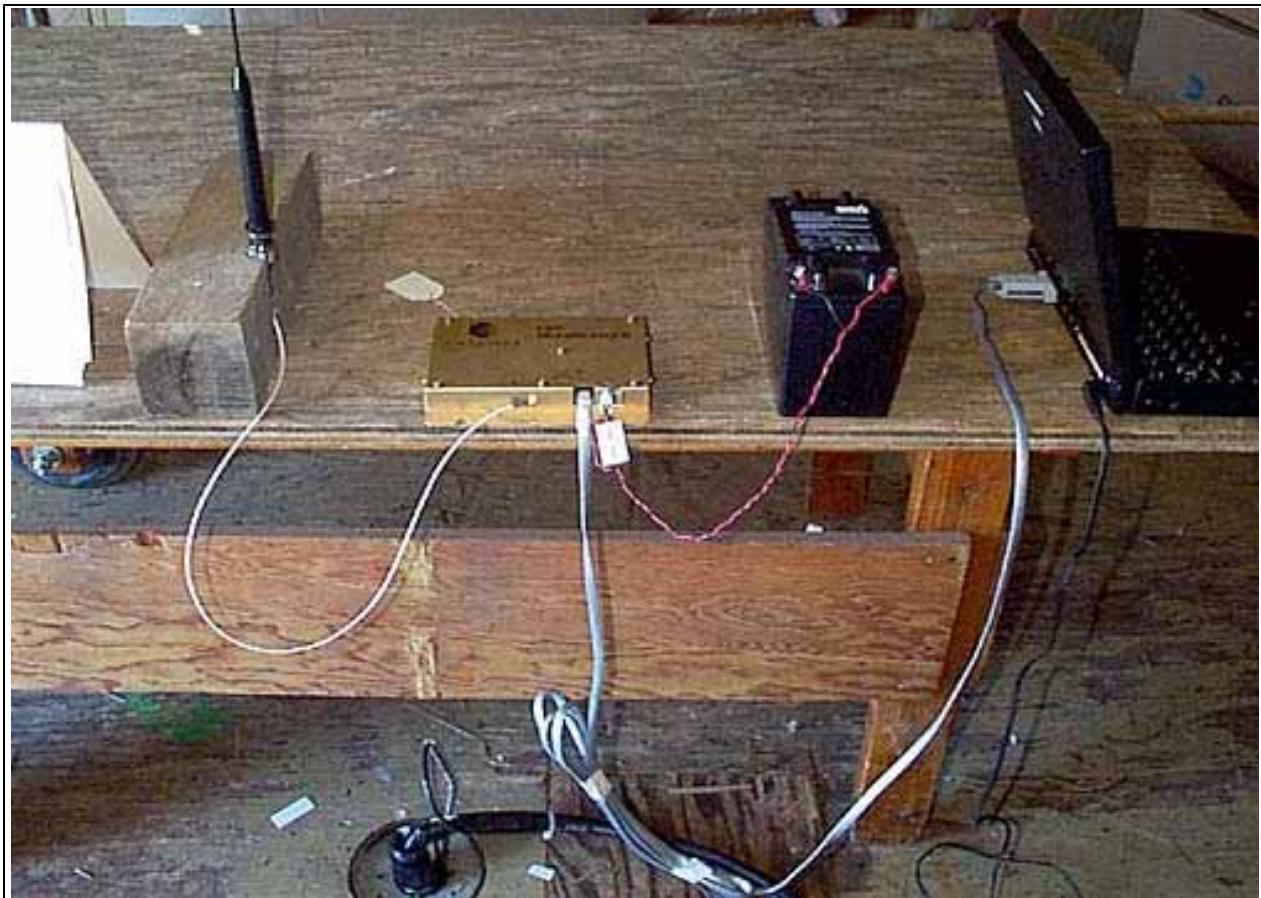

**PHOTOGRAPH SHOWING RADIATED EMISSIONS**



RF Conducted

**PHOTOGRAPH SHOWING RADIATED EMISSIONS**

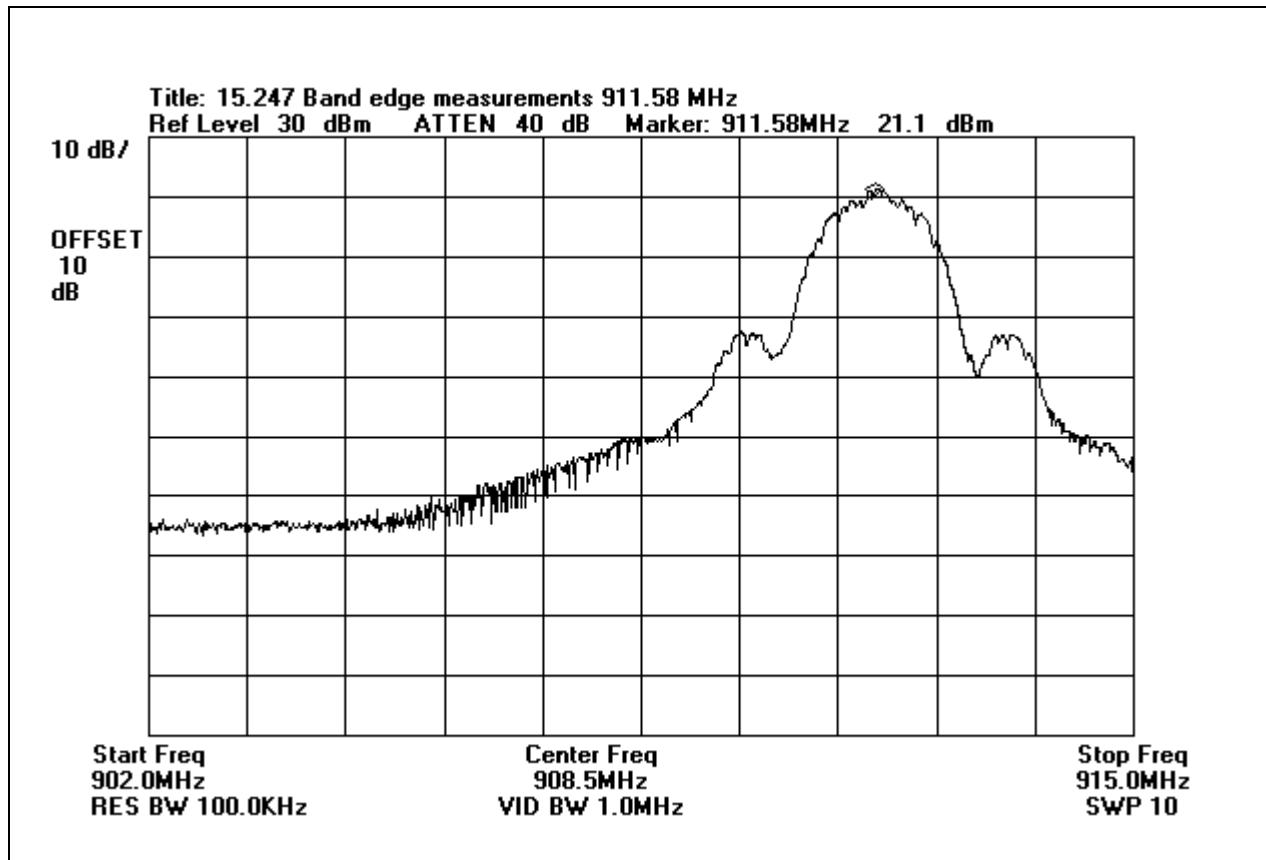



Radiated Emissions - Front View

**PHOTOGRAPH SHOWING RADIATED EMISSIONS**

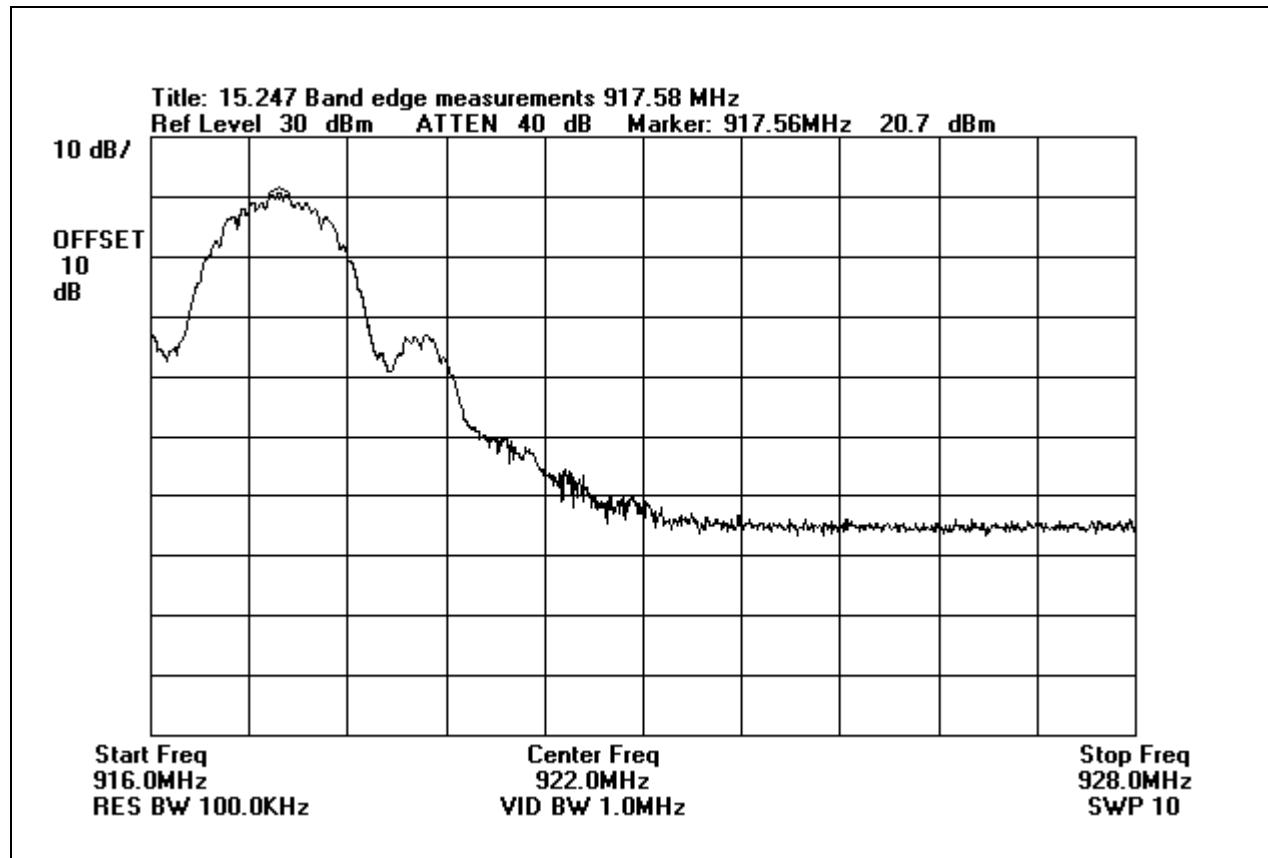


Radiated Emissions - Back View


**PHOTOGRAPH SHOWING RADIATED EMISSIONS**

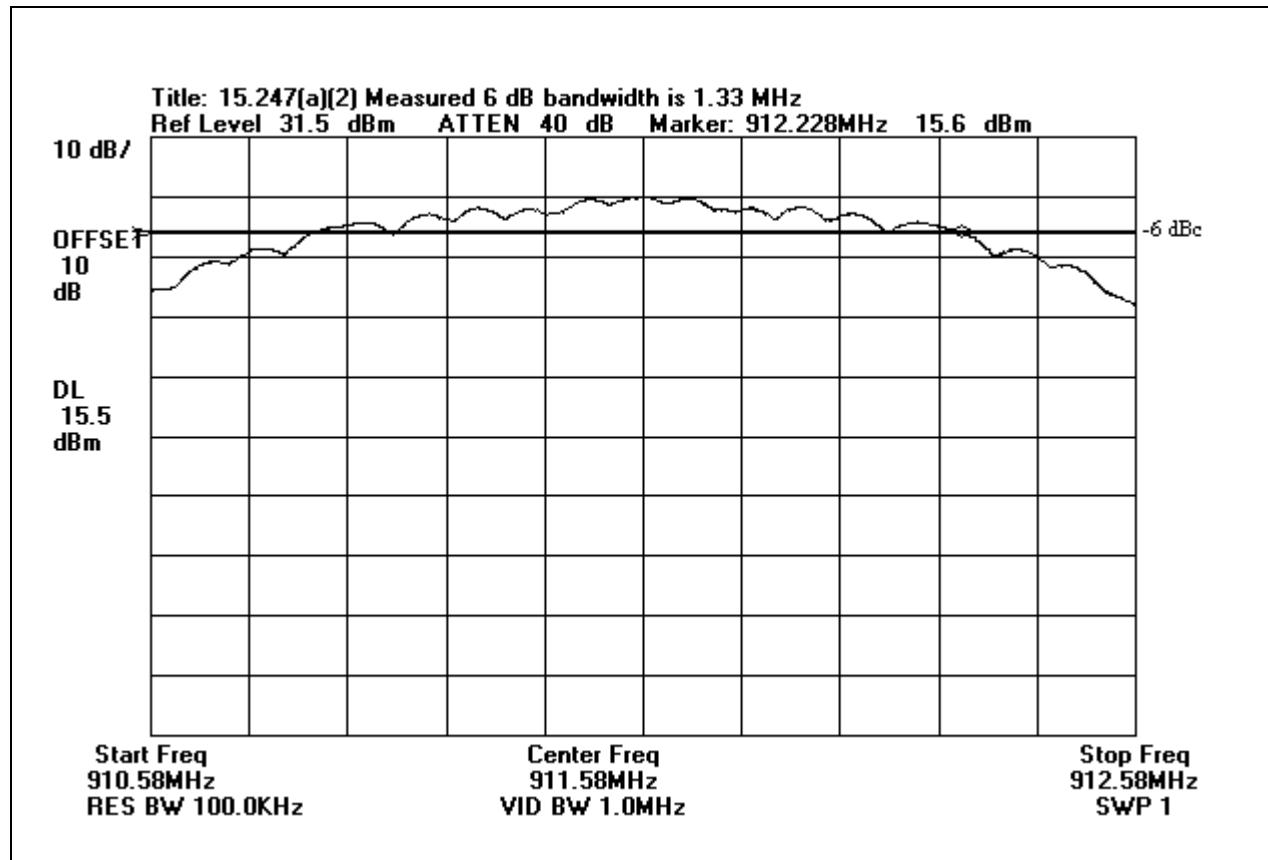


Radiated Emissions - Close-up of Back View


**APPENDIX B**  
**MEASUREMENT DATA SHEETS**

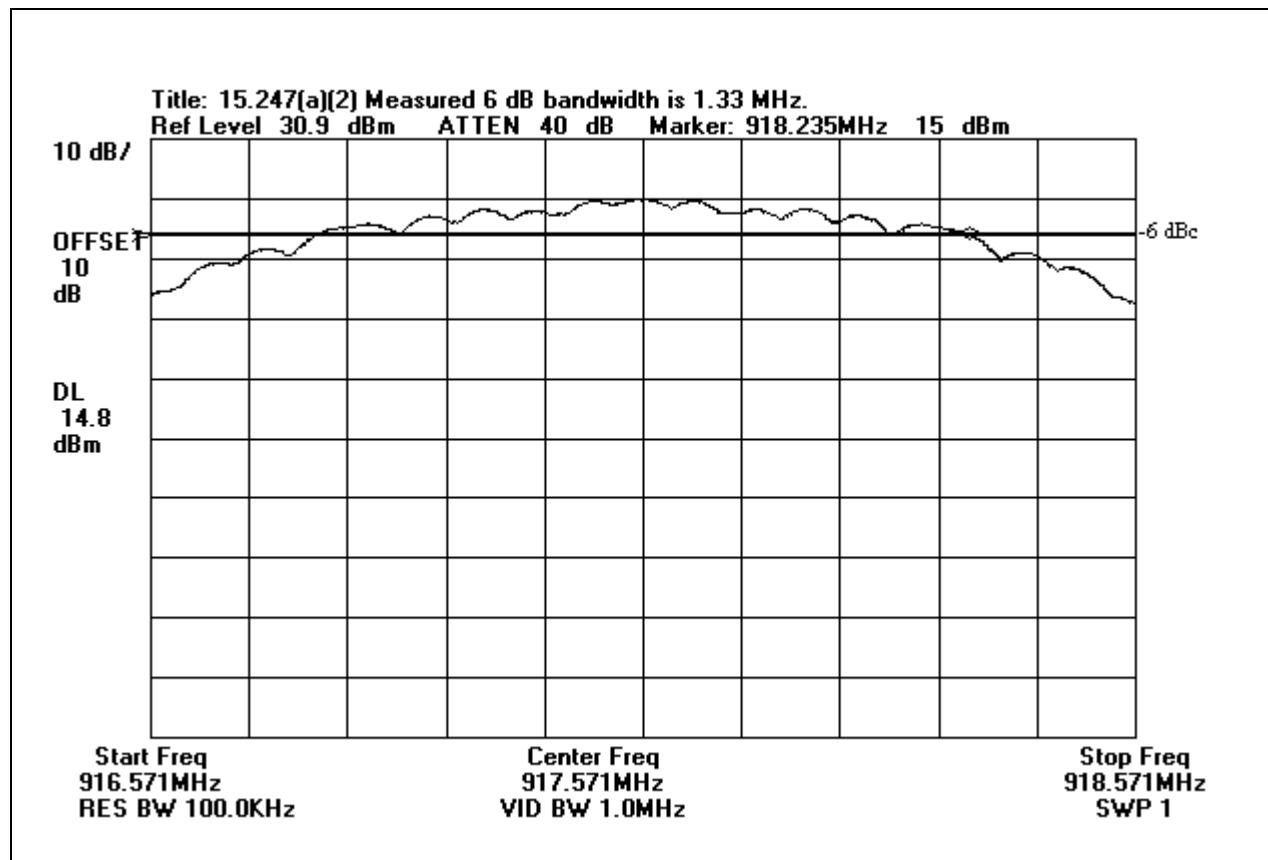
FCC Part 15.247 – Band Edge




Lowest Frequency - 911.58 MHz

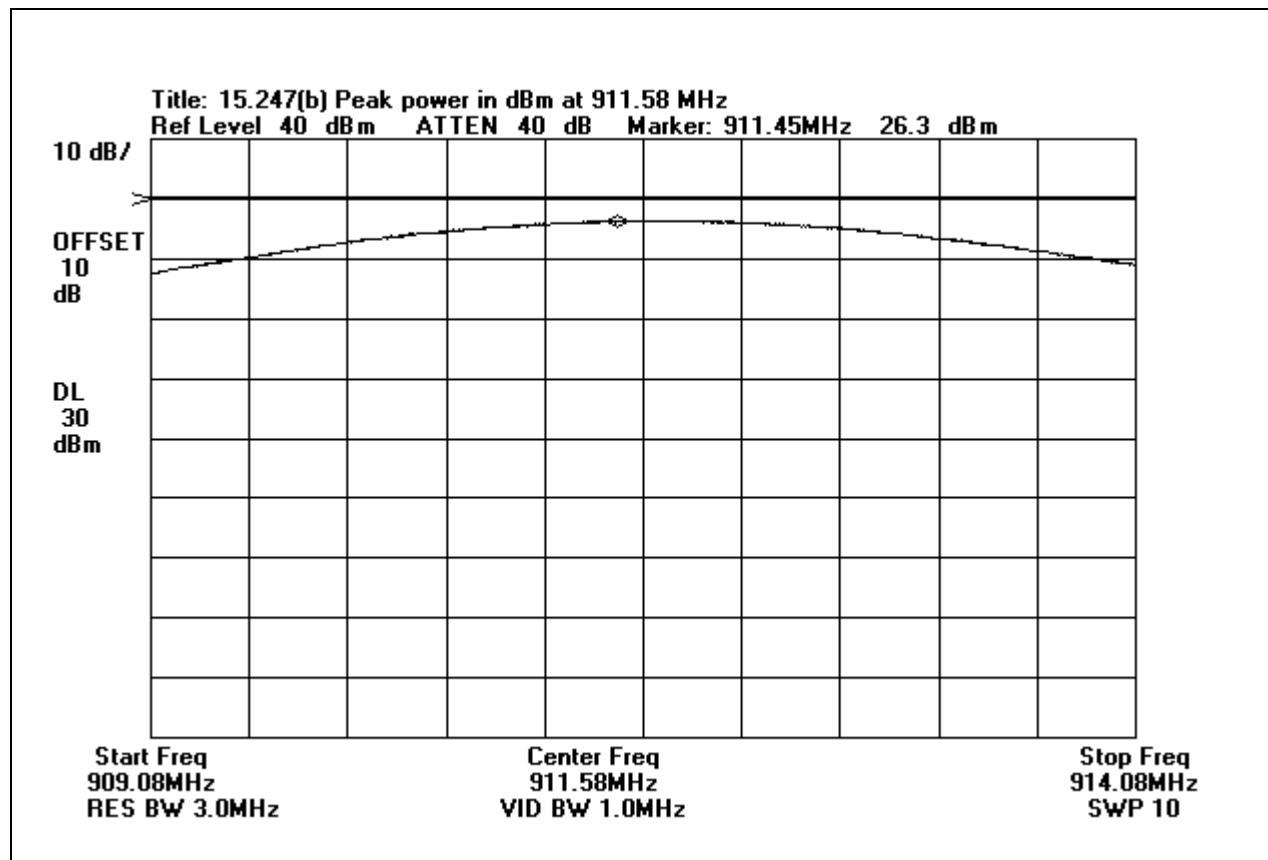
FCC Part 15.247 – Band Edge




Highest Frequency - 917.58 MHz

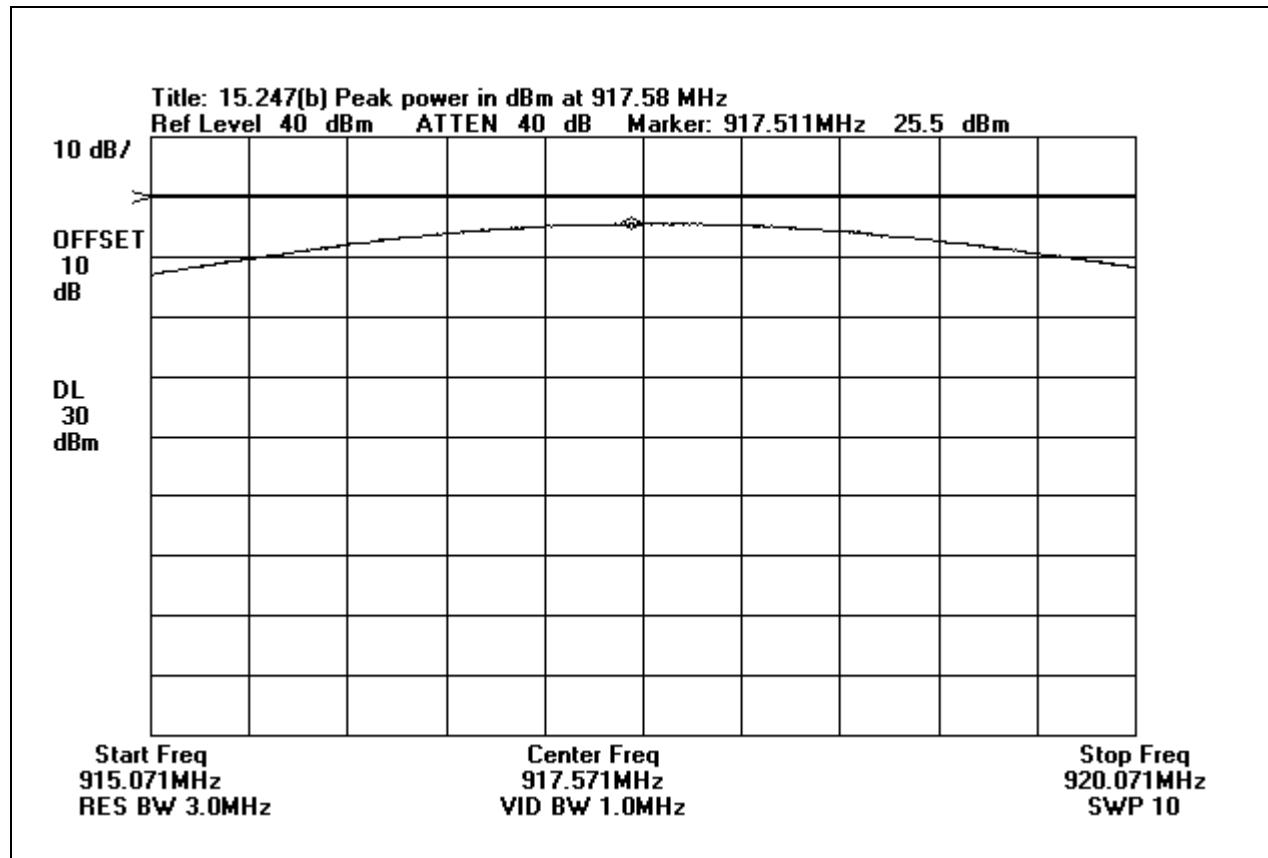
FCC Part 15.247(a)(2) – Bandwidth




Lowest Frequency - 911.58 MHz

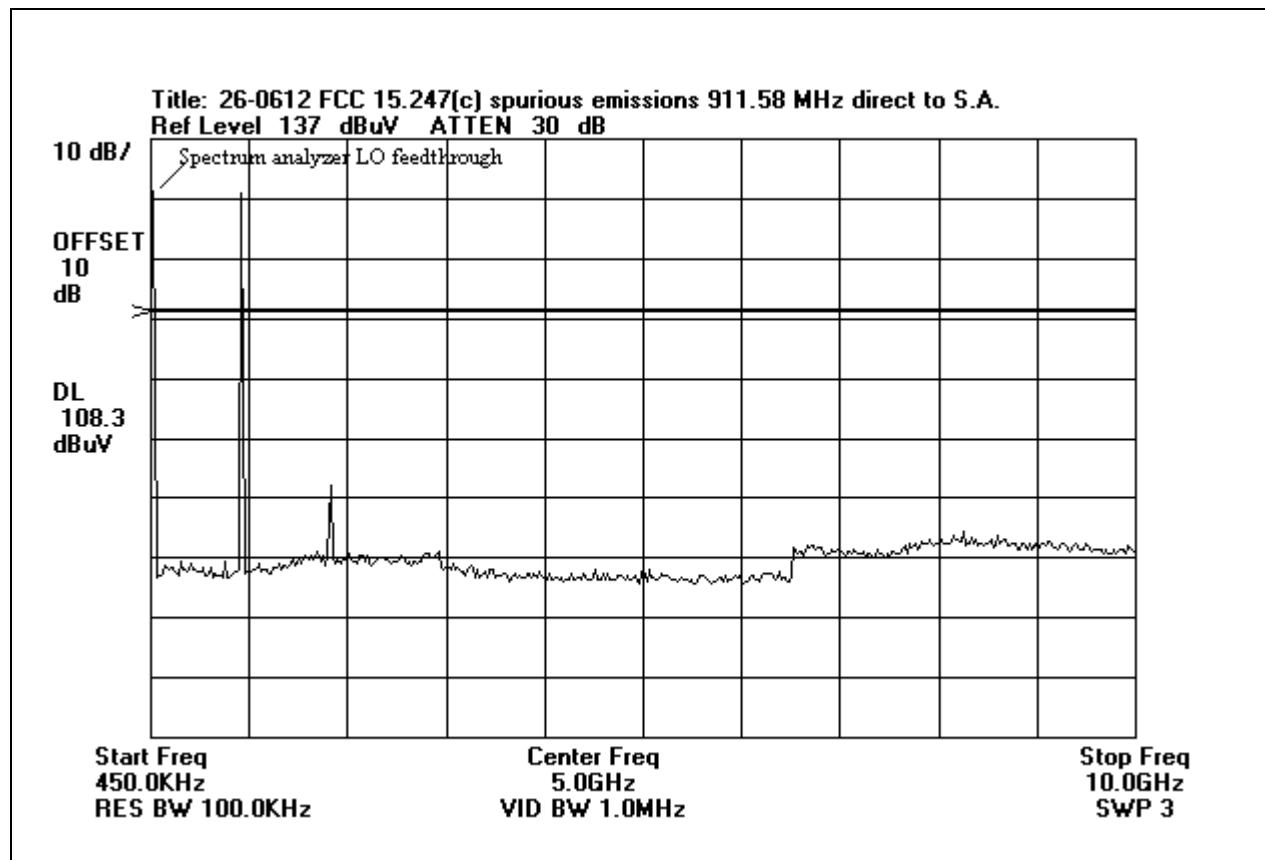
FCC Part 15.247(a)(2) – Bandwidth




Highest Frequency - 917.58 MHz

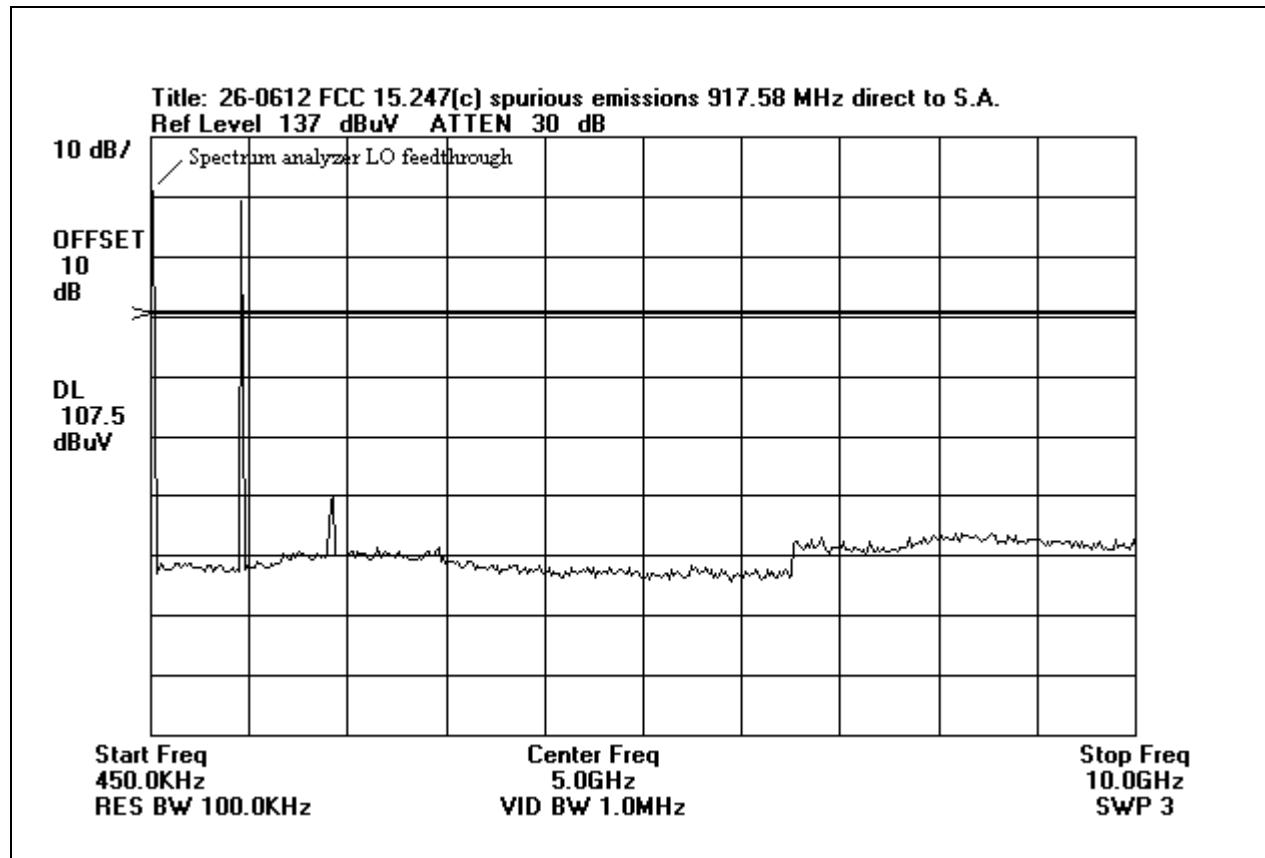
FCC Part 15.247(b) – Peak Power




Lowest Frequency - 911.58 MHz

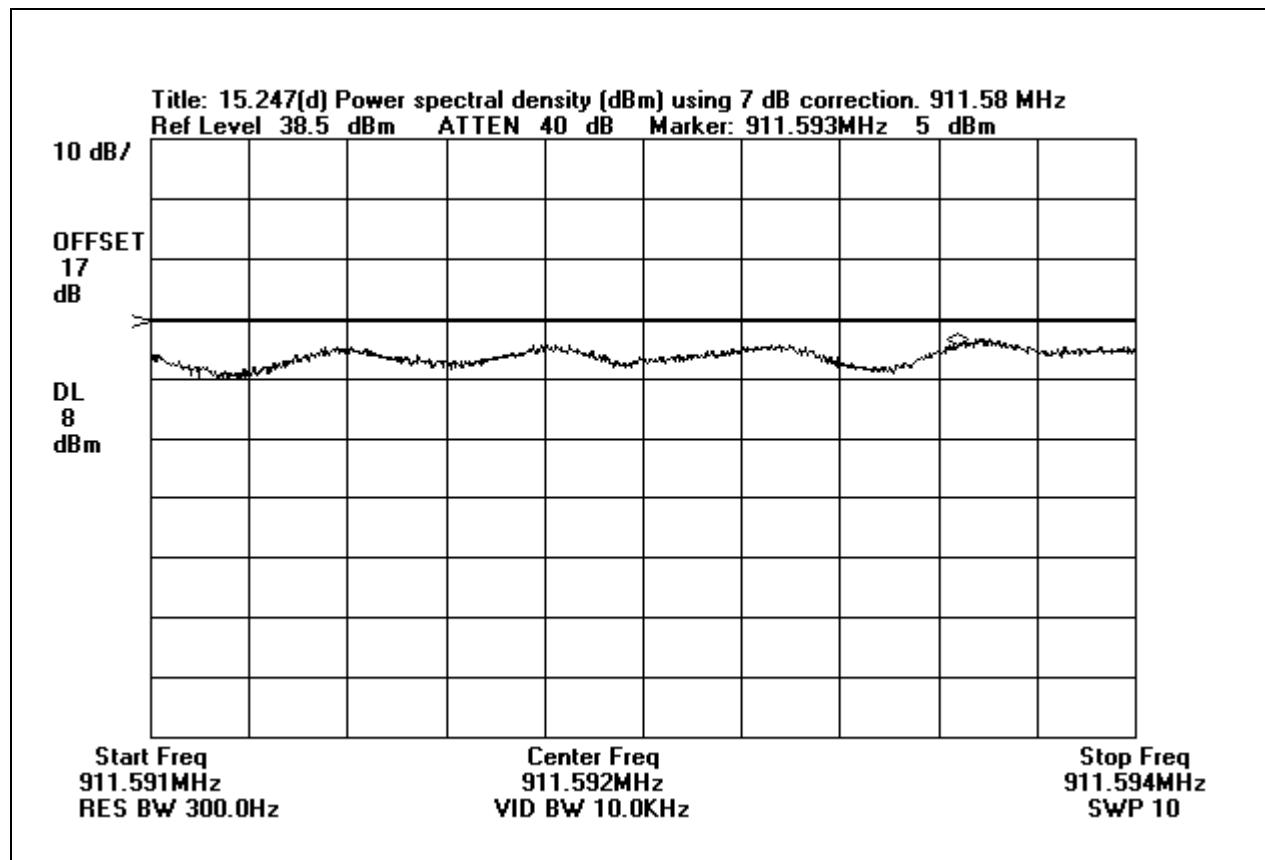
## FCC Part 15.247(b) – Peak Power




Highest Frequency - 917.58 MHz

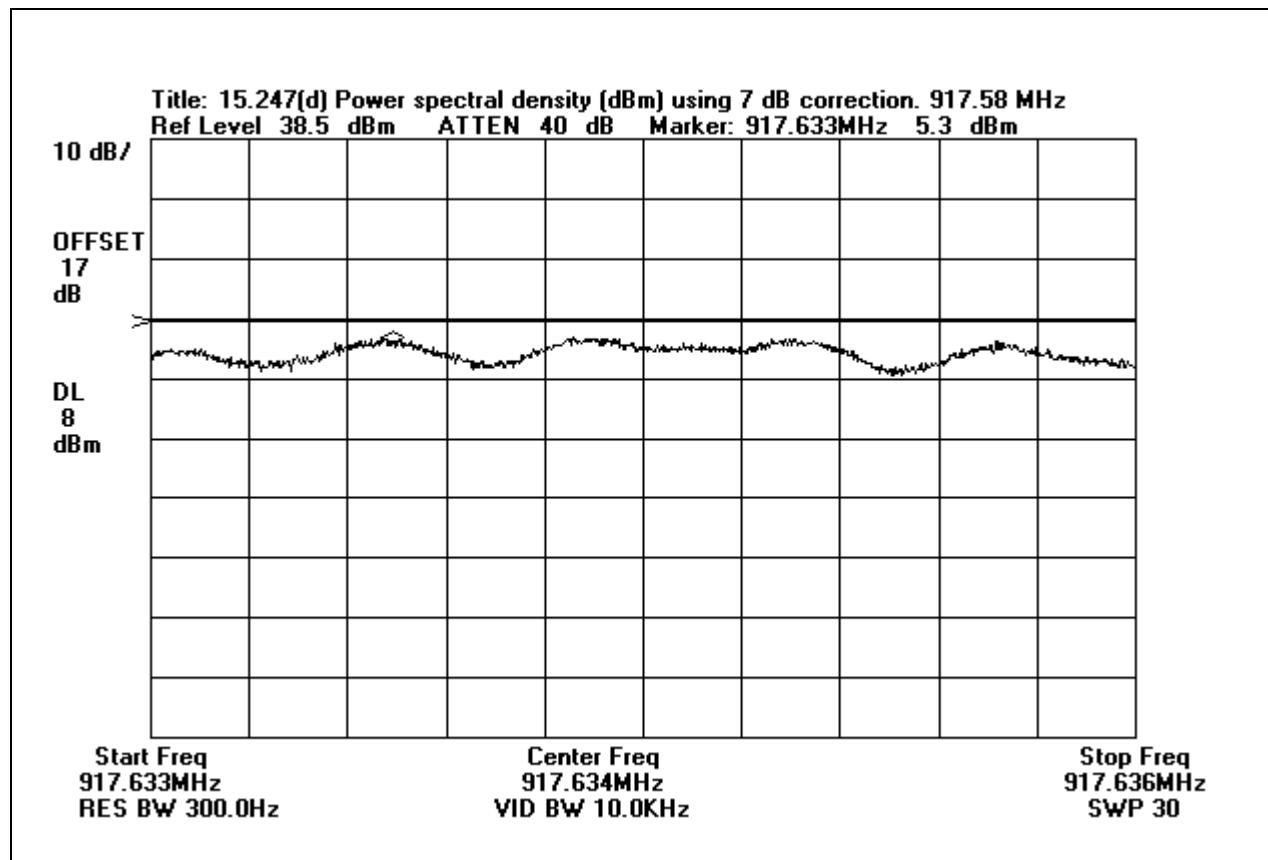
FCC Part 15.247(c) – RF Conducted




Lowest Frequency - 911.58 MHz

FCC Part 15.247(c) – RF Conducted




Highest Frequency - 917.58 MHz

## FCC Part 15.247(d) – Spectral Density



Lowest Frequency - 911.58 MHz  
EUT is continuously transmitting.

## FCC Part 15.247(d) – Spectral Density



Highest Frequency - 917.58 MHz  
EUT is continuously transmitting.

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485  
 Customer: **CellNet Data Systems**  
 Specification: **FCC 15.247**  
 Work Order #: **73813** Date: 03/03/2000  
 Test Type: **Peak Output Power** Time: 16:22:49  
 Equipment: **LAN Transceiver** Sequence#: 2  
 Manufacturer: CellNet Data Systems Tested By: Art Rice  
 Model: 26-0612  
 S/N: B001

**Equipment Under Test (\* = EUT):**

| Function         | Manufacturer         | Model # | S/N  |
|------------------|----------------------|---------|------|
| LAN Transceiver* | CellNet Data Systems | 26-0612 | B001 |

**Support Devices:**

| Function   | Manufacturer | Model #      | S/N      |
|------------|--------------|--------------|----------|
| Battery    | Genesis      | G12V12aH10EP | None     |
| Laptop PC  | Dell         | PPS          | 04949    |
| AC Adaptor | Dell         | 73463        | M5055818 |

**Test Conditions / Notes:**

The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. Note 1) Testing transmit fundamental peak power in dBm. 30 dBm is 1 watt. 10 dB attenuator external to S.A. Transmitter is connected directly. S.A. resolution BW=3 MHz.

| <b>Measurement Data:</b> |             | Reading listed by margin. |    |    |    |               | Test Distance: None |             |              |              |
|--------------------------|-------------|---------------------------|----|----|----|---------------|---------------------|-------------|--------------|--------------|
| #                        | Freq<br>MHz | Rdng<br>dBm               | dB | dB | dB | Dist<br>Table | Corr<br>dBm         | Spec<br>dBm | Margin<br>dB | Polar<br>Ant |
| 1                        | 911.450M    | 26.3                      |    |    |    | +0.0          | 26.3                | 30.0        | -3.7         | None         |
| 2                        | 917.539M    | 25.6                      |    |    |    | +0.0          | 25.6                | 30.0        | -4.4         | None         |

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485  
 Customer: **CellNet Data Systems**  
 Specification: **FCC 15.247(c) Spurious**  
 Work Order #: **73813** Date: 03/06/2000  
 Test Type: **Transmit Spurious-Conducted** Time: 11:05:05  
 Equipment: **LAN Transceiver** Sequence#: 4  
 Manufacturer: CellNet Data Systems Tested By: Art Rice  
 Model: 26-0612  
 S/N: B001

**Equipment Under Test (\* = EUT):**

| Function         | Manufacturer         | Model # | S/N  |
|------------------|----------------------|---------|------|
| LAN Transceiver* | CellNet Data Systems | 26-0612 | B001 |

**Support Devices:**

| Function   | Manufacturer | Model #      | S/N      |
|------------|--------------|--------------|----------|
| Battery    | Genesis      | G12V12aH10EP | none     |
| Laptop PC  | Dell         | PPS          | 04949    |
| AC Adaptor | Dell         | 73463        | M5055818 |

**Test Conditions / Notes:**

The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. Note 1) Testing transmit harmonics and spurious signals in dBm. 10 dB attenuator external to S.A. Transmitter is connected directly. S.A. resolution BW=100 kHz. Scanned 450 kHz to 9116 MHz. Note 2) Transmit frequency is 911.58 MHz. Measured level at fundamental was 21.3 dBm in a resolution BW of 100 kHz.

**Measurement Data:** Reading listed by margin. Test Distance: None

| # | Freq MHz  | Rdng dBm | dB | dB | dB | Dist Table | Corr dBm | Spec dBm | Margin dB | Polar Ant |
|---|-----------|----------|----|----|----|------------|----------|----------|-----------|-----------|
| 1 | 1823.140M | -26.6    |    |    |    | +0.0       | -26.6    | 1.3      | -27.9     | None      |
| 2 | 8204.271M | -36.8    |    |    |    | +0.0       | -36.8    | 1.3      | -38.1     | None      |
| 3 | 2734.790M | -37.9    |    |    |    | +0.0       | -37.9    | 1.3      | -39.2     | None      |
| 4 | 9115.850M | -38.6    |    |    |    | +0.0       | -38.6    | 1.3      | -39.9     | None      |
| 5 | 7292.720M | -40.5    |    |    |    | +0.0       | -40.5    | 1.3      | -41.8     | None      |

|   |           |       |      |       |     |       |      |
|---|-----------|-------|------|-------|-----|-------|------|
| 6 | 6381.140M | -42.8 | +0.0 | -42.8 | 1.3 | -44.1 | None |
| 7 | 3646.400M | -44.2 | +0.0 | -44.2 | 1.3 | -45.5 | None |
| 8 | 4557.980M | -44.3 | +0.0 | -44.3 | 1.3 | -45.6 | None |
| 9 | 5469.560M | -44.5 | +0.0 | -44.5 | 1.3 | -45.8 | None |

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485  
 Customer: **CellNet Data Systems**  
 Specification: **FCC 15.247(c) Spurious**  
 Work Order #: **73813** Date: 03/06/2000  
 Test Type: **Transmit Spurious-Conducted** Time: 10:36:11  
 Equipment: **LAN Transceiver** Sequence#: 3  
 Manufacturer: CellNet Data Systems Tested By: Art Rice  
 Model: 26-0612  
 S/N: B001

**Equipment Under Test (\* = EUT):**

| Function         | Manufacturer         | Model # | S/N  |
|------------------|----------------------|---------|------|
| LAN Transceiver* | CellNet Data Systems | 26-0612 | B001 |

**Support Devices:**

| Function   | Manufacturer | Model #      | S/N      |
|------------|--------------|--------------|----------|
| Battery    | Genesis      | G12V12aH10EP | none     |
| Laptop PC  | Dell         | PPS          | 04949    |
| AC Adaptor | Dell         | 73463        | M5055818 |

**Test Conditions / Notes:**

The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. Note 1) Testing transmit harmonics and spurious signals in dBm. 10 dB attenuator external to S.A. Transmitter is connected directly. S.A. resolution BW=100 kHz. Scanned 450 kHz to 9176 MHz. Note 2) Transmit frequency is 917.58 MHz. Measured level at fundamental was 20.5 dBm in a resolution BW of 100 kHz.

**Measurement Data:**

Reading listed by margin.

Test Distance: None

| # | Freq<br>MHz | Rdng<br>dBm | dB | dB | dB | Dist<br>Table | Corr<br>dBm | Spec<br>dBm | Margin<br>dB | Polar<br>Ant |
|---|-------------|-------------|----|----|----|---------------|-------------|-------------|--------------|--------------|
| 1 | 1835.160M   | -28.3       |    |    |    | +0.0          | -28.3       | 1.3         | -27.0        | None         |
| 2 | 8258.340M   | -36.6       |    |    |    | +0.0          | -36.6       | 1.3         | -35.3        | None         |
| 3 | 9175.870M   | -37.7       |    |    |    | +0.0          | -37.7       | 1.3         | -36.4        | None         |
| 4 | 2752.670M   | -38.5       |    |    |    | +0.0          | -38.5       | 1.3         | -37.2        | None         |
| 5 | 7340.620M   | -38.8       |    |    |    | +0.0          | -38.8       | 1.3         | --37.5       | None         |

|   |           |       |      |       |     |       |      |
|---|-----------|-------|------|-------|-----|-------|------|
| 6 | 5505.660M | -41.9 | +0.0 | -41.9 | 1.3 | -40.6 | None |
| 7 | 3670.250M | -42.8 | +0.0 | -42.8 | 1.3 | -41.5 | None |
| 8 | 6423.140M | -43.2 | +0.0 | -43.2 | 1.3 | -41.9 | None |
| 9 | 4587.800M | -43.5 | +0.0 | -43.5 | 1.3 | -42.2 | None |

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485  
 Customer: **CellNet Data Systems**  
 Specification: **FCC15.209**  
 Work Order #: **73813** Date: 03/06/2000  
 Test Type: **Emissions-Radiated** Time: 19:08:42  
 Equipment: **LAN Transceiver** Sequence#: 11  
 Manufacturer: CellNet Data Systems Tested By: Art Rice  
 Model: 26-0612  
 S/N: B001

**Equipment Under Test (\* = EUT):**

| Function         | Manufacturer         | Model # | S/N  |
|------------------|----------------------|---------|------|
| LAN Transceiver* | CellNet Data Systems | 26-0612 | B001 |

**Support Devices:**

| Function   | Manufacturer        | Model #      | S/N      |
|------------|---------------------|--------------|----------|
| Battery    | Genesis             | G12V12aH10EP | none     |
| Laptop PC  | Dell                | PPS          | 04949    |
| AC Adaptor | Dell                | 73463        | M5055818 |
| Antenna    | Antenna Specialists | ASPG918      | none     |

**Test Conditions / Notes:**

The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. A vertical antenna with 5 dBi gain is attached to the EUT. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. "Receiver noise level" data is transferred over the SIO port to the support PC. Note 1) Testing on the OATS for spurious emissions .45 to 30 MHz range while the unit is in the transceive mode when it transmits for 20 mS and receives for 80 mS, and then repeats. Transmitting at 917.58 MHz.

**Measurement Data:** Reading listed by margin.

Test Distance: 3 Meters

| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | Mag   |    |    | Dist<br>Table | Corr<br>dB $\mu$ V/m | Spec<br>dB $\mu$ V/m | Margin<br>dB                                      | Polar<br>Ant |
|---|-------------|--------------------|-------|----|----|---------------|----------------------|----------------------|---------------------------------------------------|--------------|
|   |             |                    | dB    | dB | dB |               |                      |                      |                                                   |              |
| 1 | 9.710M      | 37.8               | +9.3  |    |    | +0.0          | 47.1                 | 69.5                 | -22.4                                             | None         |
|   |             |                    |       |    |    |               |                      |                      | Crystal freq divided<br>by four.                  |              |
| 2 | 2.000M      | 26.4               | +10.1 |    |    | +0.0          | 36.5                 | 69.5                 | -33.0                                             | None         |
|   |             |                    |       |    |    |               |                      |                      | Ambient level.                                    |              |
| 3 | 19.420M     | 23.7               | +8.1  |    |    | +0.0          | 31.8                 | 69.5                 | -37.7                                             | None         |
|   |             |                    |       |    |    |               |                      |                      | Crystal frequency<br>divided by two.              |              |
| 4 | 29.130M     | 23.7               | +6.1  |    |    | +0.0          | 29.8                 | 69.5                 | -39.7                                             | None         |
| 5 | 450.000k    | 40.5               | +10.0 |    |    | +0.0          | 50.5                 | 94.6                 | -44.1                                             | None         |
|   |             |                    |       |    |    |               |                      |                      | Ambient level at<br>DC-DC converter<br>frequency. |              |
| 6 | 430.000k    | 40.1               | +10.0 |    |    | +0.0          | 50.1                 | 94.9                 | -44.8                                             | None         |

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485  
 Customer: **CellNet Data Systems**  
 Specification: **FCC15.209**  
 Work Order #: **73813** Date: 3/3/2000  
 Test Type: **Emissions-Radiated** Time: 15:18:28  
 Equipment: **LAN Transceiver** Sequence#: 7  
 Manufacturer: CellNet Data Systems Tested By: Art Rice  
 Model: 26-0612  
 S/N: B001

**Equipment Under Test (\* = EUT):**

| Function         | Manufacturer         | Model # | S/N  |
|------------------|----------------------|---------|------|
| LAN Transceiver* | CellNet Data Systems | 26-0612 | B001 |

**Support Devices:**

| Function   | Manufacturer        | Model #      | S/N      |
|------------|---------------------|--------------|----------|
| Battery    | Genesis             | G12V12aH10EP | none     |
| Laptop PC  | Dell                | PPS          | 04949    |
| AC Adaptor | Dell                | 73463        | M5055818 |
| Antenna    | Antenna Specialists | ASPG918      | none     |

**Test Conditions / Notes:**

The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. A vertical antenna with 5 dBi gain is attached to the EUT. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. "Receiver noise level" data is transferred over the SIO port to the support PC. Note 1) Testing on the OATS for spurious emissions in the restricted bands from 30-1000 MHz while the unit is in the normal transceive mode where it transmits for 20 mS, and receives for 80 mS, and then repeats. Transmitting at 911.58 MHz. Note 2) To prevent spurious signals from being generated in test equipment: 10 dB attenuator between antenna and preamp, 10 dB attenuation internal to spectrum analyzer.

| <b>Measurement Data:</b> |             | Reading listed by margin. |           |             |           |             |               | Test Distance: 3 Meters |                                                                        |              |              |
|--------------------------|-------------|---------------------------|-----------|-------------|-----------|-------------|---------------|-------------------------|------------------------------------------------------------------------|--------------|--------------|
| #                        | Freq<br>MHz | Rdng<br>dB $\mu$ V        | Amp<br>dB | Bicon<br>dB | Log<br>dB | Cable<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V/m    | Spec<br>dB $\mu$ V/m                                                   | Margin<br>dB | Polar<br>Ant |
| 1                        | 74.986M     | 52.5                      | -26.6     | +7.8        | +0.0      | +1.2        | +0.0          | 34.9                    | 40.0                                                                   | -5.1         | Vert         |
|                          |             |                           |           |             |           |             |               |                         | 2 turns through<br>Steward ferrite<br>28A2025-0A0 on<br>DC power cord. |              |              |
| 2                        | 73.976M     | 52.0                      | -26.6     | +7.9        | +0.0      | +1.1        | +0.0          | 34.4                    | 40.0                                                                   | -5.6         | Vert         |
|                          |             |                           |           |             |           |             |               |                         | 2 turns through<br>Steward ferrite<br>28A2025-0A0 on<br>DC power cord. |              |              |

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485  
 Customer: **CellNet Data Systems**  
 Specification: **FCC15.209**  
 Work Order #: **73813** Date: 03/03/2000  
 Test Type: **Emissions-Radiated** Time: 15:18:28  
 Equipment: **LAN Transceiver** Sequence#: 6  
 Manufacturer: CellNet Data Systems Tested By: Art Rice  
 Model: 26-0612  
 S/N: B001

**Equipment Under Test (\* = EUT):**

| Function         | Manufacturer         | Model # | S/N  |
|------------------|----------------------|---------|------|
| LAN Transceiver* | CellNet Data Systems | 26-0612 | B001 |

**Support Devices:**

| Function   | Manufacturer        | Model #      | S/N      |
|------------|---------------------|--------------|----------|
| Battery    | Genesis             | G12V12aH10EP | none     |
| Laptop PC  | Dell                | PPS          | 04949    |
| AC Adaptor | Dell                | 73463        | M5055818 |
| Antenna    | Antenna Specialists | ASPG918      | none     |

**Test Conditions / Notes:**

The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. A vertical antenna with 5 dBi gain is attached to the EUT. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. "Receiver noise level" data is transferred over the SIO port to the support PC. Note 1) Testing on the OATS for spurious emissions in the restricted bands from 30-1000 MHz while the unit is in the normal transceive mode where it transmits for 20 mS, and receives for 80 mS, and then repeats. Transmitting at 917.58 MHz. Note 2) To prevent spurious signals from being generated in test equipment: 10 dB attenuator between antenna and preamp, 10 dB attenuation internal to spectrum analyzer.

| <b>Measurement Data:</b> |             | Reading listed by margin. |           |             |           |             |               | Test Distance: 3 Meters |                      |              |                                                                                |
|--------------------------|-------------|---------------------------|-----------|-------------|-----------|-------------|---------------|-------------------------|----------------------|--------------|--------------------------------------------------------------------------------|
| #                        | Freq<br>MHz | Rdng<br>dB $\mu$ V        | Amp<br>dB | Bicon<br>dB | Log<br>dB | Cable<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V/m    | Spec<br>dB $\mu$ V/m | Margin<br>dB | Polar<br>Ant                                                                   |
| 1                        | 74.986M     | 52.5                      | -26.6     | +7.8        | +0.0      | +1.2        | +0.0          | 34.9                    | 40.0                 | -5.1         | Vert<br>2 turns through<br>Steward ferrite<br>28A2025-0A0 on<br>DC power cord. |
| 2                        | 73.976M     | 52.0                      | -26.6     | +7.9        | +0.0      | +1.1        | +0.0          | 34.4                    | 40.0                 | -5.6         | Vert<br>2 turns through<br>Steward ferrite<br>28A2025-0A0 on<br>DC power cord. |

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485  
 Customer: **CellNet Data Systems**  
 Specification: **FCC15.209**  
 Work Order #: **73813** Date: 03/06/2000  
 Test Type: **Emissions-Radiated** Time: 17:14:35  
 Equipment: **LAN Transceiver** Sequence#: 9  
 Manufacturer: CellNet Data Systems Tested By: Art Rice  
 Model: 26-0612  
 S/N: B001

**Equipment Under Test (\* = EUT):**

| Function         | Manufacturer         | Model # | S/N  |
|------------------|----------------------|---------|------|
| LAN Transceiver* | CellNet Data Systems | 26-0612 | B001 |

**Support Devices:**

| Function   | Manufacturer        | Model #      | S/N      |
|------------|---------------------|--------------|----------|
| Battery    | Genesis             | G12V12aH10EP | none     |
| Laptop PC  | Dell                | PPS          | 04949    |
| AC Adaptor | Dell                | 73463        | M5055818 |
| Antenna    | Antenna Specialists | ASPG918      | none     |

**Test Conditions / Notes:**

The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. A vertical antenna with 5 dBi gain is attached to the EUT. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. "Receiver noise level" data is transferred over the SIO port to the support PC. Note 1) Testing on the OATS for spurious emissions in the restricted bands from 1000-9176 MHz range while the unit is in the transceive mode when it transmits for 20 mS and receives for 80 mS, and then repeats. Note 2) To prevent overloading the preamp from the transmit signal at 911.58 to 917.58 MHz, an HP 1.5 GHz High Pass filter is installed at the preamp input. P/N 84300-80037, s/n 3643A00027. Transmitting at 911.58 MHz.

**Measurement Data:** Reading listed by margin. Test Distance: 3 Meters

| #              | Freq<br>MHz | Rdng<br>dB $\mu$ V | Amp<br>HPF<br>dB | Cable<br>dB | Cable<br>dB | Horn<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V/m | Spec<br>dB $\mu$ V/m | Margin<br>dB | Polar<br>Ant |
|----------------|-------------|--------------------|------------------|-------------|-------------|------------|---------------|----------------------|----------------------|--------------|--------------|
| 1              | 4557.980M   | 36.4               | -37.6<br>+0.5    | +3.8        | +12.9       | +32.2      | +0.0          | 48.2                 | 54.0                 | -5.8         | Vert         |
| 2              | 4557.938M   | 36.2               | -37.6<br>+0.5    | +3.8        | +12.9       | +32.2      | +0.0          | 48.0                 | 54.0                 | -6.0         | Horiz        |
| 3              | 3646.600M   | 37.5               | -38.6<br>+0.3    | +3.4        | +11.4       | +32.5      | +0.0          | 46.5                 | 54.0                 | -7.5         | Vert         |
| 4              | 7292.640M   | 23.3               | -35.8<br>+0.4    | +4.9        | +16.4       | +36.5      | +0.0          | 45.7                 | 54.0                 | -8.3         | Vert         |
| 5              | 2735.020M   | 41.4               | -38.5<br>+0.3    | +2.8        | +9.7        | +29.7      | +0.0          | 45.4                 | 54.0                 | -8.6         | Vert         |
| Ambient level. |             |                    |                  |             |             |            |               |                      |                      |              |              |

|   |           |      |               |      |       |       |      |      |      |       |       |
|---|-----------|------|---------------|------|-------|-------|------|------|------|-------|-------|
| 6 | 2734.640M | 40.9 | -38.5<br>+0.3 | +2.8 | +9.7  | +29.7 | +0.0 | 44.9 | 54.0 | -9.1  | Horiz |
| 7 | 3646.425M | 27.9 | -38.6<br>+0.3 | +3.4 | +11.4 | +32.5 | +0.0 | 36.9 | 54.0 | -17.1 | Horiz |
| ^ | 3646.420M | 42.4 | -38.6<br>+0.3 | +3.4 | +11.4 | +32.5 | +0.0 | 51.4 | 54.0 | -2.6  | Horiz |

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485  
 Customer: **CellNet Data Systems**  
 Specification: **FCC15.209**  
 Work Order #: **73813** Date: 03/06/2000  
 Test Type: **Emissions-Radiated** Time: 18:14:11  
 Equipment: **LAN Transceiver** Sequence#: 10  
 Manufacturer: CellNet Data Systems Tested By: Art Rice  
 Model: 26-0612  
 S/N: B001

**Equipment Under Test (\* = EUT):**

| Function         | Manufacturer         | Model # | S/N  |
|------------------|----------------------|---------|------|
| LAN Transceiver* | CellNet Data Systems | 26-0612 | B001 |

**Support Devices:**

| Function   | Manufacturer        | Model #      | S/N      |
|------------|---------------------|--------------|----------|
| Battery    | Genesis             | G12V12aH10EP | none     |
| Laptop PC  | Dell                | PPS          | 04949    |
| AC Adaptor | Dell                | 73463        | M5055818 |
| Antenna    | Antenna Specialists | ASPG918      | none     |

**Test Conditions / Notes:**

The EUT and ancillary equipment was set up and tested in accordance with ANSI C63.4 and FCC DSSS test procedure Public Notice 54797 (CKC Training Procedure LP042007). The EUT is a wireless half duplex LAN transceiver operating on 911.58, 914.58, or 917.58 MHz. It is powered by a 12 Volt battery. A vertical antenna with 5 dBi gain is attached to the EUT. An RJ45 SIO cable connects the EUT to the support PC. The SIO port normally connects to another transceiver operating in the 950 MHz range. "Receiver noise level" data is transferred over the SIO port to the support PC. Note 1) Testing on the OATS for spurious emissions in the restricted bands from 1000-9176 MHz range while the unit is in the transceive mode when it transmits for 20 mS and receives for 80 mS, and then repeats. Note 2) To prevent overloading the preamp from the transmit signal at 911.58 to 917.58 MHz, an HP 1.5 GHz High Pass filter is installed at the preamp input. P/N 84300-80037, s/n 3643A00027. Transmitting at 917.58 MHz.

**Measurement Data:** Reading listed by margin. Test Distance: 3 Meters

| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | Amp<br>HPF<br>dB | Cable<br>dB | Cable<br>dB | Horn<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V/m | Spec<br>dB $\mu$ V/m | Margin<br>dB | Polar<br>Ant |
|---|-------------|--------------------|------------------|-------------|-------------|------------|---------------|----------------------|----------------------|--------------|--------------|
| 1 | 4587.913M   | 36.3               | -37.4<br>+0.6    | +3.9        | +12.9       | +32.3      | +0.0          | 48.6                 | 54.0                 | -5.4         | Horiz        |
| 2 | 4587.730M   | 36.0               | -37.4<br>+0.6    | +3.9        | +12.9       | +32.3      | +0.0          | 48.3                 | 54.0                 | -5.7         | Vert         |
| 3 | 2752.753M   | 41.4               | -38.5<br>+0.3    | +2.9        | +9.8        | +29.8      | +0.0          | 45.7                 | 54.0                 | -8.3         | Vert         |
| 4 | 2752.778M   | 41.0               | -38.5<br>+0.3    | +2.9        | +9.8        | +29.8      | +0.0          | 45.3                 | 54.0                 | -8.7         | Horiz        |

|    |           |      |               |      |       |       |      |      |      |       |       |
|----|-----------|------|---------------|------|-------|-------|------|------|------|-------|-------|
| 5  | 3670.345M | 26.3 | -38.5<br>+0.4 | +3.4 | +11.4 | +32.5 | +0.0 | 35.5 | 54.0 | -18.5 | Vert  |
| ^  | 3670.345M | 43.7 | -38.5<br>+0.4 | +3.4 | +11.4 | +32.5 | +0.0 | 52.9 | 54.0 | -1.1  | Vert  |
| 7  | 4583.919M | 22.6 | -37.5<br>+0.6 | +3.9 | +12.9 | +32.3 | +0.0 | 34.8 | 54.0 | -19.2 | Vert  |
| 8  | 3670.345M | 25.6 | -38.5<br>+0.4 | +3.4 | +11.4 | +32.5 | +0.0 | 34.8 | 54.0 | -19.2 | Horiz |
| ^  | 3670.308M | 42.0 | -38.5<br>+0.4 | +3.4 | +11.4 | +32.5 | +0.0 | 51.2 | 54.0 | -2.8  | Horiz |
| 10 | 4589.445M | 22.3 | -37.4<br>+0.6 | +3.9 | +12.9 | +32.3 | +0.0 | 34.6 | 54.0 | -19.4 | Horiz |