

CERTIFICATION TEST REPORT

FOR THE

RADIO RF MODEM, QTM-8524

FCC PART 15 SUBPART C SECTIONS 15.247/15.207/15.209

COMPLIANCE

DATE OF ISSUE: NOVEMBER 8, 2000

PREPARED FOR: PREPARED BY:

Quatech Inc.

662 Wolf Ledges Parkway

Akron, Ohio 44311

5473A Clouds Rest

Mariposa, CA 95338

P.O. No: 14258 W.O. No: 74623 Date of test: October 18-20, 2000

Report No: FC00-108

DOCUMENTATION CONTROL: APPROVED BY:

Tracy Phillips Dennis Ward

Documentation Control Supervisor Director of Laboratories CKC Laboratories, Inc. CKC Laboratories, Inc.

This report contains a total of 59 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Dennis Ward

TABLE OF CONTENTS

Administrative Information	4
Summary Of Results	5
Equipment Under Test (EUT) Description	5
Measurement Uncertainty	5
Peripheral Devices	
Report Of Measurements	
Table 1: Peak Output Power Emission Levels	
Table 2: Spurious Emissions – RF Antenna Conducted	8
Table 3: Spurious Emissions – Radiated (Patch)	
Table 4: Spurious Emissions – Radiated (Monopole)	
Table 5: Peak Power Spectral Density	
Table 6: Six Highest Conducted Emission Levels	12
Table A: List Of Test Equipment	
EUT Setup	14
Radiated Emissions	
Conducted Emissions	14
EUT Testing	15
Radiated Emissions	15
Conducted Emissions	15
Test Instrumentation And Analyzer Settings	16
Table B: Analyzer Bandwidth Settings Per Frequency Range	
Spectrum Analyzer Detector Functions	17
Peak	17
Quasi-Peak	17
Average	17
Test Methods	17
Transmitter Characteristics	18
15.247(a)(2) Occupied Bandwidth – Direct Sequence	18
List of Test Equipment Used for Occupied Bandwidth Test	18
FCC Part 15.247(a)(2) Occupied Bandwidth Plot – Direct Sequence	19
FCC Part 15.247(a)(2) Occupied Bandwidth Plot – Direct Sequence	20
FCC Part 15.247(a)(2) Occupied Bandwidth Plot – Direct Sequence	21
FCC Part 15.247(a)(2) Highest Channel Band Edge Plot	22
FCC Part 15.247(a)(2) Lowest Channel Band Edge Plot	23
15.247(b) Power Output	
List of Test Equipment Used for Power Output Test	24
15.247(d) Peak Power Spectral Density	25
List of Test Equipment Used for Peak Power Spectral Density Test	25
FCC Part 15.247(d) Peak Power Spectral Density Plot	
FCC Part 15.247(d) Peak Power Spectral Density Plot	27
FCC Part 15.247(d) Peak Power Spectral Density Plot	28

Page 2 of 59 Report No: FC00-108

Sample Calculations	29
Appendix A: Information About The Equipment Under Test	
I/O Ports	31
Crystal Oscillators	31
Printed Circuit Boards	31
Required EUT Changes To Comply	31
Cable Information	32
Photograph Showing Radiated Emissions	33
Photograph Showing Radiated Emissions	34
Photograph Showing Radiated Emissions	35
Photograph Showing Radiated Emissions	36
Photograph Showing Conducted Emissions	37
Photograph Showing Conducted Emissions	38
Photograph Showing Power Output	39
Appendix B: Radiated and Conducted Data Sheets	40

CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies:

DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (Taiwan); HOKLAS (Hong Kong).

CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-

Korea; TUV Rheinland-Russia; Radio Communication Agency (RA); NEMKO (Norway).

ADMINISTRATIVE INFORMATION

DATE OF TEST: October 18-20, 2000

PURPOSE OF TEST:To demonstrate the compliance of the Radio

RF Modem, QTM-8524, with the

requirements for FCC Part 15.247, 15.207

and 15.209 devices.

MANUFACTURER: Quatech Inc.

662 Wolf Ledges Parkway

Akron, Ohio 44311

REPRESENTATIVE: Diane Glaze, Quality Manager

TEST LOCATION: CKC Laboratories, Inc.

22105 Wilson River Hwy Tillamook, OR 97141

TEST PERSONNEL: Mike Wilkinson

TEST METHOD: ANSI C63.4 1992 & FCC 97-114 Appendix C

FREQUENCY RANGE TESTED: 450 kHz – 25 GHz

EQUIPMENT UNDER TEST:

Radio RF Modem Monopole Antenna

Manuf: Quatech Inc. Manuf: Quatech Inc. Model: QTM-8524 Model: QTM-24ANT-C

Serial: IT240EXT99KI0139 Serial: NONE FCC ID: F4AQTM85242000 (pending) FCC ID: N/A

Patch Array Antenna

Manuf: Quatech Inc.

Model: QTM-24ANT-SW

Serial: NONE FCC ID: N/A

Page 4 of 59 Report No: FC00-108

SUMMARY OF RESULTS

The Quatech Inc. Radio RF Modem, QTM-8524, was tested in accordance with ANSI C63.4 1992 and FCC 97-114 Appendix C for compliance with FCC Part 15.247, 15.207 and 15.209.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 15.247, 15.207 and 15.209. The results in this report apply only to the items tested, as identified herein.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

2.4GHz, DSSS data modem with RS-232 and RS-422/485 I/O interfaces. No cabling provided for RS-422/485 interfacing.

Spread Spectrum Method:	Direct Sequence
Tx/Rx Frequency Range:	2426 to 2458 MHz
Number Of Channels:	8 Channels Jumper Select
Channel Separation:	2.048 MHz
Max RF Output Power:	28.5 dBm ± 2 dB (.707 watts)
Type of Antenna:	1) Patch
	2) Monopole
Modulation Type:	Gaussian Minimum Shift Keying (GMSK)

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ±4dB measurement uncertainty.

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

Page 5 of 59 Report No: FC00-108

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop Computer

Manuf: Toshiba

Model: 220CDS Serial: 67041753

FCC ID: DOC

Printer

Manuf: HP Model: 895CXI

Serial: MY97G1924Z

FCC ID: DOC

Support Radio RF Modem

Manuf: Quatech Inc. Model: QTM-8524

Serial: IT240EXT99K-0132

FCC ID: DOC

Patch Array Antenna

Manuf: Quatech Inc. Model: QTM-24ANT-SW

Serial: NONE FCC ID: N/A

Power Supply

Manuf: Danube

Model: KWMO2O-1824F

Serial: N/A FCC ID: N/A

Remote Laptop Computer

Manuf: IBM

Model: ThinkPad Serial: W9G-V7795

FCC ID: JRUANB-5

Power Supply

Manuf: Danube

Model: KWMO2O-1824F

Serial: N/A FCC ID: N/A

Page 6 of 59 Report No: FC00-108

REPORT OF MEASUREMENTS

The following tables report the highest worst case levels recorded during the tests performed on the Radio RF Modem, QTM-8524. All readings taken are peak readings unless otherwise noted by a "Q" or "A". The data sheets from which these tables were compiled are contained in Appendix B.

	Table 1: Peak Output Power Emission Levels										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RRECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES		
2426.350	125.6	9.6				135.2	137.0	-1.8	N-1		
2439.850	126.0	9.3				135.3	137.0	-1.7	N-2		
2457.800	126.3	9.2				135.5	137.0	-1.5	N-3		

Test Method: ANSI C63.4 1992 NOTES: N = None

Spec Limit: FCC Part 15 Subpart C Section 15.247(b1) 1 = Center Frequency (low)
Test Distance: No Distance 2 = Center Frequency (mid)
3 = Center Frequency (highest)

COMMENTS: EUT antenna port is connected directly to the spectrum analyzer input. EUT is connected to the laptop via a 3 conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full- Duplex Synchronous. The measured 6 dB bandwidth for each frequency setting is as follows: Frequency setting 2426.112 MHz = 9.05 dB. A correction factor has been added to the reading to reflect: 9.05 MHz EUT BW / 3 MHz S/A BW = 3.02 then 20 Log 3.02 = 9.6 dB correction factor, Frequency setting 2458.368 MHz = 8.65 dB. A correction factor has been added to the reading to reflect: 8.65 MHz EUT BW / 3 MHz S/A BW = 2.88 then 20 Log 2.88 = 9.2 dB correction factor & Frequency setting 2439.936 MHz = 8.8 dB. A correction factor has been added to the reading to reflect: 8.8 MHz EUT BW / 3 MHz S/A BW = 2.93 then 20 Log 2.93 = 9.3 dB correction factor The temperature was 69°F and the humidity was 50% 135.5 dB/uV corrected reading at 2457 MHz = 0.7079 Watt 135.3 dB/uV corrected reading at 2439 MHz = 0.676 Watt 135.2 dB/uV corrected reading at 2426 MHz = 0.660 Watt.

> Page 7 of 59 Report No: FC00-108

	Table 2: Spurious Emissions – RF Antenna Conducted										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES		
2425.950	123.0	0.0				123.0	137.0	-14.0	N-1		
2440.100	123.4	0.0				123.4	137.0	-13.6	N-2		
2458.200	123.2	0.0				123.2	137.0	-13.8	N-3		
4879.310	59.3	0.2				59.5	103.4	-43.9	N-2		
4916.090	62.7	0.1				62.8	103.2	-40.4	N-3		
7277.420	59.4	0.7				60.1	103.0	-42.9	N-1		

NOTES:

Test Method: ANSI C63.4 1992

Spec Limit: FCC Part 15 Subpart C Section 15.247(c)

1 = Low Fundamental Test Distance: No Distance 2 = Middle Fundamental

3 = High Fundamental

N = None

COMMENTS: EUT antenna port is connected directly to the spectrum analyzer input. EUT is connected to the laptop via a 3 conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full- Duplex Synchronous.

> Page 8 of 59 Report No: FC00-108

	Table 3: Spurious Emissions – Radiated (Patch)										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	ARECTIC Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES		
33.209	46.3	17.6	-27.6	1.2		37.5	40.0	-2.5	VQ-3		
771.845	42.3	21.3	-28.0	6.6		42.2	46.0	-3.8	HQ-1		
776.459	41.6	21.4	-28.0	6.7		41.7	46.0	-4.3	VQ-2		
782.596	40.7	21.5	-28.0	6.7		40.9	46.0	-5.1	VQ-3		
808.723	43.4	21.7	-28.0	6.8		43.9	46.0	-2.1	HQ-1		
819.470	42.7	21.8	-28.0	6.8		43.3	46.0	-2.7	VQ-3		

Test Method: ANSI C63.4 1992

Spec Limit: FCC Part 15 Subpart C Section 15.247(c) & 15.209

Test Distance: 3 Meters

NOTES: H = Horizontal Polarization

V = Vertical Polarization Q = Quasi Peak Reading

1 = Low Frequency

2 = Middle Frequency

3 = High Frequency

COMMENTS: Patch array antenna is connected to the antenna port of the EUT modem. Printer is connected to the LPT-1 port of the Toshiba laptop and is printing continuously, batch jobs of H's from EMI4Z program. EUT is connected to the laptop via a 3-conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full-Duplex Synchronous. The receiver function of the EUT is exercised as follows: The remote computer running hyper terminal is connected to a support RF modem and patch array antenna which is transmitting data to the EUT. The frequency select jumpers on the support modem are set to the same as the EUT. The temperature was 73°F and the humidity was 45%. Frequency range investigated was 10 MHz to 25 GHz. Lowest clock is 16.384 MHz, Highest frequency generated is 2.458 GHz. Steward p/n 28A2025-0A0 clip on ferrite added to the EUT end of the serial cable.

Page 9 of 59 Report No: FC00-108

	Table 4: Spurious Emissions – Radiated (Monopole)											
FREQUENCY MHz	METER READING dBµV	COR Ant dB	ARECTIC Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES			
33.175	43.6	17.6	-27.6	1.2		34.8	40.0	-5.2	VQ-2			
132.714	52.1	11.9	-27.3	2.6		39.3	43.5	-4.2	VQ-2			
221.191	51.8	11.2	-26.8	3.4		39.6	46.0	-6.4	VQ-2			
771.845	44.5	21.3	-28.0	6.6		44.4	46.0	-1.6	HQ-1			
776.455	43.5	21.4	-28.0	6.7		43.6	46.0	-2.4	HQ-2			
808.663	39.2	21.7	-28.0	6.8		39.7	46.0	-6.3	H-1			

Test Method: ANSI C63.4 1992

Spec Limit: FCC Part 15 Subpart C Section 15.247(c) & 15.209

Test Distance: 3 Meters

NOTES: H = Horizontal Polarization

V = Vertical Polarization Q = Quasi Peak Reading

1 = Low Frequency

2 = Middle Frequency

3 = High Frequency

COMMENTS: Monopole antenna is connected to the antenna port of the EUT modem. Printer is connected to the LPT-1 port of the Toshiba laptop and is printing continuously, batch jobs of H's from EMI4Z program. EUT is connected to the laptop via a 3-conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full-Duplex Synchronous. The receiver function of the EUT is exercised as follows: The remote computer running hyper terminal is connected to a support RF modem and patch array antenna which is transmitting data to the EUT. The frequency select jumpers on the support modem are set to the same as the EUT. The temperature was 73°F and the humidity was 45%. Frequency range investigated was 10 MHz to 25 GHz. Lowest clock is 16.384 MHz, Highest frequency generated is 2.458 GHz. Steward p/n 28A2025-0A0 clip on ferrite added to the EUT end of the serial cable.

Page 10 of 59 Report No: FC00-108

	Table 5: Peak Power Spectral Density										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RRECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES		
2426.018	114.1	0.0				114.1	115.0	-0.9	N-1		
2440.003	113.5	0.0				113.5	115.0	-1.5	N-2		
2458.356	113.9	0.0				113.9	115.0	-1.1	N-3		

Test Method: ANSI C63.4 1992 NOTES: N = None Spec Limit: FCC Part 15 Subpart C Section 15.247(d) 1 = Low Test Distance: No Distance 2 = Middle 3 = High

COMMENTS: EUT antenna port is connected directly to the spectrum analyzer input. EUT is connected to the laptop via a 3 conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full- Duplex Synchronous. The S/A settings were RBW= 3 kHz, VBW= 10 kHz, Span = 300 kHz and Sweep = 100 Sec. Per FCC 97-114 Appendix C.

Page 11 of 59 Report No: FC00-108

	Table 6: Six Highest Conducted Emission Levels										
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	RRECTIO dB	ON FACT Cable dB	ORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES		
0.558763	42.8	0.1		0.0		42.9	48.0	-5.1	В		
6.461387	41.2	0.3		0.6		42.1	48.0	-5.9	В		
6.570696	41.6	0.3		0.7		42.6	48.0	-5.4	В		
6.693669	41.8	0.3		0.7		42.8	48.0	-5.2	В		
6.802979	41.7	0.4		0.7		42.8	48.0	-5.2	В		
29.551050	39.9	0.7		1.5		42.1	48.0	-5.9	В		

Test Method: ANSI C63.4 1992 NOTES: Q = Quasi Peak Reading Spec Limit: FCC Part 15 Subpart C Section 15.207 A = Average Reading

FCC Part 15 Subpart C Section 15.207

A = Average Reading
B = Black Lead

W = White Lead

COMMENTS: Patch array antenna is connected to the antenna port of the EUT modem. Printer is connected to the LPT-1 port of the Toshiba laptop and is printing continuously, batch jobs of H's from EMI4Z program. EUT is connected to the laptop via a 3-conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full-Duplex Synchronous. The receiver function of the EUT is exercised as follows: The remote computer running hyper terminal is connected to a support RF modem and patch array antenna which is transmitting data to the EUT. The frequency select jumpers on the support modem are set to the same as the EUT. The temperature was 73°F and the humidity was 45%. Frequency range investigated was 10 MHz to 25 GHz. Lowest clock is 16.384 MHz, Highest frequency generated is 2.458 GHz. Steward p/n 28A2025-0A0 clip on ferrite added to the EUT end of the serial cable. AC input to the EUT was 120 V, 60 Hz.

Page 12 of 59 Report No: FC00-108

TABLE A

LIST OF TEST EQUIPMENT

Tillamook A Tillamook site A VCCI Registration Numbers R-577 & C-312 Industry Canada File No. IC 3082-A

Occur	ind	Randy	idth	FCC	15 2	47(a)(2)	
Occum	nea	Bandw	101TH -	FU.C.	10.7	47(a)(Z)	

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8593EM EMC Analyzer	3624A00159	09/21/2000	09/21/2001	2111

Peak Output Power - FCC 15.247(b)(1)

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8593EM EMC Analyzer	3624A00159	09/21/2000	09/21/2001	2111

Spurious Emissions –Conducted - 15.247(c)

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8593EM EMC Analyzer	3624A00159	09/21/2000	09/21/2001	2111
HP 84300-80038 3.5 GHz High Pass Filter	3643A00027	03/02/2000	03/02/2001	2117

Spurious Emissions – Radiated – 15.247(c) & 15.209

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8593EM EMC Analyzer	3624A00159	09/21/2000	09/21/2001	2111
HP 8447D Amplifier	2727A05392	02/14/2000	02/14/2001	10
Chase CBL6111C Bilog Antenna	2455	06/17/2000	06/17/2001	1992
HP 84125-80008 18-26 GHz Horn Antenna	3643A00027	02/02/2000	02/02/2001	2112
HP 84300-80038 3.5 GHz High Pass Filter	3643A00027	03/02/2000	03/02/2001	2117
HP 83051A Amplifier	3331A00238	02/21/2000	02/21/2001	0
EMCO 6502 Mag Loop Antenna	2156	01/26/2000	01/26/2001	52
EMCO 3115 1-18 GHz Horn Antenna	9006-4854	02/17/2000	02/17/2001	1412

Peak Power Spectral Density – 15.247(d)

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8593EM EMC Analyzer	3624A00159	09/21/2000	09/21/2001	2111

Conducted Emissions – AC Power – 15.207

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A EMI Receiver	3010A01076	07/25/2000	07/25/2001	0
Fischer LISN	none	12/28/1999	12/28/2000	11
Fischer LISN	none	12/28/1999	12/28/2000	12
Fischer LISN	none	12/28/1999	12/28/2000	13
Fischer LISN	none	12/28/1999	12/28/2000	14

Page 13 of 59 Report No: FC00-108

EUT SETUP

The equipment under test (EUT) and the peripheral(s) listed were set up in a manner that represented their normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Tables 1-5 for radiated emissions and Table 6 for conducted emissions. Additionally, a complete description of all the ports and I/O cables is included on the information sheets contained in Appendix A.

Radiated Emissions

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

I/O cables were connected to the EUT and peripherals in the manner required for normal operation of the system. Excess cabling was bundled in the center in a serpentine fashion using 30-40 centimeter lengths.

Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT is located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test. Conducted emissions tests required the use of the LISNs listed in Table A.

Page 14 of 59 Report No: FC00-108

EUT TESTING

Radiated Emissions

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode with the I/O cables and line cords facing the antenna. The frequency range of 10 MHz - 30 MHz was scanned using the mag loop antenna. The frequency range of 30 MHz - 1000 MHz was then scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks, which were at or near the limit, were recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. The horn antenna was used to scan for frequencies above 1000 MHz. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned with its I/O and power cables facing the antenna. A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, and configuration of the cables. Maximizing of the cables locations was achieved by monitoring the spectrum analyzer on a closed circuit television monitor while the EUT components and cables were being moved and rearranged on the EUT table for maximum emissions. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Conducted Emissions

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

Page 15 of 59 Report No: FC00-108

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the Radio RF Modem, QTM-8524. Frequencies below 30 MHz were scanned using the mag loop antenna. For radiated measurements between 30 to 1000 MHz, the biconilog antenna was used. Frequencies above 1000 MHz were scanned using a horn antenna. All antennas were located at a distance of 3 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10~dB per division were used. A 10~dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0~dB of attenuation, a reference level of $97~dB\mu V$, and a vertical scale of 10~dB per division.

TABLE B: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	450 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	150kHz	3 MHz	9 kHz				
RADIATED EMISSIONS 30 MHz 1000 MHz 120 kHz							
RADIATED EMISSIONS 1000 MHz 25 GHz 1 MHz							

Page 16 of 59 Report No: FC00-108

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1 through 5 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Radio RF Modem, QTM-8524.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

Average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

TEST METHODS

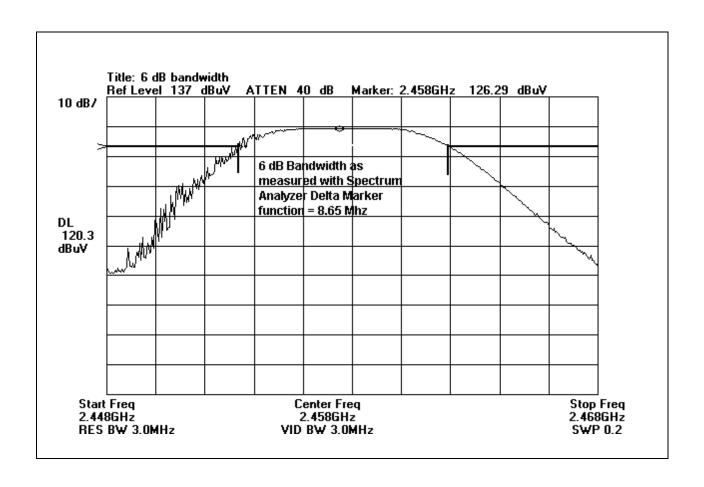
The radiated and conducted emissions data of the Radio RF Modem, QTM-8524, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15.247, 15.207 and 15.209 emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

Page 17 of 59 Report No: FC00-108

TRANSMITTER CHARACTERISTICS

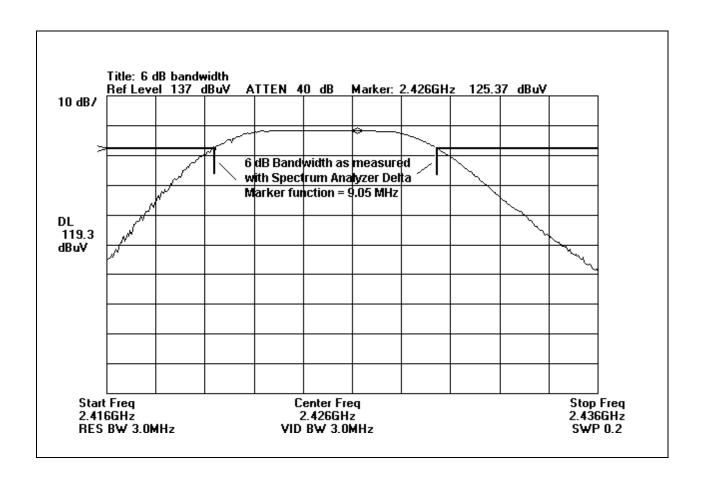
15.247(a)(2) Occupied Bandwidth Measurements (Direct Sequence)


The fundamental frequency was kept within the permitted band 2400-2483.5 MHz. The minimum 6dB bandwidth shall be at least 500 kHz. Refer to the following occupied bandwidth plots.

List of Test Equipment Used for Occupied Bandwidth Test:

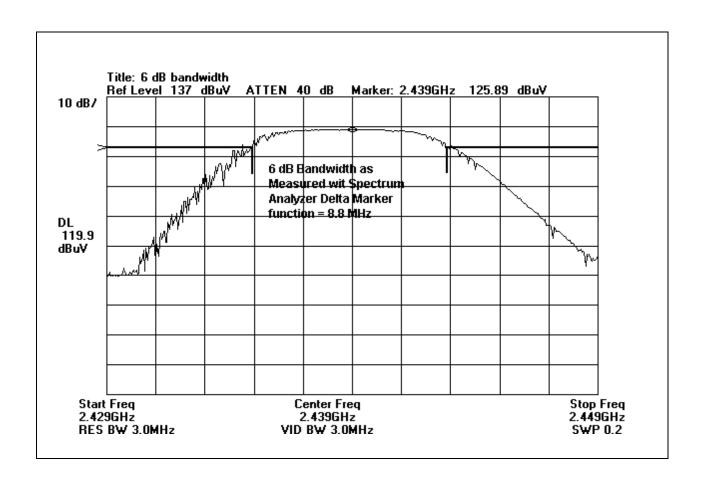
Function	Manufacturer	Model	Cal Date	Cal Due Date
EMC Analyzer	HP	8593EM	09/21/2000	09/21/2001

Page 18 of 59 Report No: FC00-108


FCC Part 15.247(a)(2) Occupied Bandwidth Plot – Direct Sequence

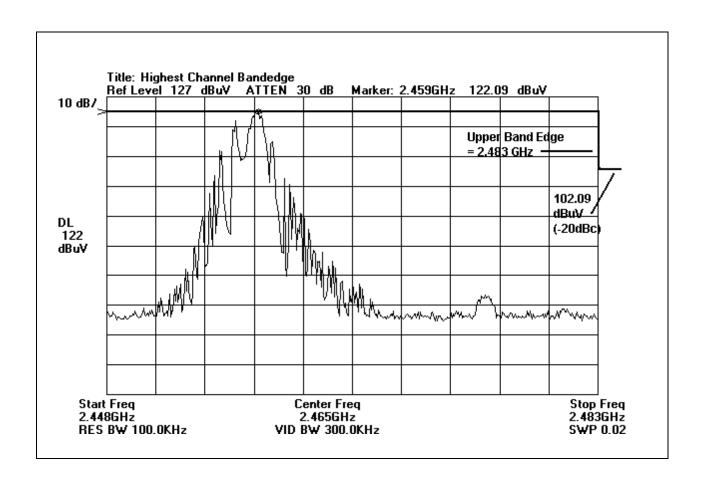
Highest Frequency - 2.458GHz

Page 19 of 59 Report No: FC00-108


FCC Part 15.247(a)(2) Occupied Bandwidth Plot – Direct Sequence

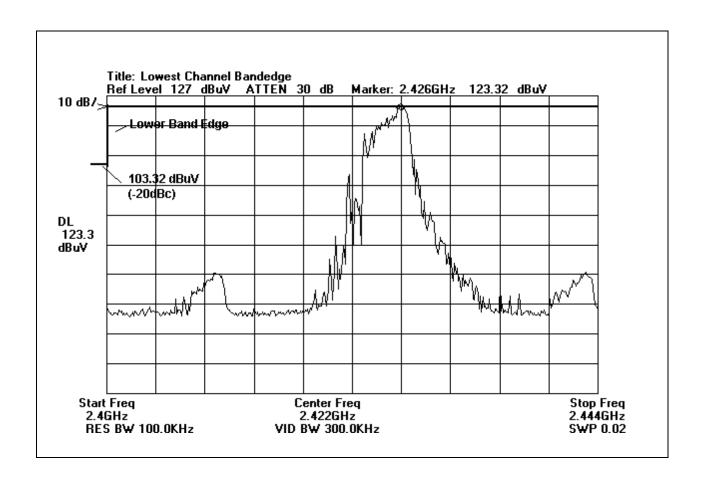
Lowest Frequency - 2.426GHz

Page 20 of 59 Report No: FC00-108


FCC Part 15.247(a)(2) Occupied Bandwidth Plot – Direct Sequence

Mid Frequency - 2.439GHz

Page 21 of 59 Report No: FC00-108


FCC Part 15.247(a)(2) Highest Channel Band Edge Plot

Highest Channel Band Edge Plot

Page 22 of 59 Report No: FC00-108

FCC Part 15.247(a)(2) Lowest Channel Band Edge Plot

Lowest Channel Band Edge Plot

Page 23 of 59 Report No: FC00-108

15.247(b) Power Output

Frequency of Transmitter: 2400-2483.5 MHz

The RF conducted test was measured using a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation. The resolution bandwidth was adjusted to greater than the 6 dB bandwidth of the emissions.

Frequency	Measurement in dB	Measurement in mW
2457.800	126.3	707.9
2439.850	126.0	676
2426.350	125.6	660

• 15.247(b)(1) The maximum peak output power of frequency hopping systems operating in the 2400-2483.5 band, and for all direct sequences, shall not exceed 1 watt.

NOTE: As the EUT bandwidth is larger than the S/A bandwidth of 3 MHz, the following correction factors were used for the Peak Power measurements: Low frequency setting = 9.05 EUT BW/3 S/A BW = 3.02 20Log 3.02 = 9.6 dB correction factor to be added to raw S/A reading. The high freq = 9.2 dB correction and the Mid freq. = 9.3 dB correction.

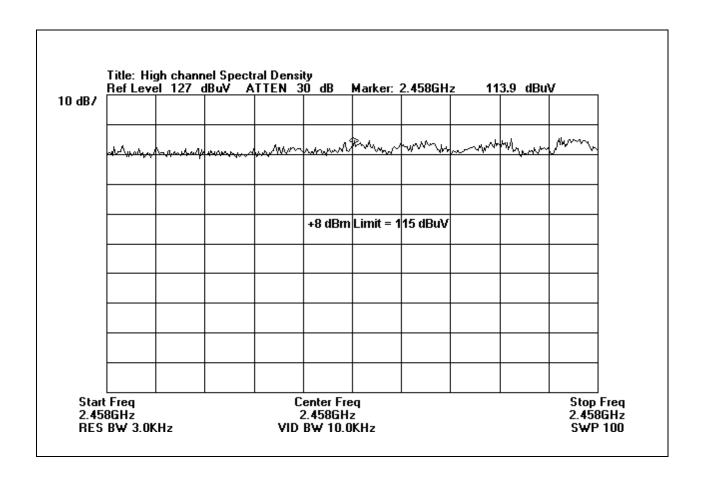
List of Test Equipment Used for Power Output Test

Function	Manufacturer	Model	Cal Date	Cal Due Date	
EMC Analyzer	HP	8593EM	09/21/2000	09/21/2001	

Page 24 of 59 Report No: FC00-108

15.247(d) Peak Power Spectral Density

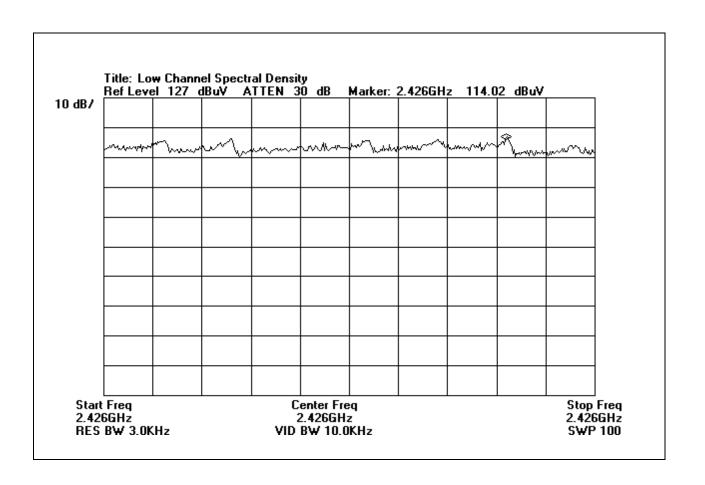
The peak power spectral density conducted from the EUT to the antenna was not greater than 8 dm in any 3 kHz band during any time interval of continuous transmission. Refer to the following spectral density plots.


Frequency	Measurement in dB	Measurement in mW
2426.018	3	7.1
2458.356	3	6.9
2440.003	3	6.5

<u>List of Test Equipment Used for Peak Power Spectral Density Test</u>

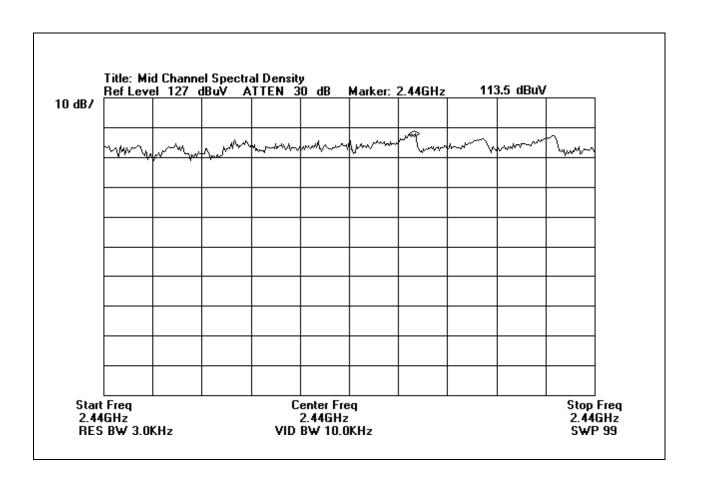
Function	Manufacturer	Model	Cal Date	Cal Due Date	
EMC Analyzer	HP	8593EM	09/21/2000	09/21/2001	

Page 25 of 59 Report No: FC00-108


FCC Part 15.247(d) Peak Power Spectral Density Plot

Highest Frequency - 2.458GHz

Page 26 of 59 Report No: FC00-108


FCC Part 15.247(d) Peak Power Spectral Density Plot

Lowest Frequency - 2.426GHz

Page 27 of 59 Report No: FC00-108

FCC Part 15.247(d) Peak Power Spectral Density Plot

Mid Frequency - 2.44GHz

Page 28 of 59 Report No: FC00-108

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the six highest emissions readings in Tables 1 through 6. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula:

Meter reading (dBµV)

- + Antenna Factor (dB)
- + Cable Loss (dB)
- Distance Correction (dB)
- Pre-amplifier Gain (dB)
- = Corrected Reading($dB\mu V/m$)

This reading was then compared to the applicable specification limit to determine compliance.

A typical data sheet will display the following in column format:

#	Freq MHz	Rdng dBuV	Cable	Amp	Mag	Horn	AmpA	3.5G	Dist	Corr dBuV/m	Spec	Margin	Polar
			9.6d	9.2d	9.3d	Bilog	HP 83						

#	Reading number, order of frequencies listed by margin.					
Freq MHz	Frequency in MHz of the obtained reading.					
Rdng dBuV	Reading obtained on the spectrum analyzer in dBµV.					
9.6d/9.2d/9.3d	Bandwidth Correction factor in dB					
3.5G	HP 3.5GHz High Pass Filter factor in dB					
Amp/AmpA	Preamplifier factor or gain in dB.					
Mag	Magnetic loop antenna factor in dB					
Horn	Horn antenna factor in dB.					
Bilog	Biconilog antenna factor in dB.					
HP 83	Microwave Amplifier factor in dB					
Cable	Cable loss in dB of the coaxial cable on the OATS.					
Dist	Distance factor in dB. It is used when testing at a different test distance than otherwise stated in					
	the spec.					
Corr dBµV/m	Corrected reading which is now in $dB\mu V/m$ (field strength).					
Spec	Specification limit (dB) stated in the appropriate standard.					
Margin	Closeness to the specified limit in dB; + is over and - is under the limit.					
Polar	Polarity of the antenna with respect to earth.					

Page 29 of 59 Report No: FC00-108

APPENDIX A

INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page 30 of 59 Report No: FC00-108

INFORMATION ABOUT THE EQUIPMENT UNDER TEST		
Test Software/Firmware:	N/A	
CRT was displaying:	N/A	
Power Supply Manufacturer:	Danube	
Power Supply Part Number:	KWM020-1824F	
AC Line Filter Manufacturer:	N/A	
AC Line Filter Part Number:	N/A	
Line voltage used during testing:	120VAC, 60Hz	

I/O PORTS		
Type	#	
RS-232	1	
RS-422/485	1	

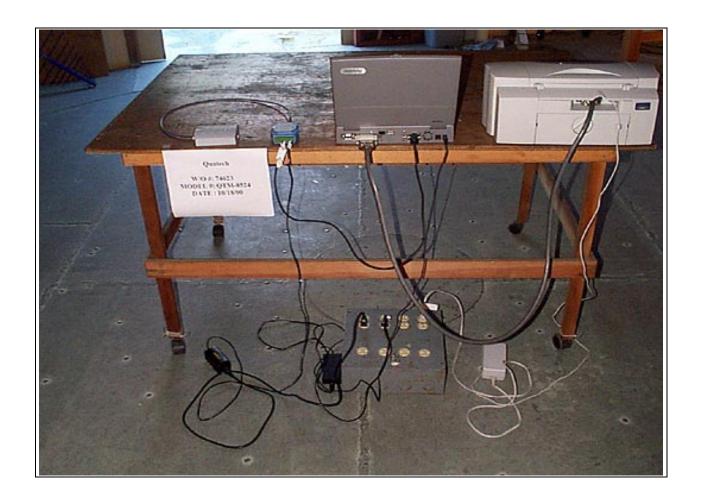
CRYSTAL OSCILLATORS		
Type Freq In MHz		
XTAL	44.2368	
XTAL	6.384	

PRINTED CIRCUIT BOARDS				
Function	Model & Rev	Clocks, MHz	Layers	Location
Baseband interface	SST-2400 Rev. A2	44.2368, 6.384	2	N/A
RF module	IRF4085DS Rev. A2	None	4	N/A

REQUIRED EUT CHANGES TO COMPLY:

During Radiated Spurious Emissions and Power Line Conducted Emissions Testing: Steward p/n 28A2025-0A0 clip on ferrite added to the EUT end of the serial cable.

Page 31 of 59 Report No: FC00-108


CABLE INFORMATION

Cable #:	N/A	Cable(s) of this type:	1
Cable Type:	RS-232	Shield Type:	N/A
Construction:	Three conductor	Length In Meters:	1.09m
Connected To End (1):	RS-232 I/O	Connected To End (2):	RS-232 connector
Connector At End (1):	Terminal Spades	Connector At End (2):	D-type; 9 pin female
Shield Grounded At (1):	EUT GND	Shield Grounded At (2):	Chassis
Part Number:	N/A	Number of Conductors:	3
Notes and/or description:			
	located 1" from EUT termination.		

Cable #:	N/A	Cable(s) of this type:	1
Cable Type:	Power Supply	Shield Type:	None
Construction:	20 AWG	Length In Meters:	1.83m
Connected To End (1):	Power supply	Connected To End (2):	EUT DC inputs
Connector At End (1):	N/A	Connector At End (2):	Terminal Spade
Shield Grounded At (1):	N/A	Shield Grounded At (2):	N/A
Part Number:	N/A	Number of Conductors:	2
Notes and/or description:	Cable supplies +24VDC (DC+ and DC GND) to the EUT DC inputs from the power		
	supply. DC GND terminates at Chassis GND in power supply. AC power cord not		
	supplied.		

Cable #:	N/A	Cable(s) of this type:	1
Cable Type:	Antenna	Shield Type:	Double Braid
Construction:	Cushcraft Ultralink	Length In Meters:	≈1.0m
Connected To End (1):	Antenna	Connected To End (2):	RF output
Connector At End (1):	N/A	Connector At End (2):	RP SMA-M
Shield Grounded At (1):	Antenna	Shield Grounded At (2):	PCB GND
Part Number:	N/A	Number of Conductors:	2 (center and shield)
Notes and/or description:	Coaxial cable connects antenna (monopole or patch) to EUT RF output; antenna side		
	permanently connected	l.	

Page 32 of 59 Report No: FC00-108

Radiated Emissions - Back View (Patch)

Page 33 of 59 Report No: FC00-108

Radiated Emissions - Back View (Monopole)

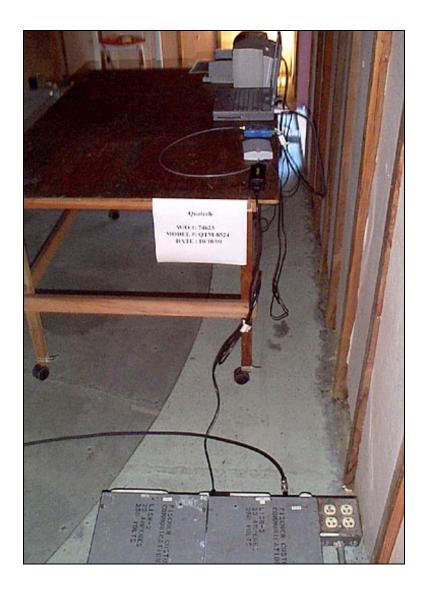
Page 34 of 59 Report No: FC00-108

Radiated Emissions - Front View (Monopole)

Page 35 of 59 Report No: FC00-108

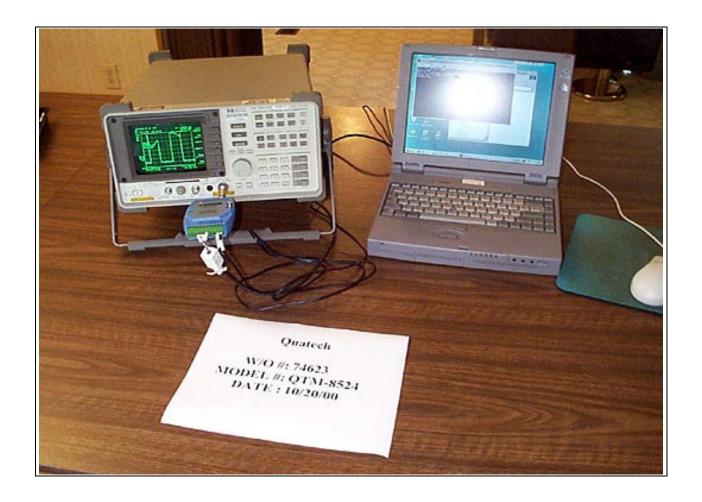
Radiated Emissions - Front View (Patch)

Page 36 of 59 Report No: FC00-108


PHOTOGRAPH SHOWING CONDUCTED EMISSIONS

Conducted Emissions - Front View

Page 37 of 59 Report No: FC00-108


PHOTOGRAPH SHOWING CONDUCTED EMISSIONS

Conducted Emissions - Side View

Page 38 of 59 Report No: FC00-108

PHOTOGRAPH SHOWING POWER OUTPUT

Conducted Emissions - RF Port

Page 39 of 59 Report No: FC00-108

APPENDIX B RADIATED AND CONDUCTED DATA SHEETS

Page 40 of 59 Report No: FC00-108

Customer: Quatech Inc.
Specification: FCC15.247 (b1)

Work Order #: 74623 Date: 10/20/2000
Test Type: Conducted Peak Power Time: 13:43:53
Equipment: Radio RF Modem Sequence#: 1

Manufacturer: Quatech Inc. Tested By: Mike Wilkinson

Model: OTM-8524

S/N: IT240EXT99KI0139

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Radio RF Modem*	Quatech Inc.	QTM-8524	IT240EXT99KI0139

Support Devices:

Function	Manufacturer	Model #	S/N	
Laptop Computer	Toshiba	220CDS	67041753	
Power Supply	Danube	KWMO2O-1824F	N/A	

Test Conditions / Notes:

EUT antenna port is connected directly to the spectrum analyzer input. EUT is connected to the laptop via a 3 conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full- Duplex Synchronous. The measured 6 dB bandwidth for each frequency setting is as follows: Frequency setting 2426.112 MHz = 9.05 dB. A correction factor has been added to the reading to reflect: 9.05 MHz EUT BW / 3 MHz S/A BW = 3.02 then 20 Log 3.02 = 9.6 dB correction factor, Frequency setting 2458.368 MHz = 8.65 dB. A correction factor has been added to the reading to reflect: 8.65 MHz EUT BW / 3 MHz S/A BW = 2.88 then 20 Log 2.88 = 9.2 dB correction factor & Frequency setting 2439.936 MHz = 8.8 dB. A correction factor has been added to the reading to reflect: 8.8 MHz EUT BW / 3 MHz S/A BW = 2.93 then 20 Log 2.93 = 9.3 dB correction factor The temperature was 69°F and the humidity was 50% 135.5 dB/uV corrected reading at 2457 MHz = 0.7079 Watt 135.3 dB/uV corrected reading at 2439 MHz = 0.676 Watt 135.2 dB/uV corrected reading at 2426 MHz = 0.660 Watt.

Meas	urement Data:	R	Reading listed by margin.				Test Distance: None				
			9.6 d	9.2 d	9.3 d						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
	2457.800M	126.3	+0.0	+9.2	+0.0		+0.0	135.5	137.0	-1.5	None
									2458.368	MHz	
									center free	quency	
									(Highest)		
2	2 2439.850M	126.0	+0.0	+0.0	+9.3		+0.0	135.3	137.0	-1.7	None
									2439.936	MHz	
									center free	quency	
									(Mid)		
3	3 2426.350M	125.6	+9.6	+0.0	+0.0		+0.0	135.2	137.0	-1.8	None
									2426.112	MHz	
									center free	quency	
									(Lowest)		

Page 41 of 59 Report No: FC00-108

Customer: Quatech Inc. Specification: FCC15.247(c)

Work Order #: 74623 Date: 10/20/2000
Test Type: Conducted Spurious Time: 13:47:46
Equipment: Radio RF Modem Sequence#: 2

Manufacturer: Quatech Inc. Tested By: Mike Wilkinson

Model: QTM-8524

S/N: IT240EXT99KI0139

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Radio RF Modem*	Quatech Inc.	QTM-8524	IT240EXT99KI0139

Support Devices:

Function	Manufacturer	Model #	S/N	
Laptop Computer	Toshiba	220CDS	67041753	
Power Supply	Danube	KWMO2O-1824F	N/A	

Test Conditions / Notes:

EUT antenna port is connected directly to the spectrum analyzer input. EUT is connected to the laptop via a 3 conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full- Duplex Synchronous.

Measu	rement Data:	Re	Reading listed by margin.				. Test Distance: None				
			3.5 G								
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	\overline{MHz}	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2440.100M	123.4	+0.0				+0.0	123.4	137.0	-13.6	None
									2.439 GHz	Z	
									fundament	al (Mid)	
2	2458.200M	123.2	+0.0				+0.0	123.2	137.0	-13.8	None
									2.458 GHz	Z	
									fundament	al (High)	
3	2425.950M	123.0	+0.0				+0.0	123.0	137.0	-14.0	None
									2.426 GHz	Z	
									fundament	al (Low)	
4	4916.090M	62.7	+0.1				+0.0	62.8	103.2	-40.4	None
									2.458 GHz	Z	
									fundament	al (High)	
5	7277.420M	59.4	+0.7				+0.0	60.1	103.0	-42.9	None
									2.426 GHz	Z	
									fundament	al (Low)	
6	4879.310M	59.3	+0.2				+0.0	59.5	103.4	-43.9	None
									2.439 GHz	Z	
									fundament	al (Mid)	

Page 42 of 59 Report No: FC00-108

7 4853.610M	55.4	+0.2	+0.0	55.6	103.0	-47.4	None
					2.426 GHz		
					fundamental	(Low)	
8 12129.250	49.8	+0.4	+0.0	50.2	103.0	-52.8	None
M							
					2.426 GHz		
					fundamental	(Low)	
9 9703.141M	48.8	+0.6	+0.0	49.4	103.0	-53.6	None
					2.426 GHz		
					fundamental	(Low)	
10 7374.460M	46.7	+0.5	+0.0	47.2	103.2	-56.0	None
10 737 11 100111	10.7	10.5	10.0	.,.2	2.458 GHz	20.0	110110
					fundamental	(High)	
11 9833.530M	46.3	+0.6	+0.0	46.9	103.2	-56.3	None
11 9033.330WI	40.5	+0.0	+0.0	40.9	2.458 GHz	-50.5	None
						(Lich)	
12 12200 520	45.0	. 0. 4	.00	15.0	fundamental		NT
12 12290.520	45.2	+0.4	+0.0	45.6	103.2	-57.6	None
M							
					2.458 GHz		
					fundamental	· •	
13 7320.570M	44.5	+0.6	+0.0	45.1	103.4	-58.3	None
					2.439 GHz		
					fundamental	(Mid)	
14 9760.510M	44.3	+0.6	+0.0	44.9	103.4	-58.5	None
					2.439 GHz		
					fundamental	(Mid)	
						` /	

Customer: Quatech Inc.

Specification: FCC15.247(c) & 15.209

Work Order #: 74623 Date: 10/18/2000
Test Type: Radiated Spurious Time: 16:05:28
Equipment: Radio RF Modem Sequence#: 5

Manufacturer: Quatech Inc. Tested By: Mike Wilkinson

Model: QTM-8524

S/N: IT240EXT99KI0139

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Patch Array Antenna	Quatech Inc.	QTM-24ANT-SW	NONE
Radio RF Modem*	Quatech Inc.	QTM-8524	IT240EXT99KI0139

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Toshiba	220CDS	67041753
Power Supply	Danube	KWMO2O-1824F	N/A
Printer	HP	895CXI	MY97G1924Z
Remote Laptop Computer	IBM	ThinkPad	W9G-V7795
Support Radio RF Modem	Quatech Inc.	QTM-8524	IT240EXT99K-0132
Power Supply	Danube	KWMO2O-1824F	N/A
Patch Array Antenna	Quatech Inc.	QTM-24ANT-SW	NONE

Test Conditions / Notes:

Patch array antenna is connected to the antenna port of the EUT modem. Printer is connected to the LPT-1 port of the Toshiba laptop and is printing continuously, batch jobs of H's from EMI4Z program. EUT is connected to the laptop via a 3-conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full-Duplex Synchronous. The receiver function of the EUT is exercised as follows: The remote computer running hyper terminal is connected to a support RF modem and patch array antenna which is transmitting data to the EUT. The frequency select jumpers on the support modem are set to the same as the EUT. The temperature was 73°F and the humidity was 45%. Frequency range investigated was 10 MHz to 25 GHz. Lowest clock is 16.384 MHz, Highest frequency generated is 2.458 GHz. Steward p/n 28A2025-0A0 clip on ferrite added to the EUT end of the serial cable.

	Measu	rement Data:	R	Reading listed by margin.				Test Distance: 3 Meters				
ĺ				Cable	Cable	Horn	Amp-A					
	#	Freq	Rdng	3.5 G	Cable	Bilog	HP 83	Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	808.723M	43.4	+0.0	+0.0	+0.0	-28.0	+0.0	43.9	46.0	-2.1	Horiz
	QP			+0.0	+6.8	+21.7	+0.0			2.426 GHz	Center	
										Frequency	(Lowest)	

Page 44 of 59 Report No: FC00-108

2 33.209M 46.3 +0.0 +0.0 +0.0 -27.6 +0.0 37.5 40	0.5 37.4
	GHz Center
Frequ	ency
(High	
3 819.470M 42.7 +0.0 +0.0 +0.0 -28.0 +0.0 43.3 46	5.0 -2.7 Vert
QP +0.0 +6.8 +21.8 +0.0 2.458	GHz Center
Frequ	ency
(High	est)
4 33.178M 45.8 +0.0 +0.0 +0.0 -27.6 +0.0 37.0 40	0.0 -3.0 Vert
QP +0.0 +1.2 +17.6 +0.0 2.426	GHz Center
Frequ	ency (Lowest)
5 819.465M 42.1 +0.0 +0.0 +0.0 -28.0 +0.0 42.7 46	5.0 -3.3 Horiz
QP +0.0 +6.8 +21.8 +0.0 2.458	GHz Center
Frequ	
(High	est)
6 771.845M 42.3 +0.0 +0.0 +0.0 -28.0 +0.0 42.2 46	5.0 -3.8 Horiz
QP +0.0 +6.6 +21.3 +0.0 2.426	GHz Center
Frequ	ency (Lowest)
7 776.459M 41.6 +0.0 +0.0 +0.0 -28.0 +0.0 41.7 46	5.0 -4.3 Vert
QP +0.0 +6.7 +21.4 +0.0 2.439	GHz Center
Frequ	ency (Mid)
8 782.596M 40.7 +0.0 +0.0 +0.0 -28.0 +0.0 40.9 46	5.0 -5.1 Vert
QP +0.0 +6.7 +21.5 +0.0 2.458	GHz Center
Frequ	ency
(High	
9 132.716M 50.9 +0.0 +0.0 +0.0 -27.3 +0.0 38.1 43	5.5 -5.4 Horiz
QP +0.0 +2.6 +11.9 +0.0 2.458	GHz Center
Frequ	ency
(High	est)
10 33.218M 43.3 +0.0 +0.0 +0.0 -27.6 +0.0 34.5 40	0.0 -5.5 Vert
QP +0.0 +1.2 +17.6 +0.0 2.439	GHz Center
Frequ	ency (Mid)
11 44.238M 48.3 +0.0 +0.0 +0.0 -27.6 +0.0 34.2 40	0.0 -5.8 Vert
QP +0.0 +1.5 +12.0 +0.0 2.439	GHz Center
Frequ	ency (Mid)
^ 44.245M 47.3 +0.0 +0.0 +0.0 -27.6 +0.0 33.2 40	0.0 -6.8 Vert
+0.0 +1.5 +12.0 +0.0 2.458	GHz Center
Frequ	ency
(High	
	6.5 -6.0 Horiz
QP +0.0 +2.6 +11.9 +0.0 2.426	GHz Center
	ency (Lowest)
	6.0 -6.1 Vert
	GHz Center
Frequ	ency (Mid)

	221.192M	52.0	+0.0	+0.0	+0.0	-26.8	+0.0	39.8	46.0 -6.2	Vert
Q	P		+0.0	+3.4	+11.2	+0.0			2.426 GHz Center	
									Frequency (Lowest)	
^	221.182M	50.2	+0.0	+0.0	+0.0	-26.8	+0.0	38.0	46.0 -8.0	Vert
			+0.0	+3.4	+11.2	+0.0			2.458 GHz Center	
									Frequency	
									(Highest)	
^	221.196M	48.0	+0.0	+0.0	+0.0	-26.8	+0.0	35.8	46.0 -10.2	Vert
			+0.0	+3.4	+11.2	+0.0			2.439 GHz Center	
									Frequency (Mid)	
18	44.237M	47.9	+0.0	+0.0	+0.0	-27.6	+0.0	33.8	40.0 -6.2	Vert
Q	P		+0.0	+1.5	+12.0	+0.0			2.426 GHz Center	
									Frequency (Lowest)	
19	776.436M	39.5	+0.0	+0.0	+0.0	-28.0	+0.0	39.6	46.0 -6.4	Horiz
			+0.0	+6.7	+21.4	+0.0			2.439 GHz Center	
									Frequency (Mid)	
	132.715M	49.7	+0.0	+0.0	+0.0	-27.3	+0.0	36.9	43.5 -6.6	Vert
Q	P		+0.0	+2.6	+11.9	+0.0			2.439 GHz Center	
									Frequency (Mid)	
	132.844M	49.6	+0.0	+0.0	+0.0	-27.3	+0.0	36.8	43.5 -6.7	Horiz
Q	P		+0.0	+2.6	+11.9	+0.0			2.439 GHz Center	
									Frequency (Mid)	
22	309.664M	47.5	+0.0	+0.0	+0.0	-26.7	+0.0	39.1	46.0 -6.9	Vert
			+0.0	+4.2	+14.1	+0.0			2.458 GHz Center	
									Frequency	
									(Highest)	
23	813.326M	38.5	+0.0	+0.0	+0.0	-28.0	+0.0	39.0	46.0 -7.0	Vert
			+0.0	+6.8	+21.7	+0.0			2.439 GHz Center	
									Frequency (Mid)	
	132.711M	49.1	+0.0	+0.0	+0.0	-27.3	+0.0	36.3	43.5 -7.2	Vert
Q	P		+0.0	+2.6	+11.9	+0.0			2.426 GHz Center	
									Frequency (Lowest)	
	132.713M	49.1	+0.0	+0.0	+0.0	-27.3	+0.0	36.3	43.5 -7.2	Vert
Q	P		+0.0	+2.6	+11.9	+0.0			2.458 GHz Center	
									Frequency	
	70 0 7 00 7	46.1				20.1	0.0	2= ^	(Highest)	**
26	530.509M	42.1	+0.0	+0.0	+0.0	-28.1	+0.0	37.9	46.0 -8.1	Vert
			+0.0	+5.4	+18.5	+0.0			2.458 GHz Center	
									Frequency	
	200 ((2))	45.0		0.0	0.0	2:5	0.0	25.1	(Highest)	***
27	309.663M	45.8	+0.0	+0.0	+0.0	-26.7	+0.0	37.4	46.0 -8.6	Vert
			+0.0	+4.2	+14.1	+0.0			2.426 GHz Center	
	150000	40.4		0.0	0.0	25.0	0.0	210	Frequency (Lowest)	X7 ·
28	176.966M	48.4	+0.0	+0.0	+0.0	-27.0	+0.0	34.0	43.5 -9.5	Vert
			+0.0	+3.1	+9.5	+0.0			2.439 GHz Center	
									Frequency (Mid)	

29	176.942M	47.4	+0.0	+0.0	+0.0	-27.0	+0.0	33.0	43.5 -10.5	Vert
			+0.0	+3.1	+9.5	+0.0			2.426 GHz Center	
									Frequency (Lowest)	
30	176.944M	47.1	+0.0	+0.0	+0.0	-27.0	+0.0	32.7	43.5 -10.8	Vert
			+0.0	+3.1	+9.5	+0.0			2.458 GHz Center	
									Frequency	
									(Highest)	
31	7375.106M	26.8	+12.3	+4.7	+36.0	+0.0	+0.0	42.2	54.0 -11.8	Vert
	Ave		+0.5	+0.0	+0.0	-38.1			2.458 GHz Center	
									Frequency	
									(Highest)	
32	4916.726M	29.5	+9.8	+3.5	+33.1	+0.0	+0.0	38.9	54.0 -15.1	Vert
	Ave		+0.1	+0.0	+0.0	-37.1			2.458 GHz Center	
									Frequency	
									(Highest)	
33	4852.230M	28.7	+9.8	+3.6	+33.0	+0.0	+0.0	38.2	54.0 -15.8	Vert
	Ave		+0.2	+0.0	+0.0	-37.1			2.426 GHz Center	
									Frequency (Lowest)	
34	7317.006M	21.4	+12.2	+4.7	+36.2	+0.0	+0.0	37.0	54.0 -17.0	Vert
	Ave		+0.6	+0.0	+0.0	-38.1			2.439 GHz Center	
									Frequency (Mid)	
35	4852.230M	26.5	+9.8	+3.6	+33.0	+0.0	+0.0	36.0	54.0 -18.0	Horiz
	Ave		+0.2	+0.0	+0.0	-37.1			2.426 GHz Center	
									Frequency (Lowest)	
36	5 7278.340M	20.0	+12.1	+4.8	+36.1	+0.0	+0.0	35.6	54.0 -18.4	Vert
	Ave		+0.7	+0.0	+0.0	-38.1			2.426 GHz Center	
									Frequency (Lowest)	
37	4878.006M	25.4	+9.8	+3.7	+33.0	+0.0	+0.0	35.0	54.0 -19.0	Vert
	Ave		+0.2	+0.0	+0.0	-37.1			2.439 GHz Center	
									Frequency (Mid)	
38	4916.726M	25.4	+9.8	+3.5	+33.1	+0.0	+0.0	34.8	54.0 -19.2	Horiz
	Ave		+0.1	+0.0	+0.0	-37.1			2.458 GHz Center	
									Frequency	
									(Highest)	
39	4878.010M	24.5	+9.8	+3.7	+33.0	+0.0	+0.0	34.1	54.0 -19.9	Horiz
	Ave		+0.2	+0.0	+0.0	-37.1			2.439 GHz Center	
									Frequency (Mid)	

Customer: Quatech Inc.

Specification: FCC15.247(c) & 15.209

Work Order #: 74623 Date: 10/18/2000
Test Type: Radiated Spurious Time: 15:57:23
Equipment: Radio RF Modem Sequence#: 6

Manufacturer: Quatech Inc. Tested By: Mike Wilkinson

Model: QTM-8524

S/N: IT240EXT99KI0139

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Radio RF Modem*	Quatech Inc.	QTM-8524	IT240EXT99KI0139
Monopole Antenna	Quatech Inc.	QTM-24ANT-C	NONE

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Toshiba	220CDS	67041753
Power Supply	Danube	KWMO2O-1824F	N/A
Printer	HP	895CXI	MY97G1924Z
Remote Laptop Computer	IBM	ThinkPad	W9G-V7795
Support Radio RF Modem	Quatech Inc.	QTM-8524	IT240EXT99K-0132
Power Supply	Danube	KWMO2O-1824F	N/A
Patch Array Antenna	Quatech Inc.	QTM-24ANT-SW	NONE

Test Conditions / Notes:

Monopole antenna is connected to the antenna port of the EUT modem. Printer is connected to the LPT-1 port of the Toshiba laptop and is printing continuously, batch jobs of H's from EMI4Z program. EUT is connected to the laptop via a 3-conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full-Duplex Synchronous. The receiver function of the EUT is exercised as follows: The remote computer running hyper terminal is connected to a support RF modem and patch array antenna which is transmitting data to the EUT. The frequency select jumpers on the support modem are set to the same as the EUT. The temperature was 73°F and the humidity was 45%. Frequency range investigated was 10 MHz to 25 GHz. Lowest clock is 16.384 MHz, Highest frequency generated is 2.458 GHz. Steward p/n 28A2025-0A0 clip on ferrite added to the EUT end of the serial cable.

Measi	Measurement Data:		eading lis	sted by m	argin.	Test Distance: 3 Meters					
			Cable	Cable	Horn	Amp-A					
#	Freq	Rdng	3.5 G	Cable	Bilog	HP 83	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	771.845M	44.5	+0.0	+0.0	+0.0	-28.0	+0.0	44.4	46.0	-1.6	Horiz
QP			+0.0	+6.6	+21.3	+0.0		2.426 GHz Center			
									Frequency	(Lowest)	

Page 48 of 59 Report No: FC00-108

					• • • •				
2 776.455M	43.5	+0.0	+0.0	+0.0	-28.0	+0.0	43.6		Horiz
QP		+0.0	+6.7	+21.4	+0.0			2.439 GHz Center	
								Frequency (Mid)	
3 771.845M	42.4	+0.0	+0.0	+0.0	-28.0	+0.0	42.3	46.0 -3.7	Vert
QP		+0.0	+6.6	+21.3	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
4 132.714M	52.1	+0.0	+0.0	+0.0	-27.3	+0.0	39.3	43.5 -4.2	Vert
QP		+0.0	+2.6	+11.9	+0.0			2.439 GHz Center	
								Frequency (Mid)	
5 132.715M	52.0	+0.0	+0.0	+0.0	-27.3	+0.0	39.2	43.5 -4.3	Horiz
QP		+0.0	+2.6	+11.9	+0.0			2.439 GHz Center	
								Frequency (Mid)	
6 132.712M	52.0	+0.0	+0.0	+0.0	-27.3	+0.0	39.2	43.5 -4.3	Vert
QP		+0.0	+2.6	+11.9	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
7 776.452M	40.9	+0.0	+0.0	+0.0	-28.0	+0.0	41.0	46.0 -5.0	Vert
QP		+0.0	+6.7	+21.4	+0.0			2.439 GHz Center	
								Frequency (Mid)	
8 33.175M	43.6	+0.0	+0.0	+0.0	-27.6	+0.0	34.8		Vert
QP		+0.0	+1.2	+17.6	+0.0			2.439 GHz Center	
								Frequency (Mid)	
9 808.663M	39.2	+0.0	+0.0	+0.0	-28.0	+0.0	39.7	46.0 -6.3	Horiz
		+0.0	+6.8	+21.7	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
10 221.191M	51.8	+0.0	+0.0	+0.0	-26.8	+0.0	39.6	46.0 -6.4	Vert
QP		+0.0	+3.4	+11.2	+0.0			2.439 GHz Center	
								Frequency (Mid)	
^ 221.200M	49.8	+0.0	+0.0	+0.0	-26.8	+0.0	37.6	46.0 -8.4	Vert
		+0.0	+3.4	+11.2	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
12 813.339M	39.0	+0.0	+0.0	+0.0	-28.0	+0.0	39.5	46.0 -6.5	Vert
		+0.0	+6.8	+21.7	+0.0			2.439 GHz Center	
								Frequency (Mid)	
13 44.233M	47.3	+0.0	+0.0	+0.0	-27.6	+0.0	33.2	40.0 -6.8	Vert
		+0.0	+1.5	+12.0	+0.0			2.439 GHz Center	
								Frequency (Mid)	
14 33.179M	41.9	+0.0	+0.0	+0.0	-27.6	+0.0	33.1	40.0 -6.9	Vert
QP		+0.0	+1.2	+17.6	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
15 44.233M	47.1	+0.0	+0.0	+0.0	-27.6	+0.0	33.0	40.0 -7.0	Vert
		+0.0	+1.5	+12.0	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
16 813.313M	38.3	+0.0	+0.0	+0.0	-28.0	+0.0	38.8	46.0 -7.2	Horiz
		+0.0	+6.8	+21.7	+0.0			2.439 GHz Center	
								Frequency (Mid)	
L									

17 309.650M	45.2	+0.0	+0.0	+0.0	-26.7	+0.0	36.8	46.0 -9.2	Vert
		+0.0	+4.2	+14.1	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
18 176.946M	48.6	+0.0	+0.0	+0.0	-27.0	+0.0	34.2	43.5 -9.3	Vert
		+0.0	+3.1	+9.5	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
19 7319.644M	27.1	+12.2	+4.7	+36.2	+0.0	+0.0	42.7	54.0 -11.3	Vert
Ave		+0.6	+0.0	+0.0	-38.1			2.439 GHz Center	
								Frequency (Mid)	
20 7375.038M	27.0	+12.3	+4.7	+36.0	+0.0	+0.0	42.4	54.0 -11.6	Vert
Ave		+0.5	+0.0	+0.0	-38.1			2.458 GHz Center	
								Frequency	
								(Highest)	
21 309.659M	42.6	+0.0	+0.0	+0.0	-26.7	+0.0	34.2	46.0 -11.8	Vert
		+0.0	+4.2	+14.1	+0.0			2.426 GHz Center	
								Frequency (Lowest)	
22 4916.678M	28.8	+9.8	+3.5	+33.1	+0.0	+0.0	38.2	54.0 -15.8	Vert
Ave		+0.1	+0.0	+0.0	-37.1			2.458 GHz Center	
								Frequency	
								(Highest)	
23 7278.318M	21.4	+12.1	+4.8	+36.1	+0.0	+0.0	37.0	54.0 -17.0	Vert
Ave		+0.7	+0.0	+0.0	-38.1			2.426 GHz Center	
								Frequency (Lowest)	
24 4852.208M	27.3	+9.8	+3.6	+33.0	+0.0	+0.0	36.8	54.0 -17.2	Vert
Ave		+0.2	+0.0	+0.0	-37.1			2.426 GHz Center	
								Frequency (Lowest)	
25 4879.724M	25.1	+9.8	+3.7	+33.0	+0.0	+0.0	34.7	54.0 -19.3	Vert
Ave		+0.2	+0.0	+0.0	-37.1			2.439 GHz Center	
								Frequency (Mid)	

Customer: Quatech Inc.
Specification: FCC15.247 (d)

Work Order #: 74623 Date: 10/20/2000
Test Type: Conducted Peak Power Time: 13:45:40
Equipment: Radio RF Modem Sequence#: 3

Manufacturer: Quatech Inc. Tested By: Mike Wilkinson

Model: QTM-8524

S/N: IT240EXT99KI0139

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Radio RF Modem*	Quatech Inc.	QTM-8524	IT240EXT99KI0139

Support Devices:

Function	Manufacturer	Model #	S/N	
Laptop Computer	Toshiba	220CDS	67041753	
Power Supply	Danube	KWMO2O-1824F	N/A	

Test Conditions / Notes:

EUT antenna port is connected directly to the spectrum analyzer input. EUT is connected to the laptop via a 3 conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full- Duplex Synchronous. The S/A settings were RBW= 3 kHz, VBW= 10 kHz, Span = 300 kHz and Sweep = 100 Sec. Per FCC 97-114 Appendix C.

Measurement Data:		Re	eading 1	isted by m	nargin.	Test Distance: None					
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2426.018M	114.1					+0.0	114.1	115.0	-0.9	None
						2.426 GHz center					
									frequency	(low)	
2	2458.356M	113.9					+0.0	113.9	115.0	-1.1	None
3	2440.003M	113.5					+0.0	113.5	115.0	-1.5	None
						2.439 GHz center					
									frequency	(Mid)	

Page 51 of 59 Report No: FC00-108

Customer: Quatech Inc.

Specification: FCC 15.207 COND

Work Order #: 74623 Date: 10/19/2000
Test Type: Conducted Emissions Time: 08:45:37
Equipment: Radio RF Modem Sequence#: 6

Manufacturer: Quatech Inc. Tested By: Mike Wilkinson

Model: QTM-8524

S/N: IT240EXT99KI0139

Equipment Under Test (* = EUT):

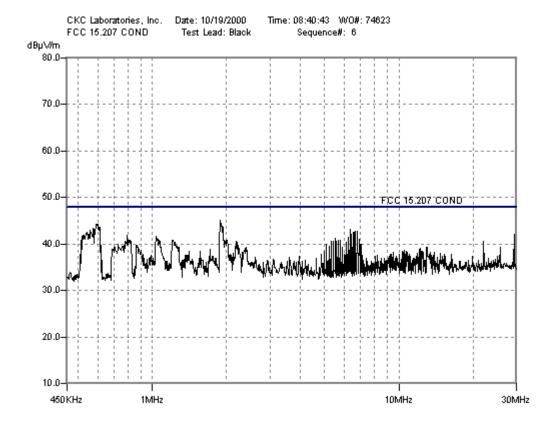
Function	Manufacturer	Model #	S/N
Patch Array Antenna	Quatech Inc.	QTM-24ANT-SW	NONE
Radio RF Modem*	Quatech Inc.	QTM-8524	IT240EXT99KI0139

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Toshiba	220CDS	67041753
Power Supply	Danube	KWMO2O-1824F	N/A
Printer	HP	895CXI	MY97G1924Z
Remote Laptop Computer	IBM	ThinkPad	W9G-V7795
Support Radio RF Modem	Quatech Inc.	QTM-8524	IT240EXT99K-0132
Power Supply	Danube	KWMO2O-1824F	N/A
Patch Array Antenna	Quatech Inc.	QTM-24ANT-SW	NONE

Test Conditions / Notes:

Patch array antenna is connected to the antenna port of the EUT modem. Printer is connected to the LPT-1 port of the Toshiba laptop and is printing continuously, batch jobs of H's from EMI4Z program. EUT is connected to the laptop via a 3-conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full-Duplex Synchronous. The receiver function of the EUT is exercised as follows: The remote computer running hyper terminal is connected to a support RF modem and patch array antenna which is transmitting data to the EUT. The frequency select jumpers on the support modem are set to the same as the EUT. The temperature was 73°F and the humidity was 45%. Frequency range investigated was 10 MHz to 25 GHz. Lowest clock is 16.384 MHz, Highest frequency generated is 2.458 GHz. Steward p/n 28A2025-0A0 clip on ferrite added to the EUT end of the serial cable. AC input to the EUT was 120 V, 60 Hz.


Measurement Data:		R	eading lis	ted by 1	margin.		Test Lead: Black					
#	Freq	Rdng	Cable		LISN		Dist	Corr	Spec	Margin	Polar	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant	
1	558.763k	42.8	+0.0		+0.1		+0.0	42.9	48.0	-5.1	Black	
2	6.803M	41.7	+0.7		+0.4		+0.0	42.8	48.0	-5.2	Black	

Page 52 of 59 Report No: FC00-108

3	6.694M	41.8	+0.7	+0.3	+0.0	42.8	48.0	-5.2	Black
4	6.571M	41.6	+0.7	+0.3	+0.0	42.6	48.0	-5.4	Black
5	615.654k	42.3	+0.1	+0.1	+0.0	42.5	48.0	-5.5	Black
6	542.030k	42.4	+0.0	+0.1	+0.0	42.5	48.0	-5.5	Black
7	29.551M	39.9	+1.5	+0.7	+0.0	42.1	48.0	-5.9	Black
8	6.461M	41.2	+0.6	+0.3	+0.0	42.1	48.0	-5.9	Black
9	553.743k	41.9	+0.0	+0.1	+0.0	42.0	48.0	-6.0	Black
10	789.675k	41.5	+0.2	+0.2	+0.0	41.9	48.0	-6.1	Black
11	523.624k	41.8	+0.0	+0.1	+0.0	41.9	48.0	-6.1	Black
12	1.039M	41.5	+0.2	+0.0	+0.0	41.7	48.0	-6.3	Black
13	517.768k	41.5	+0.0	+0.1	+0.0	41.6	48.0	-6.4	Black
14	6.229M	40.6	+0.6	+0.3	+0.0	41.5	48.0	-6.5	Black
15	5.546M	40.5	+0.6	+0.1	+0.0	41.2	48.0	-6.8	Black
16	6.912M	40.0	+0.7	+0.4	+0.0	41.1	48.0	-6.9	Black
17	1.998M	40.6	+0.3	+0.0	+0.0	40.9	48.0	-7.1	Black
18	1.208M	40.7	+0.2	+0.0	+0.0	40.9	48.0	-7.1	Black
19	814.774k	40.5	+0.2	+0.2	+0.0	40.9	48.0	-7.1	Black
20	513.584k	40.8	+0.0	+0.1	+0.0	40.9	48.0	-7.1	Black
21	5.669M	40.1	+0.6	+0.1	+0.0	40.8	48.0	-7.2	Black
22	1.067M	40.4	+0.3	+0.0	+0.0	40.7	48.0	-7.3	Black
23	6.352M Ave	31.6	+0.6	+0.3	+0.0	32.5	48.0	-15.5	Black
٨	6.352M	42.2	+0.6	+0.3	+0.0	43.1	48.0	-4.9	Black
1									

25 600.000	k 26.0	+0.1	+0.1	+0.0	26.2	48.0	-21.8	Black
Ave								
^ 599.758	3k 44.1	+0.1	+0.1	+0.0	44.3	48.0	-3.7	Black
27 1.8841	M 22.7	+0.3	+0.0	+0.0	23.0	48.0	-25.0	Black
Ave								
^ 1.8841	M 44.7	+0.3	+0.0	+0.0	45.0	48.0	-3.0	Black

Page 54 of 59 Report No: FC00-108

Customer: Quatech Inc.

Specification: FCC 15.207 COND

Work Order #: 74623 Date: 10/19/2000
Test Type: Conducted Emissions Time: 08:53:15
Equipment: Radio RF Modem Sequence#: 7

Manufacturer: Quatech Inc. Tested By: Mike Wilkinson

Model: QTM-8524

S/N: IT240EXT99KI0139

Equipment Under Test (* = EUT):

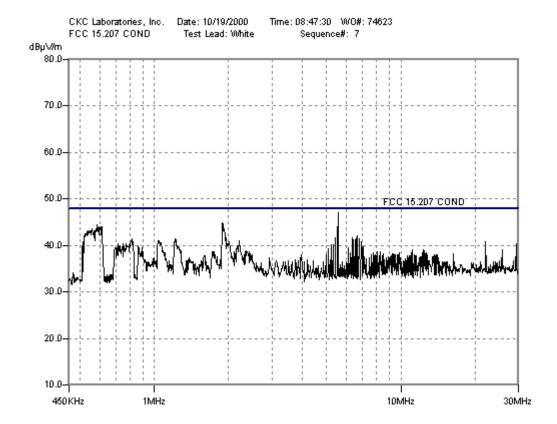
Function	Manufacturer	Model #	S/N
Patch Array Antenna	Quatech Inc.	QTM-24ANT-SW	NONE
Radio RF Modem*	Quatech Inc.	QTM-8524	IT240EXT99KI0139

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Toshiba	220CDS	67041753
Power Supply	Danube	KWMO2O-1824F	N/A
Printer	HP	895CXI	MY97G1924Z
Remote Laptop Computer	IBM	ThinkPad	W9G-V7795
Support Radio RF Modem	Quatech Inc.	QTM-8524	IT240EXT99K-0132
Power Supply	Danube	KWMO2O-1824F	N/A
Patch Array Antenna	Quatech Inc.	QTM-24ANT-SW	NONE

Test Conditions / Notes:

Patch array antenna is connected to the antenna port of the EUT modem. Printer is connected to the LPT-1 port of the Toshiba laptop and is printing continuously, batch jobs of H's from EMI4Z program. EUT is connected to the laptop via a 3-conductor 42" cable wire to the EUT: Rx, Tx & GND connections and 9 pin serial connector at the laptop. Power supply is connected to EUT Vs & GND connections. The laptop is sending data (Quatech FCC_test.exe) via the serial cable. The EUT internal jumpers are as follows: Channel 3, Frequency Select (as noted for each reading), Baudrate Select 9600, Master, RS-232, Full-Duplex Synchronous. The receiver function of the EUT is exercised as follows: The remote computer running hyper terminal is connected to a support RF modem and patch array antenna which is transmitting data to the EUT. The frequency select jumpers on the support modem are set to the same as the EUT. The temperature was 73°F and the humidity was 45%. Frequency range investigated was 10 MHz to 25 GHz. Lowest clock is 16.384 MHz, Highest frequency generated is 2.458 GHz. Steward p/n 28A2025-0A0 clip on ferrite added to the EUT end of the serial cable. AC input to the EUT was 120 V, 60 Hz.


Measu	rement Data:	Re	eading lis	sted by ma	argin.			Test Lead	d: White		
#	Freq MHz	Rdng dBµV	Cable dB	LISN dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	6.694M	41.4	+0.7	+0.1			+0.0	42.2	48.0	-5.8	White
2	517.768k	42.2	+0.0	+0.0			+0.0	42.2	48.0	-5.8	White

Page 56 of 59 Report No: FC00-108

3	5.437M	41.0	+0.6	+0.1	+0.0	41.7	48.0	-6.3	White
4	1.955M	41.4	+0.3	+0.0	+0.0	41.7	48.0	-6.3	White
5	6.584M	40.8	+0.7	+0.1	+0.0	41.6	48.0	-6.4	White
6	6.352M	40.9	+0.6	+0.1	+0.0	41.6	48.0	-6.4	White
7	6.803M	40.7	+0.7	+0.1	+0.0	41.5	48.0	-6.5	White
8	809.754k	41.3	+0.2	+0.0	+0.0	41.5	48.0	-6.5	White
9	1.220M	41.2	+0.2	+0.0	+0.0	41.4	48.0	-6.6	White
10	6.461M	40.5	+0.6	+0.1	+0.0	41.2	48.0	-6.8	White
11	2.218M	40.7	+0.4	+0.0	+0.0	41.1	48.0	-6.9	White
12	1.039M	40.8	+0.2	+0.0	+0.0	41.0	48.0	-7.0	White
13	2.010M	40.6	+0.3	+0.0	+0.0	40.9	48.0	-7.1	White
14	513.584k	40.9	+0.0	+0.0	+0.0	40.9	48.0	-7.1	White
15	22.134M	39.2	+1.3	+0.3	+0.0	40.8	48.0	-7.2	White
16	6.912M	39.9	+0.7	+0.1	+0.0	40.7	48.0	-7.3	White
17	818.120k	40.5	+0.2	+0.0	+0.0	40.7	48.0	-7.3	White
18	746.169k	40.2	+0.1	+0.1	+0.0	40.4	48.0	-7.6	White
19	5.560M	36.1	+0.6	+0.1	+0.0	36.8	48.0	-11.2	White
٨	Ave 5.560M	46.4	+0.6	+0.1	+0.0	47.1	48.0	-0.9	White
21	607.000k	25.4	+0.1	+0.0	+0.0	25.5	48.0	-22.5	White
٨	Ave 607.288k	44.0	+0.1	+0.0	+0.0	44.1	48.0	-3.9	White
23	1.884M	23.9	+0.3	+0.0	+0.0	24.2	48.0	-23.8	White
٨	Ave 1.884M	44.5	+0.3	+0.0	+0.0	44.8	48.0	-3.2	White

25	586.000k	23.0	+0.1	+0.0	+0.0	23.1	48.0	-24.9	White
A	ve								
٨	585.535k	44.3	+0.1	+0.0	+0.0	44.4	48.0	-3.6	White
27	1.912M	22.5	+0.3	+0.0	+0.0	22.8	48.0	-25.2	White
A	ve								
٨	1.912M	43.4	+0.3	+0.0	+0.0	43.7	48.0	-4.3	White

Page 58 of 59 Report No: FC00-108

