TRANSMITTER ENVIRONMENTAL TESTS

FREQUENCY TOLERANCE OF CARRIER

MINIMUM PERFORMANCE STANDARD: The stability of the carrier frequency shall be maintained within +0.01 percent over a range of:

- a) Temperature from -20 to +50 degrees Celsius at normal supply voltage;
- b) Voltages that vary from 85 percent to 115 percent of the rated supply voltage at a temperature of +20 degrees Celsius.

TEST RESULTS:

Channel 1:

<u>Handset:</u> The largest deviation from the authorized carrier frequency of $48,760,000 \text{ Hz was} + 246 \text{ Hz} \pm 10 \text{Hz}$ at 0 degrees Celsius and 3.6 VDC. The test limit is $\pm 4876 \text{ Hz}$.

<u>Base Station</u>: The largest deviation from the authorized carrier frequency of 43,720,000 Hz was -423 Hz ± 10 Hz at +50 degrees Celsius and 120 VAC. This was within the ± 4372 Hz limit.

Channel 25:

<u>Handset:</u> The largest deviation from the authorized carrier frequency of 49,970,000 Hz was +246 Hz ± 10 Hz at 0 degrees Celsius and 3.6 VDC. The test limit is ± 4997 Hz.

Base Station: The largest deviation from the authorized carrier frequency of 46,970,000 Hz was -446 Hz $\pm 10 \text{Hz}$ at ± 50 degrees Celsius and 120 VAC. This was within the $\pm 4697 \text{ Hz}$ limit.

TEST CONDITIONS:

Supply Voltages:

85%, 100% and 115% of 120VAC, ±2%

Stabilization Time:

60 minutes

Temperature:

-20, -10, 0, +10, +20, +30, +40 and $+50, \pm 3$ degrees Celsius

Modulation:

Both transmitters were unmodulated.

METHOD OF MEASUREMENT:

Both the base and handset components were placed individually in a thermal chamber. The frequency was monitored by a spectrum analyzer and recorded at 1 minute intervals.

The base station was powered from a variable AC transformer. The handset battery was disconnected to enable external DC power operation. The antennae of both transmitters were replaced with short lengths of miniature 50Ω cable fitted with BNC connectors, for shielded connections to the frequency counter.

At +20 degrees Celsius, after the chamber had stabilized for at least 60 minutes and the samples had been turned off for 15 minutes, the transmitters were operated continuously for 5 minutes at each voltage condition. At the temperature extremes, each transmitter was operated for 5 minutes following stabilization. The frequencies were recorded at 1 minute intervals. The temperature was monitored by a thermocouple on the enclosure.

ENVIRONMENTAL TEST RESULTS FCC 15

CHANNEL 1

		BASE		HANDSET
+50°C		<u>120V</u>		<u>3.6V</u>
		43719593 43719585 43719589 43719578 43719577		48759963 48759965 48759962 48759956 48759950
+40°C		<u>120V</u>		<u>3.6V</u>
		43719624 43719617 43719608 43719601 43719595		48760003 48759988 48759989 48759979 48759970
+30°C		120V 43719715 43719689 43719675 43719658 43719646		3.6V 48760081 48760064 48760044 48760036 48760021
+20°C	102V 43719735 43719733 43719733 43719736 43719740	120V 43719739 43719734 43719733 43719732 43719734	138V 43719740 43719736 43719734 43719730 43719735	3.6V 48760128 48760126 48760135 48760125 48760125
+10°C		120V 43719815 43719812 43719812 43719814 43719815		3.6V 48760179 48760179 48760186 48760216 48760193

Thomson/26700XXX-C FCC ID: G9H2-6700C Marstech Report No.20015D

0°C	<u>120V</u>	<u>3.6V</u>
	43719840	48760244
	43719842	48760239
	42719858	48760245
	43719850	48760245
	43719847	48760246
1000		
-10°C	<u>120V</u>	<u>3.6V</u>
	43719839	48760239
	43719831	48760234
	43719830	48760235
	43719825	48760231
	43719822	48760230
-20°C	120V	2.01
-20 C	<u>120 v</u>	<u>3.6V</u>
	43719767	48760233
	43719764	48760227
	43719759	48760222
	43719753	48760223
	43719750	48760196

MODEL NO.:

26700XXX-C

DATE:

January 21, 2000

BASE FREQ:

43,720,000 Hz

HANDSET FREQ:

48,760,000 Hz

ENVIRONMENTAL TEST RESULTS FCC 15

CHANNEL 25

		BASE		HANDSET
+50°C		<u>120V</u>		<u>3.6V</u>
		46969574		49969986
		46969567		49969979
		46969582		49969975
		46969557		49969967
		46969554		49969962
. 4000		1001		
+40°C		<u>120V</u>		<u>3.6V</u>
		46969668		49970106
		46969665		49970090
		46969645		49970082
		46969630		49970071
		46969620		49970055
+30°C		<u>120V</u>		<u>3.6V</u>
		46969768		49970194
		46969754		49970188
		46969733		49970167
		46969712		49970155
		46969702		49970138
+20°C	<u>102V</u>	<u>120V</u>	<u>138V</u>	<u>3.6V</u>
	46969723	46969718	46969716	49970130
	46969717	46969714	46969719	49970130
	46969715	46969713	46969718	49970132
	46969716	46969714	46969721	49970131
	46969720	46969714	46969713	49970134
+10°C		<u>120V</u>		<u>3.6V</u>
		46969790		49970186
		46969789		49970201
		46969793		49970192
		46969793		49970194
		46969796		49970194

0°C	<u>120V</u>	<u>3.6V</u>
	46969809 46969812	49970235 49970240
	46969817	49970238
	46969815	49970246
	46969814	49970241
-10°C	<u>120V</u>	3.6V
	46969813	49970239
	46969815	49970237
	46969812	49970235
	46969807	49970239
	46969804	49970220
-20°C	<u>120V</u>	<u>3.6V</u>
	46969785	49970225
	46969780	49970210
	46969764	49970217
	46969753	49970197
	46969741	49970192
MODEL NO.:	26700XXX-C	
DATE:	January 21, 2000	
BASE FREQ:	46,970,000 Hz	

49,970,000 Hz

HANDSET FREQ:

CLEAR CHANNEL DETECTION

Test Procedure

Setup the equipment as per figure 1.

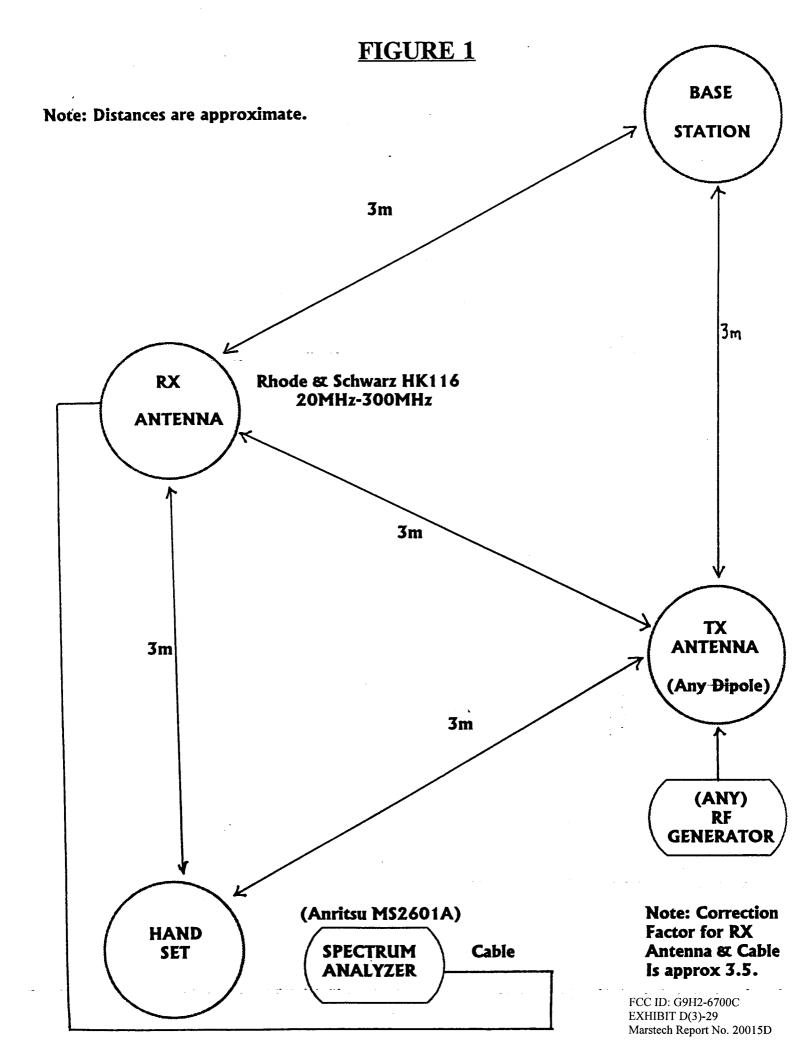
Verification of Base Unit Detector

- 1. Connect the base unit to an AC source and place the handset in the off hook mode and select channel 1.
- 2. Using the spectrum analyzer verify the base and handset frequencies are on channel 1 using the RX antenna.
- 3. Put the handset on hook.
- 4. Set the signal generator to channel 1 modulated at 1KHz dev., approx. 20KHz, to produce approximately -30dBM to -40dBM on the analyzer from the RX antenna when feeding this signal to the TX antenna several seconds.
- 5. Turn the handset on and go off hook.
- 6. Re-measure the base and handset frequencies. They must be other than the initial ones.
- 7. Busy the resulting frequency and repeat the above steps.

Verification of Handset Unit Detector

- 1. Connect the base unit to an AC source and place the handset in the off hook mode and select channel 1.
- 2. Using the spectrum analyzer verify the base and handset frequencies are on channel 1 using the RX antenna.
- 3. Put the handset on hook.
- 4. Set the signal generator to channel 1 modulated at 1KHz dev., approx. 20KHz, to produce approximately -30dBM to -40dBM on the analyzer from the RX antenna when feeding this signal to the TX antenna for several seconds.
- 5. Place the handset off hook.
- 6. Re-measure the base and handset frequencies. They must be other than the initial ones.
- 7. Busy the resulting frequency and repeat the above steps.

Thomson/26700XXX-C


TESTS RESULTS

Model:	26700XXX-C	Date: <u>January 20, 2000</u>
Base Ur	nit Detector	
<u>Step 2</u> -	Check initial channel	
	_43,719,730 Hz Base	Channel 01
<u>Step 6</u> -	Recheck channel frequencies	
	44,399,729 Hz Base	Channel 13
<u>Step 7</u> -	Recheck channel frequencies	
	46,709,709 Hz Base	Channel19
<u>Step 7</u> -	Recheck channel frequencies	
	43,959,730 Hz Base	Channel14
<u>Step 7</u> -	Recheck channel frequencies	
<u>Step 7</u> -	46,669,711 Hz Base Recheck channel frequencies	Channel 18
	46,929,716 Hz Base	Channel 24
<u>Step 7</u> -	- Recheck channel frequencies	
	43,919,732 Hz Base	Channel5
<u>Step 7</u> -	Recheck channel frequencies	
	44,319,728 Hz	Channel 11

Thomson/26700XXX-C FCC ID: G9H2-6700C Marstech Report No.20015D Base

Step 7 - Recheck channel frequencies				
46,629,715 Hz Base	Channel20			
Step 7 - Recheck channel frequencies				
46,869,711 Hz Base	Channel 23			
Results: <u>Satisfactory</u>				
Handset Unit Detector				
Step 2 - Check initial channel				
48,760,087 Hz Handset	Channel01			
Step 6 - Recheck channel frequencies				
	Channel07			
Step 7 - Recheck channel frequencies	Step 7 - Recheck channel frequencies			
49,400,123 Hz Handset	Channel 13			
Step 7 - Recheck channel frequencies				
Hz Handset	Channel 19			
Step 7 - Recheck channel frequencies				
49,970,094 Hz	Channel 25			

Step 7 - Recheck channel frequencies	
Hz Handset	Channel <u>06</u>
Step 7 - Recheck channel frequencies	
49,360,098 Hz Handset	Channel 12
Step 7 - Recheck channel frequencies	
49,860,102 Hz Handset	Channel03
Step 7 - Recheck channel frequencies	
<u>49,020,099</u> Hz Handset	Channel05
Step 7 - Recheck channel frequencies	
49,280,110 Hz Handset	Channel11
Results: <u>Satisfactory</u>	
Technician: Hiran De Silva	

Data and Voice Channels Definition

The communication between handset and base unit is defined and handled by two channels. They are data channel and voice channel.

All command codes communicates are though data channel during the data handshake process. This channel generates from security code, that is, different security code has different data channel number. Since the security code changes in a random manner whenever the handset puts onto cradle, the data channel is always random. As soon as the handshake process is completed in the data channel, the system will switched to voice channel. Once the voice channel is established, both base and handset are in talk mode.

Channel Scanning Sequence

During base stand-by mode or channel changing mode. It follows a programmed sequence to search an unoccupied channel.

Channel Scanning at Stand-by Mode

When base is first time power up, the voice channel is set to CH1. The signal strength detection circuit is designed in base unit such that the MCU scan every channel in order to search for idle channel for voice communication and then store each channel information to separate register. To mark sure the data code receive more frequently at stand-by mode, the idle channel and data code scan will be alternated as following sequence:

CH1=>Data CH=>CH5=>Data CH=>CH9=>Data CH=>.....=>CH20=>Data CH=> CH24......Since each channel uses 150ms to identify the occupation, the total time to take one cycle is equal to 7.5sec.

Whenever the base unit power up all channel register is set to 4. If a channel find that no carrier exist, then it will add minus one to it own register. The minimum value of a register is equal to zero. If a channel is occupied, then it will plus one to it own register. The maximum value of a register is equal to eight.

The threshold value of channel register is 4. The definition is that if it is equal to or less then 4 then this channel is classified as no jamming. If it is register than 4, then this channel is being jammed.

FCC ID:

FCC ID: G9H2-6700C EXHIBIT D(3)-30 Marstech Report No. 20015D As a result, the maximum time to make a channel from jammed to not jam is 30 sec. When channel register is 8. The minimum time to mark a channel to become jammed is 37.5sec when channel register is 0.

During Handset Talk On request Period

After handset and base handshake all information at data channel including ID code, ring command or talk on request command, base MCU will make a decision about which channel for voice communication (i.e. voice channel). At that moment, base MCU will firstly look for the value inside last voice channel register. If it is classified as not jammed channel, base then send an acknowledge code to handset and both side will be linked at that voice channel. Even though this voice channel may really be jammed by other signal because the channel register is still less than or equal to 4.

If voice channel is classified as jammed channel (even this voice channel haven't any jamming signal because the channel register is still greater then 4), it will look for current channel plus 4 (e.g. current channel = 7, then next channel is 11). If it is classified as non-jamming channel, then it becomes the voice channel, otherwise, it look for next channel (i.e. CH15 according to above example) and so on. Unit all channel are jammed, it will be enforced last channel as voice channel.

Change Channel during Handset Talk Mode

Handset sends "channel change" command code to base with information of next channel number. (e.g. current channel is 7, next channel is 11) Base receives the "channel change "command code and then change to that specified channel. After the handshaking or the "channel change "command is completed, the handset will switch to that next channel. So, both base and handset are looking to the same next channel.

Then the handset sends an "ACK" command to base. If the handshaking of this command is completed, the handset and base will stay in this new channel. If not completed, the handset will return to the previous channel.

If the next channel is not ready, the handset will poll another next channel as the sequence defined on above. For example, it will poll in sequence from 7, 11, 15,, If all channel are blocked, then both handset and base will stay back on current channel.