PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 – SN: 921

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: November 11, 2019

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40000670
Agilent	E4438C	ESG Vector Signal Generator	6/27/2019	Annual	6/27/2020	MY45093852
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1027293
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	5/4/2018	Biennial	5/4/2020	22216
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	EX3DV4	SAR Probe	1/24/2019	Annual	1/24/2020	7490
SPEAG	DAE4	Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	1532

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 921	11/11/2019	Page 1 of 4

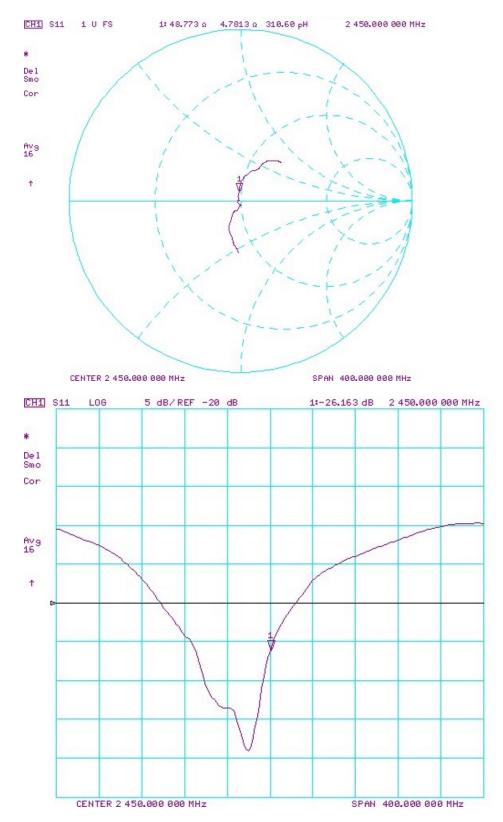
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
11/12/2018	11/11/2019	1.157	5.31	5.28	-0.56%	2.48	2.38	-4.03%	54.7	53.4	1.3	6.5	3.9	2.6	-22.3	-25.6	-14.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(9/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
11/12/2018	11/11/2019	1.157	5.08	5.41	6.50%	2.38	2.47	3.78%	50.7	48.8	1.9	7.8	4.8	3	-22.2	-26.2	-18.00%	PASS


Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 921	11/11/2019	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 - SN: 921	11/11/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 - SN: 921	11/11/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwelzerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-945 May18

CATELETRATION & C	PERMER		
Object	D2450V2 - SN:9	45	
Calibration procedure(s)	QA/CAL-05:v10		///
	Campiation proce	dure for dipole validation kits a	5/31/24
Callbration date:	May 16, 2018		500e=700:MHz 5/31/24 8/1-24 06/01/3
			06 VI 4
This calibration certificate docum The measurements and the unce	ents the traceability to nat entaintles with confidence p	ional standards, which realize the physical probability are given on the following pages	units of measurements (SI). and are part of the certificate.
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN; 601	26-Oct-17 (No. DAE4-601_Oct17)	Oot-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (In house check Oct-15)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Metaolk Mitalyzet HE 9/33E	SN: US37390585	18-Oct-01 (In house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu/Seltz 18	Eaboratory Technician	3 8
Approved by:	Kalja Pokovic	Technical Mariager	LECLE
		n full without written approval of the laborate	Issued: May 17, 2018

Certificate No: D2450V2-945_May18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permitti∨ity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		******

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

7	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	100 MA 100	84 SA SA SA

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.83 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-945_May18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.1 Ω + 3.7 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.9 Ω + 5.0 jΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 15, 2014

DASY5 Validation Report for Head TSL

Date: 16.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:945

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

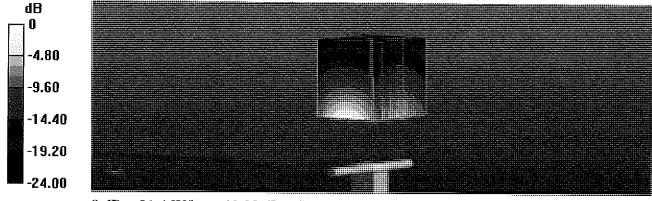
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017

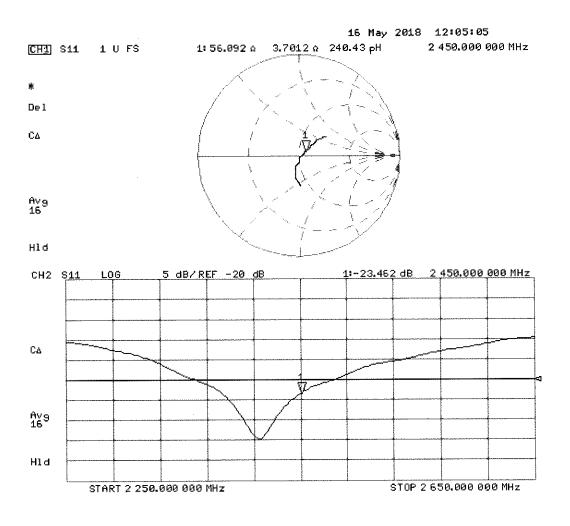
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 25.9 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.05,2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:945

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

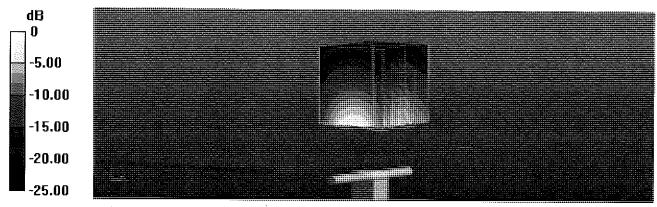
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

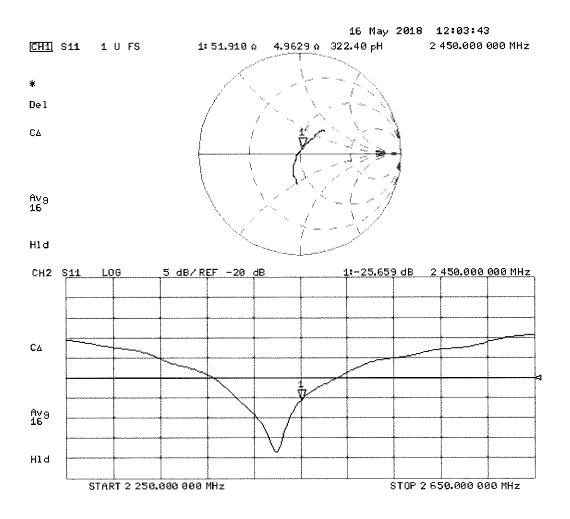
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.8 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 25.0 W/kg


SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.83 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 – SN: 945

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 16, 2019

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/11/2018	Annual	9/11/2019	1045
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402

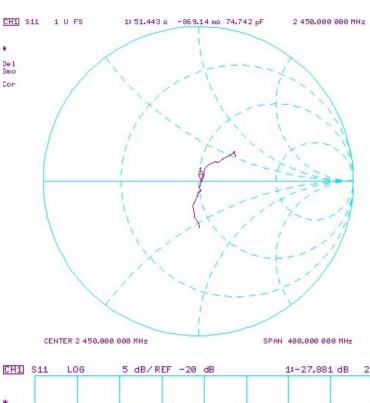
Measurement Uncertainty = $\pm 23\%$ (k=2)

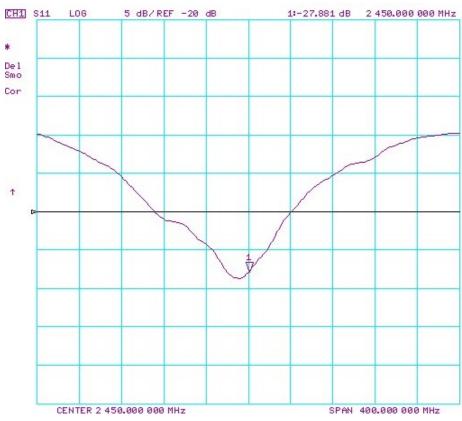
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 945	05/16/2019	rage 1014

DIPOLE CALIBRATION EXTENSION

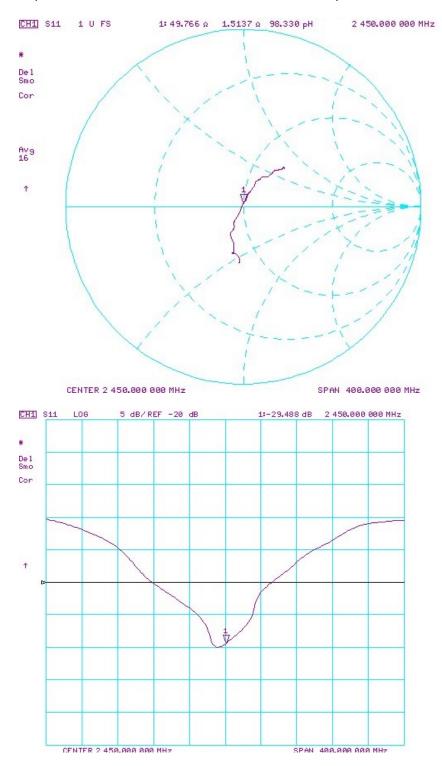
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)		Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/16/2018	5/16/2019	1.157	5.1	5.29	3.73%	2.38	2.44	2.52%	56.1	51.4	4.7	3.7	-0.9	4.6	-23.5	-27.9	-18.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/16/2018	5/16/2019	1.157	4.94	5.21	5.47%	2.32	2.38	2.59%	51.9	49.8	2.1	5	1.5	3.5	-25.7	-29.5	-14.70%	PASS

Object:	Date Issued:	Page 2 of 4
D2450V2 - SN: 945	05/16/2019	1 age 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 - SN: 945	05/16/2019	raye 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 - SN: 945	05/16/2019	raye 4 01 4

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 – SN: 945

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 16, 2020

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2019	Annual	7/10/2020	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/19/2020	Annual	3/19/2021	604
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7491
SPEAG	EX3DV4	SAR Probe	3/20/2020	Annual	3/20/2021	7421

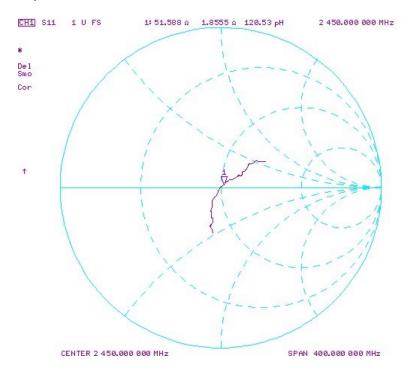
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	20K

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 945	5/16/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

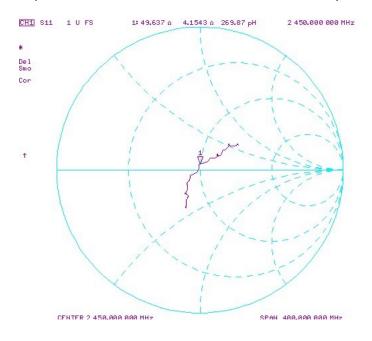
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

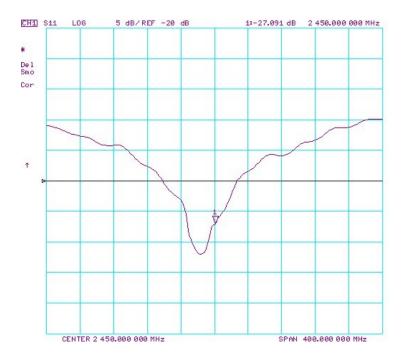

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm			(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/16/2018	5/16/2020	1.157	5.1	5.41	6.08%	2.38	2.52	5.88%	56.1	51.6	4.5	3.7	1.9	1.8	-23.5	-26.3	-11.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/16/2018	5/16/2020	1.157	4.94	5.18	4.86%	2.32	2.33	0.43%	51.9	49.6	2.3	E	4.0	0.8	-25.7	-27.1	-5.40%	PASS

Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 945	5/16/2020	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D2450V2 - SN: 945	5/16/2020	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 945	5/16/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No. D2600V2-1009 Jun 18

Object	D2600V2 - SNit	009	
On Hillians Manual Control		ė II viliopenių iliaili laveti iliapeli Lippoliti produktų piato dervat 1500 m. jaukas ir ir ir ir ir ir ir ir	SC / EVE 700 VHZ (1/28/1) BN
Calibration procedure(s)	:ОД (ЭДІ—1)=() (1) (Ді. 1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(/28/\
		odure ter dicole validationskile ab	2 0 (2,7 0 (1,0),7,7,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
Calibration date:	June 19, 2018		TOING TOING THE STREET OF THE CERTIFICATE, 7/6/20
	CHISTON CONTRACTOR		
			MML
This calibration cortificate docum	ents the traceability to nat	lonal standards, which realize the physical ur	nits of measurements (SI).
The measurements and the unce	ertainties with confidence p	robability are given on the following pages ar	nd are part of the certificate. 1/6/100
			11010
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.
			·
Calibration Equipment used (M&	TE critical for calibration)		
rimary Standards	ID#	Cal Date (Certificate No.)	Schadulad Collegation
	ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673)	Scheduled Calibration
Power meter NRP		04-Apr-18 (No. 217-02672/02673)	Apr-19
Power meter NRP Power sensor NRP-Z91	SN: 104778	04-Apr-18 (No. 217-02672/02679) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672/02679) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672/02679) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 28-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Regenerator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-16 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 28-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-16 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Altenuator Rype-N mismatch combination Reference Probe EX3DV4 RAC4 Recondary Standards Rower meter EPM-442A Rower sensor HP 8481A ROWER SENSOR HP 8481A REGENERATOR RACS SMT-06 Retwork Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-16 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 rower sensor NRP-Z91 leference 20 dB Altenuator leference Probe EX3DV4 rower sensor NRP-Z91 leference Probe EX3DV4 rower meter EPM-442A lower sensor HP 8481A lower sensor HP 8481A lower sensor HP 8481A lower sensor HP 8481A lif generator R&S SMT-06 letwork Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-16 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Regenerator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-16 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Reference Probe SMT-06 Reference Probe EX3DV4 Re	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-16 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		m = m =

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.31 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1009_Jun18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 5.0 jΩ	
Return Loss	- 26.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.3 Ω - 4.8 jΩ
Return Loss	- 22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 12, 2007

Certificate No: D2600V2-1009_Jun18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.06.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1009

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7) @ 2600 MHz; Calibrated: 30.12.2017

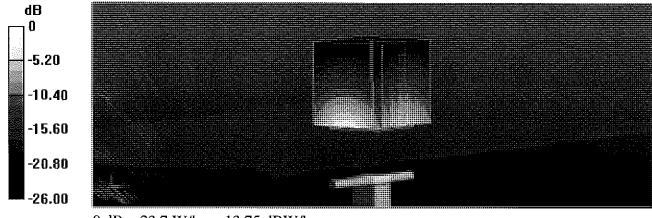
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

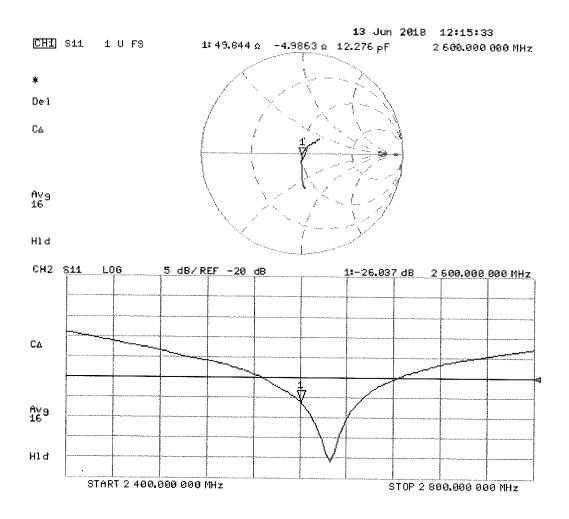
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.9 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 28.4 W/kg


SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.38 W/kg

Maximum value of SAR (measured) = 23.7 W/kg

0 dB = 23.7 W/kg = 13.75 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.06.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1009

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81) @ 2600 MHz; Calibrated: 30.12.2017

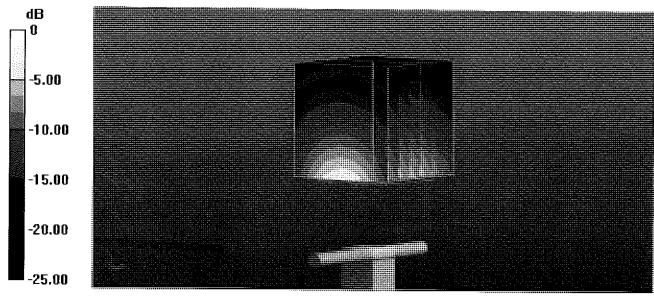
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

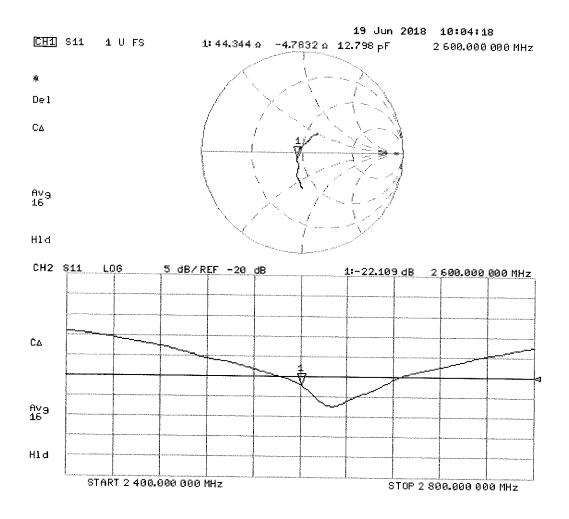
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5nim, dy=5mm, dz=5mm

Reference Value = 109.4 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 28.7 W/kg


SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.31 W/kg

Maximum value of SAR (measured) = 23.7 W/kg

0 dB = 23.7 W/kg = 13.75 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1009

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 19, 2019

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description		Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	E4438C	ESG Vector Signal Generator	6/26/2018	Annual	6/26/2019	MY42081752
Agilent	85033E	3.5mm Standard Calibration Kit	8/13/2018	Annual	8/13/2019	MY53402352
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/11/2018	Annual	9/11/2019	1045
SPEAG	ES3DV3	SAR Probe	11/19/2018	Annual	11/19/2019	3318
SPEAG	EX3DV4	E-field Probes	2/19/2019	Annual	2/19/2020	7427
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/14/2018	Annual	8/14/2019	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	1403

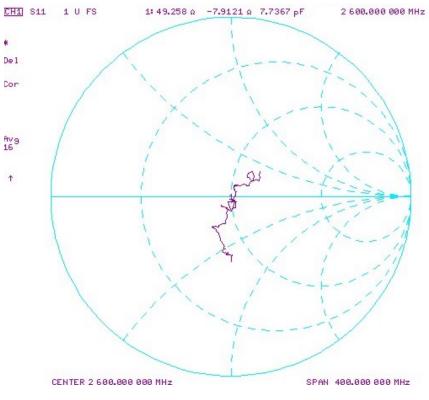
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1009	06/19/2019	rage 1014

DIPOLE CALIBRATION EXTENSION

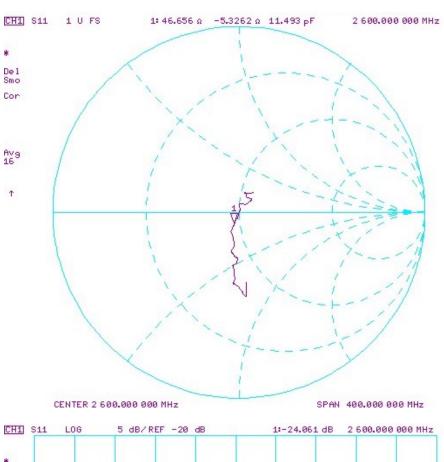
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date		W/kg @ 20.0 dBm	asm	(%)	W/kg @ 20.0 dBm	Head SAR (10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
6/19/2018	6/19/2019	1.153	5.58	5.87	5.20%	2.51	2.61	3.98%	49.8	49.3	0.5	-5	-7.9	2.9	-26	-23.2	10.70%	PASS
Calibration Date	Extension Date	Delay (ns)	W/kg @ 20.0 dBm	asm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Body (dB)	Deviation (%)	
6/19/2018	6/19/2019	1.153	5.55	5.39	-2.88%	2.5	2.39	-4.40%	44.3	46.7	2.3	-4.8	-5.3	0.5	-22.1	-24.1	-8.90%	PASS

Object:	Date Issued:	Page 2 of 4
D2600V2 - SN: 1009	06/19/2019	rage 2 or 4


Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2600V2 – SN: 1009	06/19/2019	rage 5 or 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 - SN: 1009	06/19/2019	raye 4 01 4

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1009

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 19, 2020

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2020	Annual	1/14/2021	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2019	Annual	7/10/2020	1402
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	1/20/2020	Annual	1/20/2021	3837
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7491

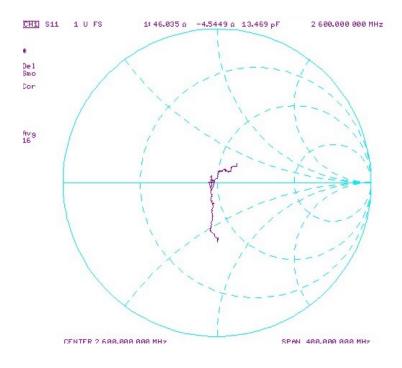
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	30K

Object:	Date Issued:	Page 1 of 4
D2600V2 - SN: 1009	6/19/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

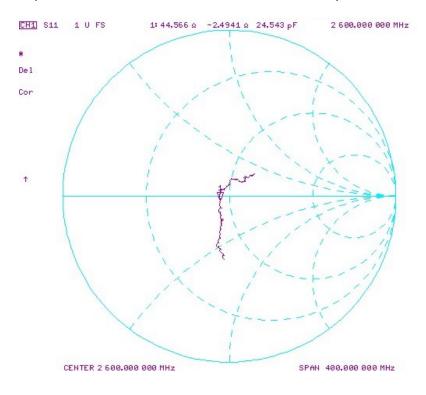
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 20.0 dBm	asm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
6/19/2018	6/19/2020	1.153	5.58	5.76	3.23%	2.51	2.55	1.59%	49.8	46	3.8	-5	-4.5	0.5	-26	-23.9	8.10%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm			(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
6/19/2018	6/19/2020	1.153	5.55	5.59	0.72%	2.5	2.44	-2.40%	44.3	44.6	0.3	-4.8	-2.5	2.3	-22.1	-24	-8.60%	PASS

Object:	Date Issued:	Page 2 of 4
D2600V2 - SN: 1009	6/19/2020	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2600V2 - SN: 1009	6/19/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 – SN: 1009	6/19/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrassa 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2600V2-1069_Sep17

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1069

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

5CV 10/03/0017

Calibration date:

September 11, 2017

9/10/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

13NW

All calibrations have been conducted in the closed laboratory facility; environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Арг-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	-
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	May-18 · Mar-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN; US37292783	07-Oct-15 (In house check Oct-16)	
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check; Oct-18 In house check: Oct-17
	Name	Function	Signature
Callbrated by:	Michael Weber	Laboratory Technician	1111/12
Approved by:	Katja Pokovic	Technical Manager	MIEX)
· 		. Townseat Wallaget	Jex Of

Issued: September 11, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1069_Sep17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1069_Sep17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1 Ω - 6.1 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 4.7 jΩ
Return Loss	- 24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 17, 2013

DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;

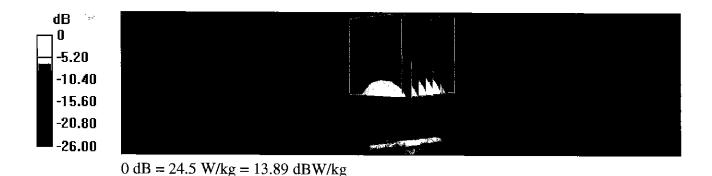
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

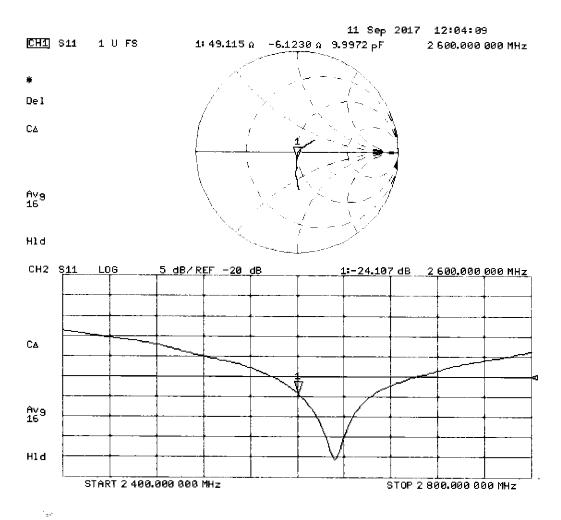
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.4 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.45 W/kg

Maximum value of SAR (measured) = 24.5 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.23$ S/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

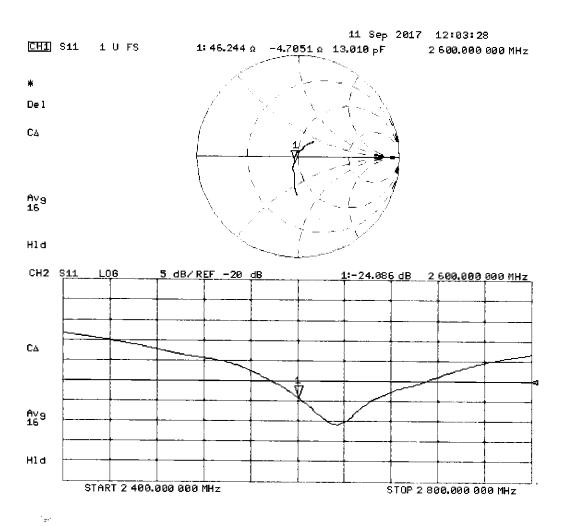
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.7 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 29.9 W/kg


SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1069

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 10, 2018

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533
SPEAG	ES3DV3	SAR Probe	4/12/2018	Annual	4/12/2019	3275
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/12/2018	Annual	4/12/2019	501

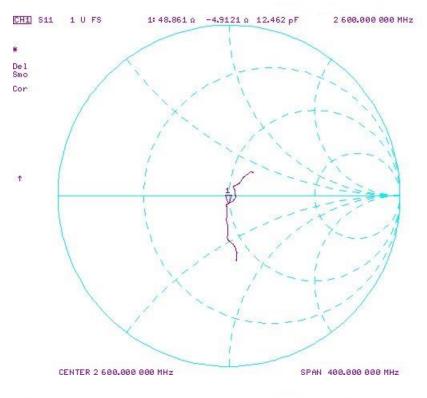
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Tenget
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	301

Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1069	09/10/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

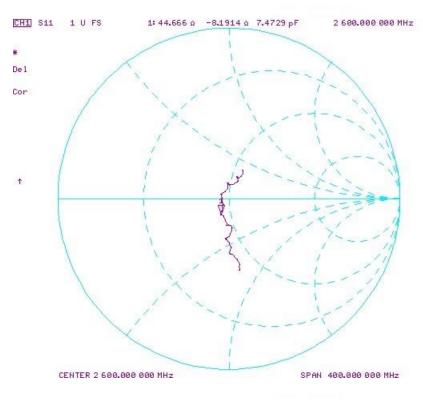
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

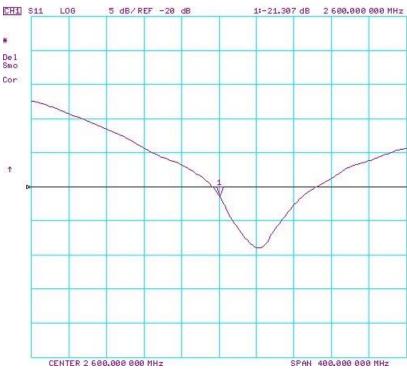

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/10/2018	1.152	5.69	5.52	-2.99%	2.54	2.51	-1.18%	49.1	48.9	0.2	-6.1	-4.9	1.2	-24.1	-25.8	-7.10%	PASS
Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	asm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Body (dB)	Body (dB)	Deviation (%)	
9/11/2017	9/10/2018	1.152	5.53	5.28	-4.52%	2.48	2.35	-5.24%	46.2	44.7	1.5	-4.7	-8.2	3.5	-24.1	-21.3	11.60%	PASS

Object:	Date Issued:	Page 2 of 4	
D2600V2 – SN: 1069	09/10/2018	Faye 2 01 4	


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D2600V2 – SN: 1069	09/10/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object: Date Issued: D2600V2 – SN: 1069 09/10/2018	Date Issued:	Page 4 of 4
D2600V2 – SN: 1069	09/10/2018	Page 4 of 4

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1069

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 9, 2019

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	E4438C	ESG Vector Signal Generator	6/27/2019	Annual	6/27/2020	MY45093852
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	11/1/2017	Biennial	11/1/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	EX3DV4	SAR Probe	1/24/2019	Annual	1/24/2020	7490
SPEAG	DAE4	Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	1532

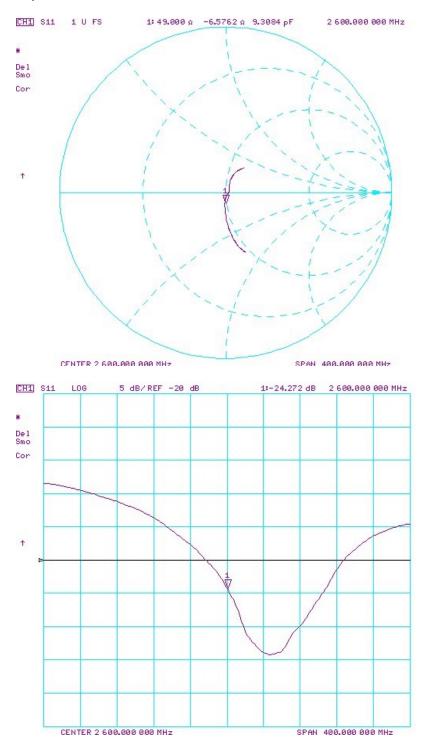
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

Object:	Date Issued:	Page 1 of 4
D2600V2 - SN: 1069	09/09/2019	Page 1 of 4

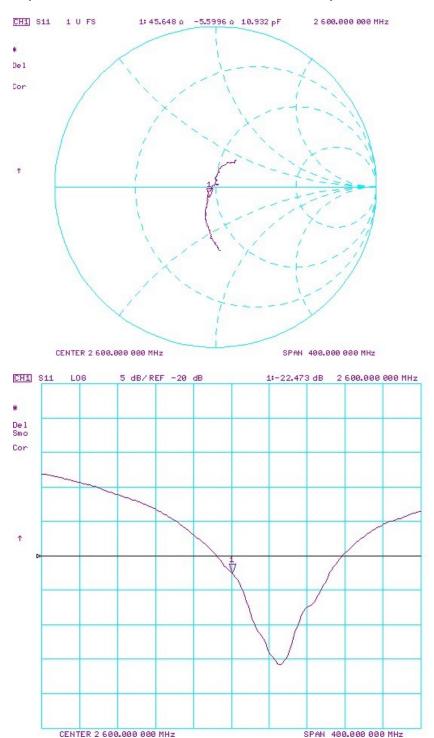
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/9/2019	1.152	5.69	5.29	-7.03%	2.54	2.37	-6.69%	49.1	49	0.1	-6.1	-6.6	0.5	-24.1	-24.3	-0.80%	PASS
Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	asm	(%)	dBm	(10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Body (dB)	Body (dB)	Deviation (%)	
9/11/2017	9/9/2019	1.152	5.53	5.73	3.62%	2.48	2.55	2.82%	46.2	45.6	0.6	-4.7	-5.6	0.9	-24.1	-22.5	6.60%	PASS


Object:	Date Issued:	Page 2 of 4
D2600V2 - SN: 1069	09/09/2019	rage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 2 of 4
D2600V2 - SN: 1069	09/09/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 - SN: 1069	09/09/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Tes

Confilicate No: D5GHzV2-1123 Mar 18

Object	D5GHzV2 - SN:1	123	
Calibration procedure(s)	QA CAL-22.v2	dure for dipole validation kits bet	ween 3:6 GHz 3/2/ 5C 3/12
	Galibration proce	dure for dipole validation kits per	ween 3-6 Gmz 3/21/
			1.0
Callbration date:	March 13, 2018		34
			3/12
		ional standards, which realize the physical uni	its of measurements (SI).
he measurements and the unce	riainties with confidence p	robability are given on the following pages an	id are part of the certificate.
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 ± 3)°C	ilts of measurements (SI), and are part of the certificate.
Calibration Equipment used (M&	TE critical for calibration)		,
	t control of odibiations		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
ONO 301301 14111 -2.31			
	SN; 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Reference 20 dB Attenuator	SN; 5058 (20k) SN: 5047.2 / 06327	07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18
Reference 20 dB Attenuator Type-N mismatch combination	, , ,	• •	•
Reference 20 dB Attenuator Гуре-N mismatch combination Reference Probe EX3DV4	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 5047.2 / 06327 SN: 3503	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17)	Apr-18 Dec-18
Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Gecondary Standards	SN: 5047.2 / 06327 SN: 3503 SN: 601	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Apr-18 Dec-18 Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 5047.2 / 06327 SN: 3503 SN: 601	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house)	Apr-18 Dec-18 Oct-18 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Becondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222)	Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222)	Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223)	Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (In house check Oct-16)	Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Leif Klysner	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (In house check Oct-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician	Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 Signature
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Leif Klysher	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician	Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Leif Klysner	07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (In house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (In house check Oct-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician	Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 Signature

Certificate No: D5GHzV2-1123_Mar18

Page 1 of 13

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		* - *

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 19.5 % (k=2)

Page 3 of 13 Certificate No: D5GHzV2-1123_Mar18

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1123_Mar18

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.52 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1123_Mar18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	53.2 Ω - 5.2 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.2 Ω - 0.4 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$56.7 \Omega + 0.9 j\Omega$
Return Loss	- 23.9 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.6 Ω - 4.3 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.0 Ω - 0.3 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	57.8 Ω + 1.0 jΩ
Return Loss	- 22.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

Certificate No: D5GHzV2-1123_Mar18 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 13.03.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1123

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\epsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.94$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.1$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017,
 ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.12 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.34 V/m; Power Drift = -0.09 dB

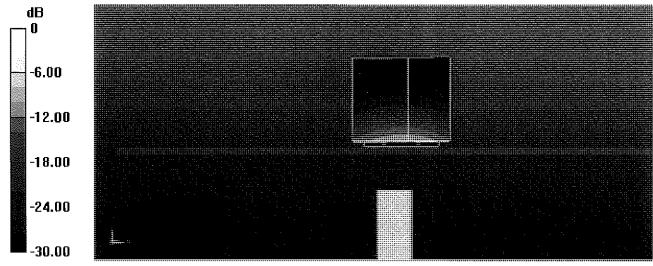
Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

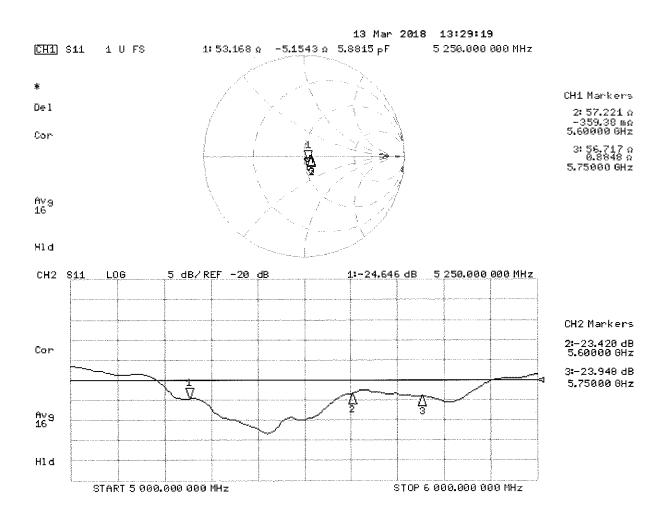
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 70.38 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.29 W/kg


Maximum value of SAR (measured) = 19.1 W/kg

Certificate No: D5GHzV2-1123_Mar18 Page 8 of 13

0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.03,2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1123

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 5.49$ S/m; $\epsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.97$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.18$ S/m; $\epsilon_r = 46.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017,
 ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.35 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63,20 V/m; Power Drift = -0.06 dB

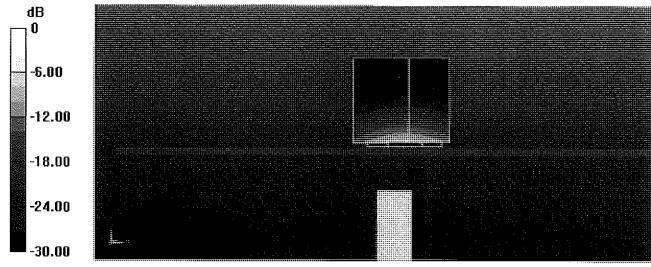
Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

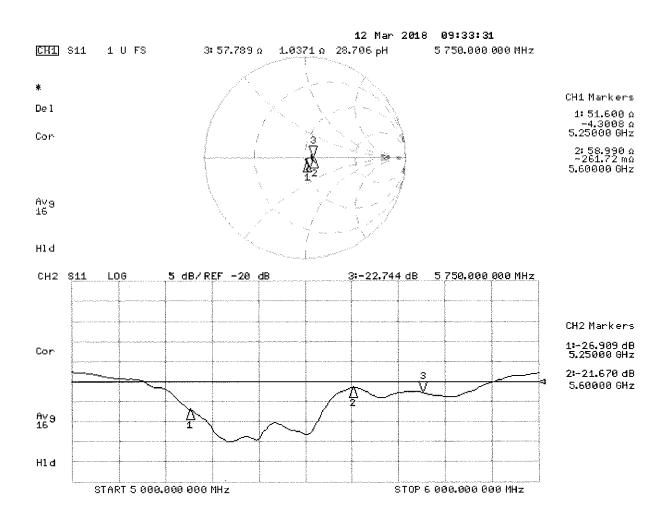
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 61.74 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.1 W/kg


Maximum value of SAR (measured) = 18.5 W/kg

Certificate No: D5GHzV2-1123_Mar18

0 dB = 18.5 W/kg = 12.67 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D5GHzV2 – SN: 1123

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 3/12/2019

Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330158
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/18/2018	Annual	10/18/2019	1364
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7491

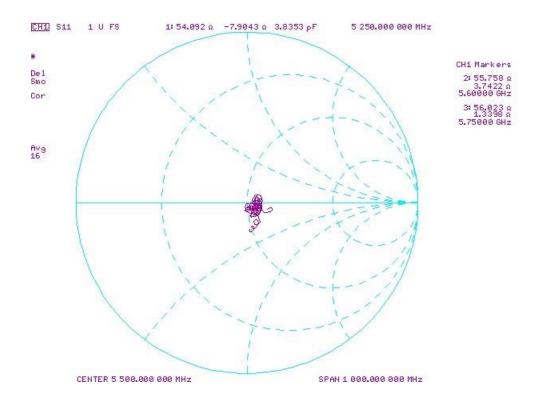
Measurement Uncertainty = ±23% (k=2)

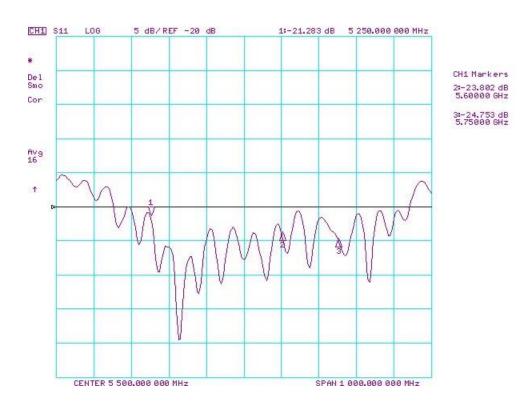
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Tinger
Approved By:	Kaitlin O'Keefe	Managing Director	30K

Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1123	3/12/2019	1 age 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

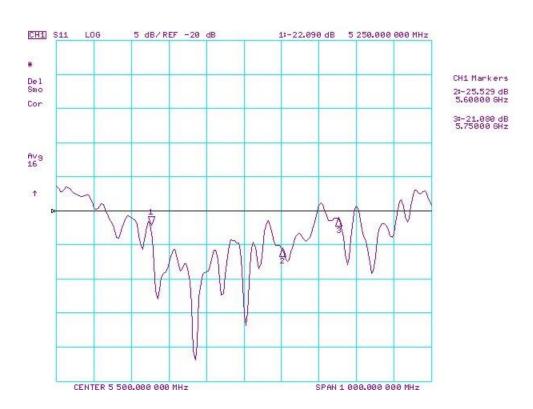

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FA IL
5250	3/13/2018	3/12/2019	1.205	4.08	3.84	-5.88%	1.18	1.09	-7.63%	53.2	54.1	0.9	-5.2	-7.9	2.7	-24.6	-21.3	13.40%	PASS
5600	3/13/2018	3/12/2019	1.205	4.26	4	-6.10%	1.22	1.13	-7.38%	57.2	55.8	1.4	-0.4	3.7	4.1	-23.4	-23.8	-1.70%	PASS
5750	3/13/2018	3/12/2019	1.205	4.03	3.73	-7.44%	1.15	1.06	-7.83%	56.7	56	0.7	0.9	1.3	0.4	-23.9	-24.8	-3.80%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 17.0 dBm	(9/)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FA IL
5250	3/13/2018	3/12/2019	1.205	3.7	3.83	3.51%	1.03	1.07	3.88%	51.6	53.7	2.1	-4.3	-7.3	3	-26.9	-22.1	17.80%	PASS
5600	3/13/2018	3/12/2019	1.205	3.88	3.97	2.32%	1.09	1.09	0.00%	59	55.3	3.7	-0.3	1.2	1.5	-21.7	-25.5	-17.50%	PASS
5750	3/13/2018	3/12/2019	1.205	3.74	3.76	0.53%	1.04	1.03	-0.96%	57.8	59.1	1.3	1	3.3	2.3	-22.7	-21.1	7.00%	PASS

Object:	Date Issued:	Page 2 of 4	
D5GHzV2 – SN: 1123	3/12/2019	raye 2 01 4	

Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1123	3/12/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

(Object:	Date Issued:	Page 4 of 4
[05GHzV2 – SN: 1123	3/12/2019	raye 4 01 4

PCTEST

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D5GHzV2 – SN: 1123

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 3/12/2020

Description: SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2020	Annual	2/13/2021	1403
SPEAG	EX3DV4	SAR Probe	2/19/2020	Annual	2/19/2021	7427

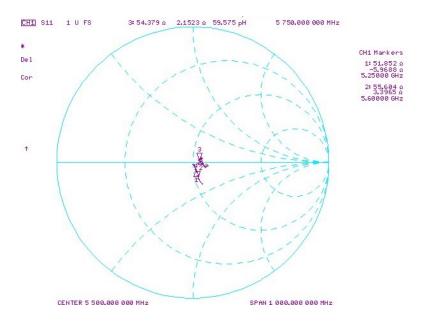
Measurement Uncertainty = $\pm 23\%$ (k=2)

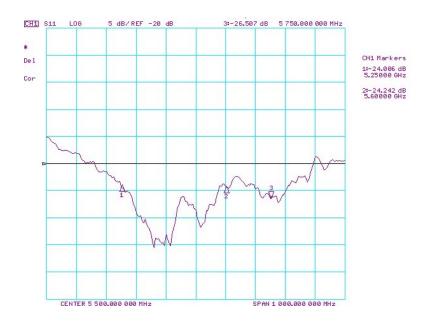
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	Parker Jones
Approved By:	Kaitlin O'Keefe	Managing Director	201

Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1123	3/12/2020	rage 1014

DIPOLE CALIBRATION EXTENSION

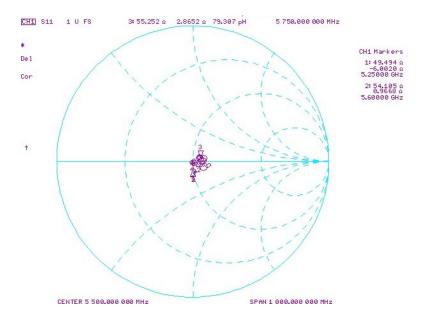
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	(10a) M/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FA IL
5250	3/13/2018	3/12/2020	1.205	4.080	3.87	-5.15%	1.175	1.09	-7.23%	53.2	51.9	1.3	-5.2	-6.0	0.8	-24.6	-24.0	2.40%	PASS
5600	3/13/2018	3/12/2020	1.205	4.255	4.13	-2.94%	1.215	1.16	-4.53%	57.2	55.6	1.6	-0.4	3.4	3.8	-23.4	-24.2	-3.40%	PASS
5750	3/13/2018	3/12/2020	1.205	4.030	3.84	-4.71%	1.145	1.07	-6.55%	56.7	54.4	2.3	0.9	2.2	1.3	-23.9	-26.5	-10.90%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FA IL
5250	3/13/2018	3/12/2020	1.205	3.700	3.55	-4.05%	1.030	0.99	-4.17%	51.6	49.5	2.1	-4.3	-6.0	1.7	-26.9	-27.0	-0.40%	PASS
5600	3/13/2018	3/12/2020	1.205	3.880	3.87	-0.26%	1.085	1.06	-2.30%	59.0	54.1	4.9	-0.3	1.0	1.3	-21.7	-24.0	-10.60%	PASS
5750	3/13/2018	3/12/2020	1.205	3.735	3.62	-3.08%	1.040	0.99	-4.62%	57.8	55.3	2.5	1.0	2.9	1.9	-22.7	-23.8	-4.80%	PASS

Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1123	3/12/2020	1 aye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1123	3/12/2020	raye 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1123	3/12/2020	raye 4 01 4

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Certificate No: EX3-7427_Feb20

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7427

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

February 19, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	in house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

Signature Name Function Claudio Leubler Laboratory Technician Calibrated by: Katja Pokovic Technical Manager Approved by:

Issued: February 20, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7427_Feb20 Page 1 of 23

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
S Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

Certificate No: EX3-7427_Feb20

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

 NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

• Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

February 19, 2020 EX3DV4 - SN:7427

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7427

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.54	0.41	0.59	± 10.1 %
DCP (mV) ^B	99.7	100.2	101.0	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	175.5	± 3.5 %	± 4.7 %
	1	Υ	0.00	0.00	1.00		192.4	:	
		Z	0.00	0.00	1.00		177.5		
10352-	Pulse Waveform (200Hz, 10%)	Х	20.00	88.68	18.70	10.00	60.0	± 3.2 %	± 9.6 %
AAA		Y	1.39	60.67	7.81		60.0		
		Z	20.00	89.53	19.23		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	90.95	18.66	6.99	80.0	± 2.2 %	± 9.6 %
AAA		Y	1.04	61.79	6.95		80.0		
		Z	20.00	92.76	19.65		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	97.43	20.39	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	0.41	60.00	4.54		95.0		
		Z	20.00	101.24	22,26		95.0	<u> </u>	
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	111.17	25.26	2.22	120.0	± 1.7 %	± 9.6 %
AAA		Y	0.00	152.14	31.98		120.0		
		Z	20.00	118.52	28.55	ļ	120.0		
10387-	QPSK Waveform, 1 MHz	X	1.85	69.14	16.52	1.00	150.0	± 3.7 %	± 9.6 %
AAA	·	Y	1.36	66.74	14.17	1	150.0]	
		Z	1.83	68.63	16.34		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.45	70.30	17.11	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	1.85	66.91	15.17]	150.0		
		Z	2.45	70.17	17.00		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.96	71.31	19.32	3.01	150.0	± 1.4 %	± 9.6 %
AAA	·	Υ	2.03	66.08	16.97		150.0]	}
		Z	3.12	72.49	19.87]	150.0		
10399-	64-QAM Waveform, 40 MHz	Х	3.64	68.07	16.44	0.00	150.0	± 2.3 %	± 9.6 %
AAA		Y	3.22	66.43	15.48		150.0]	
		Z	3.64	68.02	16.39		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.75	65.60	15.67	0.00	150.0	± 4.2 %	± 9.6 %
AAA		Y	4.65	65.95	15.78		150.0]	
		Z	4.76	65.54	15.62		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7427

Sensor Model Parameters

	C1 fE	C2 fE	α V-1	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V ¹	Т6
X	39.8	298.30	35.94	9.17	0.00	5.06	0.97	0.27	1.00
Υ	29.1	224.68	37.73	3.23	0.19	5.02	0.00	0.26	1.01
Z	42.1	315.28	35.81	8.93	0.00	5.07	1.34	0.20	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-32.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

February 19, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7427

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.02	10.02	10.02	0.63	0.80	± 12.0 %
835	41.5	0.90	9.58	9.58	9.58	0.65	0.85	± 12.0 %
1750	40.1	1.37	8.42	8.42	8.42	0.35	0.86	± 12.0 %
1900	40.0	1.40	8.12	8.12	8.12	0.30	0.86	± 12.0 %
2300	39.5	1.67	7.53	7.53	7.53	0.35	0.90	± 12.0 %
2450	39.2	1.80	7.22	7.22	7.22	0.35	0.90	± 12.0 %
2600	39.0	1.96	7.00	7.00	7.00	0.35	0.90	± 12.0 %
5250	35.9	4.71	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.70	4.70	4.70	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

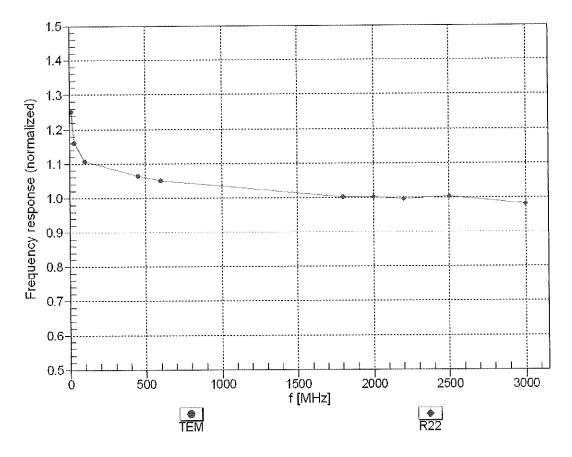
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

February 19, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7427

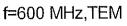
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.16	10.16	10.16	0.51	0.80	± 12.0 %
835	55.2	0.97	9.93	9.93	9.93	0.47	0.80	± 12.0 %
1750	53.4	1.49	7.92	7.92	7.92	0.42	0.86	± 12.0 %
1900	53.3	1.52	7.65	7.65	7.65	0.46	0.86	± 12.0 %
2300	52.9	1.81	7.45	7.45	7.45	0.38	0.90	± 12.0 %
2450	52.7	1.95	7.26	7.26	7.26	0.39	0.90	± 12.0 %
2600	52.5	2.16	7.08	7.08	7.08	0.37	0.90	± 12.0 %
5250	48.9	5.36	4.70	4.70	4.70	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.24	4.24	4.24	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.31	4.31	4.31	0.50	1.90	± 13.1 %

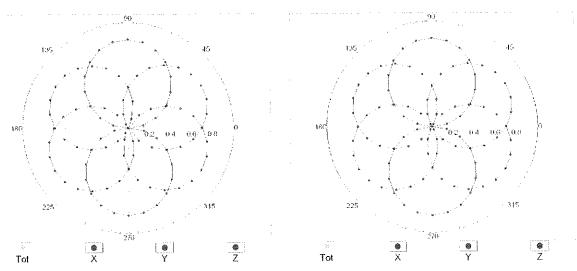

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

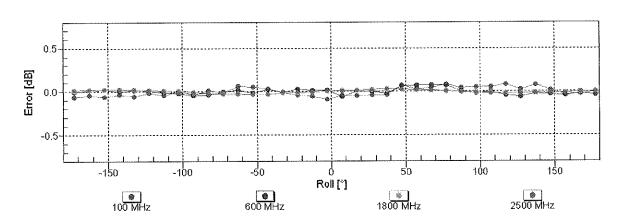
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is


always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

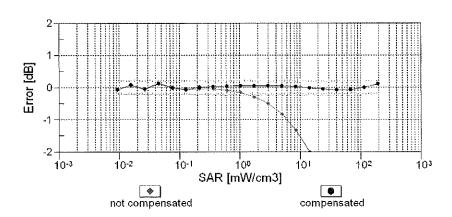
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=1800 MHz,R22



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

February 19, 2020

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

100

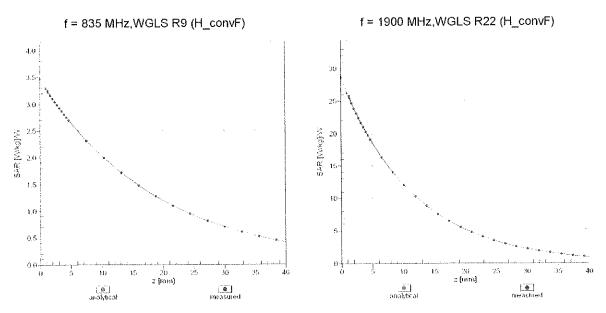
SAR [mW/cm3]

 10^{2}

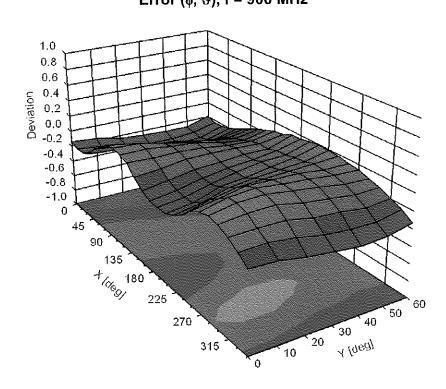
compensated

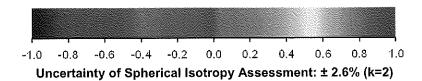
 10^{3}

10-2


not compensated

10-3


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


February 19, 2020

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4- SN:7427

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6%
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6%
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10102	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.29	± 9.6 %
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	10.01	± 9.6 %
10103	CAG	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 04-QAM)	LTE-FDD	5,80	
10100	UAG	ELETED (OUT DIVIN, 100 /6 ND, 10 MITE, QEON)	LEICHOU	U,OU	± 9.6 %

40400	040	LITE EDD (OO EDAM 4000) DD 40 MILE 40 OAM	LIFE EDD	C 40	1060
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6 %
10140 10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD LTE-FDD	6.49 6.53	± 9.6 % ± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.65	± 9.6 %
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3.8 MHz, 04-QAM)	LTE-FDD	5.76	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QFSR) LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 10-QAM)	LTE-FDD	6.72	± 9.6 %
10147	CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.60	± 9.6 %
10150	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6%
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6%
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6%
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAG		LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6%
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6%
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6%
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50 8.09	±9.6%
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN WLAN	8.12	±9.6 %
10194 10195	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6 % ±9.6 %
10195	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSN)	WLAN	8.13	± 9.6 %
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 10-QAM)	WLAN	8.27	± 9.6 %
10138	CAC	IEEE 802.11n (HT Mixed, 03 Mbps, 04-QAM)	WLAN	8.03	± 9.6 %
102.10	J 0/10	There over the first minor the mond, of ord	TY 1-1 1 T	1 0.00	0.0 /0

10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	LAZE AND	0.40	
10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC		WLAN	8.27	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10225	CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) UMTS-FDD (HSPA+)	WLAN	8.08	± 9.6 %
10225	CAB		WCDMA	5.97	± 9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6 %
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	+	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9,19	± 9.6 %
<u> </u>	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9,91	± 9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5,81	± 9.6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10299	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %

19300 AAD LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) LTB-FDD 6.60	± 9.6 %
10302	± 9.6 %
Symbols	± 9.6 %
10303 AAA IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) WIMAX 12:52 WIMAX IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) WIMAX 15:24 Symbols) WIMAX 15:24 WIMAX IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 18 WIMAX 14:67 Symbols) WIMAX 14:67 WIMAX WIMAX 15:24 WIMAX W	2 313 70
10305	±9.6%
10305	± 9.6 %
Symbols AAA IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 WIMAX 14.67 Symbols IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 WIMAX 14.49 Symbols IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 WIMAX 14.49 IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) WIMAX 14.46 IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 WIMAX 14.57 WIMAX AAA IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 WIMAX 14.57 WIMAX AAA IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 WIMAX 14.57 WIMAX AAA IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 WIMAX 14.57 WIMAX AAA IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 WIMAX 14.57 WIMAX AAA IEEE 802.11e WIFI 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) WIAAN 17.11 USA IEEE 802.11g WIFI 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) WIAAN 17.11 USA IEEE 802.11g WIFI 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) WIAAN 1.71 WIAAN IEEE 802.11g WIFI 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) WIAAN 1.71 WIAAN IEEE 802.11g WIFI 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) WIAAN 8.36 WIAAN ABA IEEE 802.11g WIFI 2.4 GHz (GPS-DM) 6 Mbps, 96pc duty cycle) WIAAN 8.36 WIAAN ABA IEEE 802.11g WIFI 2.4 GHz (GPS-DM) 6 Mbps, 96pc duty cycle) WIAAN 8.36 WIAAN APUS Wixerform (2001tz, 10%) Generic 0.90 WIAAN 0.35 WIAA	± 9.6 %
10306	
10307	± 9.6 %
Symbols	
10308	± 9.6 %
10309	
10310	± 9.6 %
10310	± 9.6 %
Symbols	1000
10311	± 9.6 %
10313	1000
10314	± 9.6 %
10315	± 9.6 %
10316	± 9.6 %
10317	± 9.6 %
10352	_
10353	± 9.6 %
10354	± 9.6 %
10355	± 9.6 %
10356	± 9.6 %
10387	± 9.6 %
10388	± 9.6 %
10396	± 9.6 %
10399	± 9.6 %
10400	± 9.6 %
10401 AAD IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) WLAN 8.60 10402 AAD IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle) WLAN 8.53 10403 AAB CDMA2000 (1xEV-DO, Rev. 0) CDMA2000 3.76 10404 AAB CDMA2000 (1xEV-DO, Rev. A) CDMA2000 3.77 10406 AAB CDMA2000 (1xEV-DO, Rev. A) CDMA2000 5.22 10410 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL LTE-TDD 7.82 Subframe=2,3,4,7,8,9 Subframe Conf=4) Generic 8.54 10415 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 1.54 10416 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 8.23 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.14 Long preambule) Short preambule) 10422 AAB IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, WLAN 8.19 Short preambule) Short preambule) WLAN 8.32 10423 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.47 10424 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN 8.47 10425 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.38 10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) 10447 AAD LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) UCDMA 8.60 10435 AAF LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 1.56 Subframe=2,3,4,7,8,9 Subframe=2,3,4,	± 9.6 %
10402 AAD IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle) WLAN 8.53 10403 AAB CDMA2000 (1xEV-DO, Rev. 0) CDMA2000 3.76 10404 AAB CDMA2000 (1xEV-DO, Rev. A) CDMA2000 3.77 10406 AAB CDMA2000, RC3, SO32, SCH0, Full Rate CDMA2000 5.22 10410 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL LTE-TDD 7.82 Subframe=2,3,4,7,8,9, Subframe Conf=4 CGMA2000 S.22 10414 AAA WLAN CCDF, 64-QAM, 40MHz Generic 8.54 10415 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 1.54 10416 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 8.23 10417 AAB IEEE 802.11g WiFi 2.4 GHz (DFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.14 Long preambule) Short preambule) WLAN IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, WLAN 8.19 10422 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 10423 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN 8.47 10424 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.40 10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) WLAN 8.41 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.45 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.38 10431 AAO LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 7.56 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD LTE-FDD T.56 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD LTE-FDD T.56 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD LTE-FDD LT	± 9.6 %
10403	± 9.6 %
10404 AAB CDMA2000 (1xEV-DO, Rev. A) CDMA2000 3.77 10406 AAB CDMA2000, RC3, SO32, SCH0, Full Rate CDMA2000 5.22 10410 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL: Subframe-2,3,4,7,8,9, Subframe Conf=4) LTE-TDD 7.82 10414 AAA WLAN CCDF, 64-QAM, 40MHz Generic 8.54 10415 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 1.54 10416 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 8.23 10417 AAB IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.14 10419 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.19 10422 AAB IEEE 802.11g (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.47 10423 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) WLAN 8.47 10424 AAB IEEE 802.11n (HT Greenfield, 79, 0	± 9.6 %
10406 AAB CDMA2000, RC3, SO32, SCH0, Full Rate CDMA2000 5.22 10410 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL. Subframe=2,3,4,7,8,9, Subframe Conf=4) LTE-TDD 7.82 10414 AAA WLAN CCDF, 64-QAM, 40MHz Generic 8.54 10415 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 1.54 10416 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 8.23 10417 AAB IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) WLAN 8.14 10419 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.19 10420 AAB IEEE 802.11g (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 10421 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) WLAN 8.47 10422 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) WLAN 8.40 10423 AAB <td>± 9.6 %</td>	± 9.6 %
10410	± 9.6 %
Subframe=2,3,4,7,8,9, Subframe Conf=4 10414	± 9.6 %
10415 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) WLAN 1.54 10416 AAA IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10417 AAB IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) WLAN 8.14 10419 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.19 10420 AAB IEEE 802.11g (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 10421 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN 8.47 10422 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.47 10423 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.41 10425 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 64-QAM) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 64-QAM) WLAN 8.45 10427 AAB	
10416 AAA IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10417 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) WLAN 8.14 10419 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.19 10422 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 10423 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN 8.47 10424 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.40 10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 15 MHz	± 9.6 %
10417 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) WLAN 8.23 10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) WLAN 8.14 10419 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.19 10422 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 10423 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN 8.47 10424 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.40 10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10432 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	± 9.6 %
10418	± 9.6 %
Long preambule	± 9.6 %
10419 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) WLAN 8.19 10422 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 10423 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN 8.47 10424 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.40 10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.34 10432 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-F	± 9.6 %
Short preambule	1
10422 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN 8.32 10423 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN 8.47 10424 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.40 10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.34 10432 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL LTE-FDD 7.56 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56 <td>± 9.6 %</td>	± 9.6 %
10423 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN 8.47 10424 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.40 10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.38 10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL LTE-TDD 7.82 Subframe=2,3,4,7,8,9) LTE-FDD 7.56	+.000
10424 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN 8.40 10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.38 10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL LTE-TDD 7.82 Subframe=2,3,4,7,8,9) LTE-FDD 7.56	±9.6%
10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN 8.41 10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.38 10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-FDD 7.56 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	±9.6%
10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN 8.45 10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.38 10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	± 9.6 % ± 9.6 %
10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN 8.41 10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.38 10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	± 9.6 %
10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD 8.28 10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.38 10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	± 9.6 %
10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD 8.38 10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	± 9.6 %
10432 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD 8.34 10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	± 9.6 %
10433 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	± 9.6 %
10434 AAA W-CDMA (BS Test Model 1, 64 DPCH) WCDMA 8.60 10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	± 9.6 %
10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD 7.82 10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	± 9.6 %
Subframe=2,3,4,7,8,9)	± 9.6 %
10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56	
	± 9.6 %
10448 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.53	± 9.6 %
10449 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) LTE-FDD 7.51	± 9.6 %
10450 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48	±9.6 %

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10453	AAD	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8,63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6,55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
40400		Subframe=2,3,4,7,8,9)			
10462	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.30	± 9.6 %
40400	A A D	Subframe=2,3,4,7,8,9)			
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.56	± 9.6 %
40464	1000	Subframe=2,3,4,7,8,9)			
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10465	AAC	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL	I TE TOO	0.00	1000
10400	AAC	LIE-IDD (SC-FDWA, TRB, 3 WHZ, T0-QAW, UL	LTE-TDD	8.32	± 9.6 %
10466	AAC	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL	1 TE TOO	0.57	4.0.0.0/
10400	AAC	Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL	LTE TOO	7 00	
10407	AAL	Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL	LITETOD	~ ~ ~	1000
10400	___	Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.56	1000
10403	771	Subframe=2,3,4,7,8,9)	LICTION	0.30	± 9.6 %
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10470	_ CCI	Subframe=2,3,4,7,8,9)	LIE-100	1.02	19.0%
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
10-11	10"	Subframe=2,3,4,7,8,9)		0.02	2.0.0 /6
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
	' ' ' '	Subframe=2,3,4,7,8,9)		0.01	2 0.0 /6
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)		1.02	2.0.0 /0
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.57	±9.6%
		Subframe=2,3,4,7,8,9)			
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.18	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.45	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL	LTE-TDD	7.71	± 9.6 %
40.100		Subframe=2,3,4,7,8,9)			
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.39	± 9.6 %
40404	^ ^ ~	Subframe=2,3,4,7,8,9)		0.4=	
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.47	± 9.6 %
40405	A A F	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL		7.50	
10485	AAF		LTE-TDD	7.59	± 9.6 %
10486	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL	LTC TOD	0 20	1069
10400		Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	± 9.6 %
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8,60	± 9.6 %
10101	, , , ,	Subframe=2,3,4,7,8,9)	- (- ()	0,00	
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL	LTE-TDD	7.70	± 9.6 %
	,	Subframe=2,3,4,7,8,9)		0	
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6 %
		Subframe=2,3,4,7,8,9)			
					
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %

10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL	LTE-TDD	7.74	±9.6 %
10492	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.41	± 9.6 %
10493	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL.	LTE-TDD	8.55	± 9.6 %
10494	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
10495	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.37	± 9.6 %
10496	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10497	AAB	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.67	± 9.6 %
10498	AAB	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.40	± 9.6 %
10499	AAB	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.68	± 9.6 %
10500	AAC	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL	LTE-TDD	7.67	± 9.6 %
10501	AAC	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.44	± 9.6 %
10502	AAC	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.52	± 9.6 %
10503	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL	LTE-TDD	7.72	± 9.6 %
10504	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6%
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6%
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6%
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6 %
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6 %
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 16 Mbps, 35pc duty cycle)	WLAN	7.97	± 9.6 %
10523	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6 %
	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN		± 9.6 %
10523				8.08	
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	± 9.6 %
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN	8.43	± 9.6 %
		LIETE 000 44cc MIT (20ML) MOCZ 00cc duty ovoic)	WLAN	1 0 00	1 10000
10532 10533	AAB AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	WLAN	8.29 8.38	± 9.6 % ± 9.6 %

40004	A A D	LEEE DOO 44 WEEK (SOUTH ALOOG OO III)	1		
10534 10535	AAB AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN WLAN	8.32	± 9.6 %
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.44 8.54	± 9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	± 9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	± 9.6 %
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	WLAN	8.38	± 9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10552	AAB	IEEE 802,11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10553 10554	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10554	AAC AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN WLAN	8.50	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.52 8.61	
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty	WLAN	8.25	± 9.6 %
		cycle)			- 5.0 ,0
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty	WLAN	8.45	± 9.6 %
		cycle)			
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty	WLAN	8.13	± 9.6 %
		cycle)			
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty	WLAN	8.00	± 9.6 %
10568	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty	WLAN	8.37	± 9.6 %
10300	////	Cycle)	VVLAN	0.37	19.6 %
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty	WLAN	8.10	± 9.6 %
	' " " '	cycle)	112.11	0.10	20.0 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty	WLAN	8.30	± 9.6 %
		cycle)			
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6%
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6%
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty	WLAN	8.59	± 9.6 %
10570	A A A	Cycle)	10/1 041	0.00	1000
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6%
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty	WLAN	8.70	± 9.6 %
10077	\.\.\\\	1286 002.1 19 WIF1 2.4 GHZ (D333-OFDWI, 12 WIDPS, 90PC duty cycle)	AAFVIA	0.70	1 3.0 70
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty	WLAN	8.49	± 9.6 %
10070	7001	cycle)	******	0.40	= 0.0 /8
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty	WLAN	8.36	± 9.6 %
		cycle)			
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty	WLAN	8.76	± 9.6 %
		cycle)			
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty	WLAN	8.35	± 9.6 %
40500		cycle)			
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty	WLAN	8.67	± 9.6 %
10500	AAD	cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	10(1 0 81	0.50	1000
10583 10584	AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN WLAN	8.59 8.60	± 9.6 %
10584	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	± 9.6 % ± 9.6 %
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %
_,,,,,,,,	1,010	TEEL COLST TWITTE OF IL (OF DWI, TO WIDES, SOPE duty Cycle)	4 x FL/11 A	1 0.40	1 - 0.0 /0

			T		
10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	± 9.6 %
10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6 %
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.63	± 9.6 %
10592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6 %
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6%
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	± 9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WLAN	8.72	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	WLAN	9.03	± 9.6 %
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	± 9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 30pc duty cycle)	WLAN	8.82	± 9.6 %
			WLAN	8.64	± 9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	WLAN	8.59	± 9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	± 9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	± 9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	± 9.6 %
10621	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	± 9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	WLAN	8.96	± 9.6 %
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	WLAN	8.96	± 9.6 %
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6 %
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6%
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN	8.85	± 9.6 %
10630	}	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	± 9.6 %
	AAB		WLAN	8.81	± 9.6 %
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)			
10632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	WLAN WLAN	8.74	±9.6%
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)		8.83	±9.6 %
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6%
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8.86	± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6 %
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	WLAN	9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	± 9.6 %
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	± 9.6 %
10646	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	± 9.6 %
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10652	AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
10653	AAE	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %
10000	11070	TELE TOP (OF Direct TO HILLE) E THE OLIT OUDDING 14 101		1	,

10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	I TO TOO	T 0.00	1000
10655	AAE	LTE-TDD (OFDMA, 13 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	LTE-TDD	7.21	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	10.00	± 9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	6.99	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	3.98	± 9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	2.22	± 9.6 %
10670	AAA	Bluetooth Low Energy	Test	0.97	± 9.6 %
10671	AAA	IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)	Bluetooth WLAN	2.19	± 9.6 %
10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc duty cycle)	WLAN	9.09	± 9.6 %
10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78 8.74	± 9.6 %
10675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc duty cycle)	WLAN	8.90	± 9.6 % ± 9.6 %
10676	AAA	IEEE 802.11ax (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10677	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc duty cycle)	WLAN	8.73	± 9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc duty cycle)	WLAN	8.80	± 9.6 %
10681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc duty cycle)	WLAN	8.62	± 9.6 %
10682	AAA	IEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)	WLAN	8.26	± 9.6 %
10685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10686	AAA	IEEE 802.11ax (20MHz, MCS3, 99pc duty cycle)	WLAN	8.28	± 9.6 %
10687	AAA	IEEE 802.11ax (20MHz, MCS4, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10688	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10690	AAA	IEEE 802.11ax (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc duty cycle)	WLAN	8,29	± 9.6 %
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc duty cycle)	WLAN	8.57	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc duty cycle)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc duty cycle)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc duty cycle)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc duty cycle)	WLAN	8.56	± 9.6 %
10705		IEEE 802.11ax (40MHz, MCS10, 90pc duty cycle)	WLAN	8.69	± 9.6 %
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc duty cycle)	WLAN	8.66	± 9.6 %
10707 10708	AAA AAA	IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)	WLAN WLAN	8.32 8.55	± 9.6 % ± 9.6 %
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)	WLAN	8.33	±9.6 %
10709	AAA	IEEE 802.11ax (40MHz, MCS3, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10711	AAA	IEEE 802.11ax (40MHz, MCS3, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc duty cycle)	WLAN	8.67	± 9.6 %
10713	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc duty cycle)	WLAN	8.26	± 9.6 %
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10716	AAA	IEEE 802.11ax (40MHz, MCS9, 99pc duty cycle)	WLAN	8.30	± 9.6 %
10717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle)	WLAN	8.24	± 9.6 %
10719	AAA	IEEE 802.11ax (80MHz, MCS0, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10720	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc duty cycle)	WLAN	8.87	± 9.6 %
10721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)	WLAN	8.55	± 9.6 %
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10724	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10726	AAA	IEEE 802.11ax (80MHz, MCS7, 90pc duty cycle)	WLAN	8.72	± 9.6 %

	T		1 1 2 11 2 2 1		. 0 0 0/
10727	AAA	IEEE 802.11ax (80MHz, MCS8, 90pc duty cycle)	WLAN	8.66	± 9.6 %
10728	AAA	IEEE 802.11ax (80MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6 %
10729	AAA	IEEE 802.11ax (80MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6 %
10730	AAA	IEEE 802.11ax (80MHz, MCS11, 90pc duty cycle)	WLAN	8,67	± 9.6 %
10731	AAA	IEEE 802.11ax (80MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6%
10732	AAA	IEEE 802.11ax (80MHz, MCS1, 99pc duty cycle)	WLAN	8.46	± 9.6 %
10733	AAA		WLAN	8.40	± 9.6 %
	<u> </u>	IEEE 802.11ax (80MHz, MCS2, 99pc duty cycle)			
10734	AAA	IEEE 802.11ax (80MHz, MCS3, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6%
10738	AAA	IEEE 802,11ax (80MHz, MCS7, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10740	·•		WLAN	8.48	± 9.6 %
	AAA	IEEE 802.11ax (80MHz, MCS9, 99pc duty cycle)			
10741	AAA	IEEE 802.11ax (80MHz, MCS10, 99pc duty cycle)	WLAN	8.40	± 9.6 %
10742	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.6%
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.6%
10744	AAA	IEEE 802.11ax (160MHz, MCS1, 90pc duty cycle)	WLAN	9.16	± 9.6 %
10745	AAA	IEEE 802.11ax (160MHz, MCS2, 90pc duty cycle)	WLAN	8.93	± 9.6 %
10746	AAA	IEEE 802.11ax (160MHz, MCS3, 90pc duty cycle)	WLAN	9,11	± 9.6 %
10747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc duty cycle)	WLAN	9.04	± 9.6 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc duty cycle)	WLAN	8.93	± 9.6 %
10749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc duty cycle)	WLAN	8.81	± 9.6 %
				-	
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc duty cycle)	WLAN	9.00	± 9.6 %
10754	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6 %
10755	AAA	IEEE 802.11ax (160MHz, MCS0, 99pc duty cycle)	WLAN	8.64	± 9.6 %
10756	AAA	IEEE 802.11ax (160MHz, MCS1, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10757	AAA	IEEE 802.11ax (160MHz, MCS2, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10758	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc duty cycle)	WLAN	8.69	± 9.6 %
10759	AAA	IEEE 802.11ax (160MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6%
10760	AAA	IEEE 802.11ax (160MHz, MCS5, 99pc duty cycle)	WLAN	8.49	± 9.6 %
10761	AAA	IEEE 802.11ax (160MHz, MCS6, 99pc duty cycle)	WLAN	8.58	± 9.6 %
10762	AAA	IEEE 802.11ax (160MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6%
10763	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc duty cycle)	WLAN	8.53	± 9.6 %
10764	AAA	IEEE 802.11ax (160MHz, MCS9, 99pc duty cycle)	WLAN	8.54	± 9.6 %
10765	AAA	IEEE 802.11ax (160MHz, MCS10, 99pc duty cycle)	WLAN	8.54	± 9.6 %
10766	AAA	IEEE 802.11ax (160MHz, MCS11, 99pc duty cycle)	WLAN	8.51	± 9.6 %
10767	AAB	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	7.99	± 9.6 %
			TDD		
10768	AAB	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	± 9.6 %
1 .0.00	, , , ,		TDD	1	
10700	A A D	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	± 9.6 %
10769	AAB	DG NK (CP-UPDIN, TRB, TO MITZ, QPOK, TO KITZ)		0.01	1 3.0 /0
	ļ		TDD		
10770	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
			TDD		
10771	AAB	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
		,	TDD		
10772	AAB	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1	8.23	± 9.6 %
10//2	~~~	1 30 1417 (OF "OF DIVI, 1 17D, 30 1VII 12, QI 317, 13 KI 12)	TDD	0.20	2 0.0 /1
	ļ.,,	50 1/2 (07 07011 4 22 40 111 0701/ 45 111)		0.00	1000
10773	AAB	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1	8.03	± 9.6 %
			TDD		
10774	AAB	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
			TDD	1	
10776	AAB	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.30	± 9.6 %
1 .0, ,	1,0,0	John Composition of the second to the second	TDD	3.50	- 5.5 /6
10770	A A D	FC NID (CD OEDM 50% PD 20 MU- ODEK 45 kU-)	5G NR FR1	8.34	± 9.6 %
10778	AAB	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)		0.34	1 3.0 %
			TDD	0.00	
10780	AAB	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1	8.38	± 9.6 %
			TDD		
10781	AAB	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1	8.38	± 9.6 %
			TDD		-
L					

AAB	5G NR (CP-OFDM 50% RB 50 MHz OPSK 15 kHz)	I 5G NR FR1	8 43	± 9.6 %
	, , , , , , , , , , , , , , , , , , ,	TDD		
	, , , , , , , , , , , , , , , , , , ,	TDD		± 9.6 %
		5G NR FR1 TDD	8.29	± 9.6 %
		5G NR FR1 TDD	8.40	± 9.6 %
AAB	<u> </u>	5G NR FR1 TDD	8.35	± 9.6 %
AAB	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
AAB	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1	8.39	± 9.6 %
AAB	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
AAB	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1	8.39	± 9.6 %
91 AAB 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)		5G NR FR1	7.83	± 9.6 %
92 AAB 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)		5G NR FR1	7.92	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1	7.95	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1	7.82	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1	7.84	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1	7.82	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1	8.01	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1	7.89	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	7.93	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	7.89	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1	7.87	± 9.6 %
AAB	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1	7.93	± 9.6 %
AAB	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
AAB	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1	8.37	± 9.6 %
AAB	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
AAB	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
AAB	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	8.35	± 9.6 %
AAB	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1	8.35	± 9.6 %
7770				
AAB	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1	8.34 8.33	± 9.6 % ± 9.6 %
AAB	, , , , , , , , , , , , , , , , , , , ,	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1		
AAB AAB	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1	8.33	± 9.6 %
AAB AAB	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	8.33 8.30	± 9.6 % ± 9.6 %
	AAB	AAB 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	AAB 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 26 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30	AAB 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR FR1 8.31 TDD TDD TDD TDD TDD TDD TDD TDD TDD TD

10824	AAB	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1	8.39	±9.6 %
10825	AAB	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	8.41	± 9.6 %
10827	AAB	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	8.42	± 9.6 %
10828	AAB	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1	8.43	± 9.6 %
10829	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10830	AAB	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1	7.63	± 9.6 %
10831	AAB	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1	7.73	± 9.6 %
10832	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1	7.74	± 9.6 %
10833	AAB	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1	7.70	± 9.6 %
10834	34 AAB 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)		5G NR FR1	7.75	± 9.6 %
10835	AAB	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1	7.70	±9.6 %
10836	AAB	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1	7.66	± 9.6 %
10837	AAB	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1	7.68	± 9.6 %
10839	AAB	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10840	AAB	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1	7.67	± 9.6 %
10841	AAB	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	± 9.6 %
10843	AAB	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6 %
10844	AAB	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10846	AAB	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10854	AAB	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10855	AAB	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10856	AAB	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10857	AAB	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10858	AAB	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10859	AAB	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10860	AAB	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10861	AAB	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10863	AAB	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10864	AAB	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6 %
10866	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6 %
10868	AAB	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6 %
10869	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %

10870	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10877	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
10881	AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10882	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2	6.57	± 9.6 %
10884	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885	AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6 %
10886	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2	7.78	±9.6%
10888	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2	8.35	± 9.6 %
10889	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2	8.02	± 9.6 %
10890	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2	8.40	± 9.6 %
10891	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2	8.13	± 9.6 %
10892	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2	8.41	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No: EX3-7420_Nov19

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7420

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

12/3/19

Calibration date:

November 21, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	07-Oct-19 (No. DAE4-660_Oct19)	Oct-20
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check; Oct-20

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: November 25, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 -- SN:7420 November 21, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7420

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.50	0.54	0.60	± 10.1 %
DCP (mV) ^B	97.3	99.6	94.7	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max de∨.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	162.4	± 3.5 %	± 4.7 %
		Υ	0.00	0.00	1.00		177.4		
		Z	0.00	0.00	1.00		171.4		
10352-	Pulse Waveform (200Hz, 10%)	X	4.31	71.65	13.39	10.00	60.0	± 3.1 %	± 9,6 %
AAA		Y	15.00	85.05	17.43		60.0		
		Z	15.00	87.48	19.56		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	6.47	77.45	14.14	6.99	80.0	± 2.2 %	±9.6 %
AAA		Y	15.00	86.69	17.05		80.0		
		Z	15.00	90.07	19.30		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	8.47	80.44	13.43	3.98	95.0	± 1.5 %	± 9.6 %
AAA		Υ	15.00	91.13	17.86		95.0		
		Z	15.00	95.07	19.75		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.55	63.78	6.77	2.22	120.0	± 1.5 %	± 9.6 %
AAA		Y	15.00	98.96	20.26		120.0		
		Z	15.00	82.91	12.31		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.53	60.00	6.91	0.00	150.0	± 5.4 %	± 9.6 %
AAA	1	Y	0.62	61.35	8.24		150.0		
		Z	7.72	252.62	33.06		150.0		
10388-	QPSK Waveform, 10 MHz	X	1.93	66.24	14.75	0.00	150.0	± 1.3 %	± 9.6 %
AAA	Table 1	Y	2.36	69.64	16.75		150.0		
		Z	2.14	69.79	16.96		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.52	67.79	17.44	3,01	150.0	± 6.2 %	± 9.6 %
AAA		Y	2.86	71.03	19.25		150.0		
		Z	1,53	63.83	16.48		150.0		-
10399-	64-QAM Waveform, 40 MHz	X	3.31	66.27	15.31	0.00	150.0	± 2.3 %	± 9.6 %
AAA		Υ	3.60	67.83	16.29		150.0		
		Z	3.40	67.44	16.34		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.65	65.13	15.28	0.00	150.0	± 4.6 %	± 9.6 %
AAA		Υ	4.72	65.49	15.5 9		150.0		
		Z	4.60	65.93	16.07		150.0]	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-7420_Nov19

[^] The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:7420 November 21, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7420

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Χ	38.9	297.10	36.87	6.46	0.34	5.03	0.00	0.43	1.01
Υ	38.6	290.39	36.12	8.72	0.00	5.04	1.08	0.21	1,01
Z	25.9	209.27	4 1.14	5.69	0.45	5.10	0.00	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	76
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7420

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0,89	10.00	10.00	10.00	0.49	0.85	± 12.0 %
835	41.5	0.90	9.71	9.71	9.71	0.53	0.80	± 12.0 %
1750	40.1	1.37	8.39	8.39	8.39	0.45	0.87	± 12.0 %
1900	40.0	1.40	8.00	8.00	8.00	0.39	0.87	± 12.0 %
2300	39.5	1.67	7.74	7.74	7.74	0.34	0.90	± 12.0 %
2450	39.2	1.80	7.47	7.47	7.47	0.30	0.90	± 12.0 %
2600	39.0	1.96	7.28	7.28	7.28	0.46	0.85	± 12.0 %
5250	35.9	4.71	5.18	5.18	5.18	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.63	4.63	4.63	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.84	4.84	4.84	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

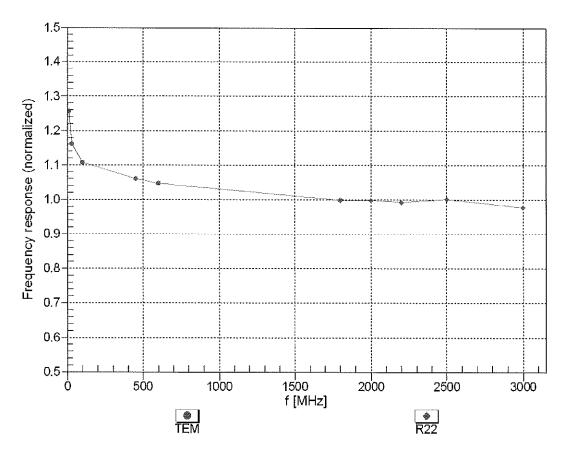
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7420

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.66	9.66	9.66	0.45	0.90	± 12.0 %
835	55.2	0.97	9.58	9.58	9.58	0.49	0.80	± 12.0 %
1750	53.4	1.49	8.01	8.01	8.01	0.36	0.87	± 12.0 %
1900	53.3	1.52	7.64	7.64	7.64	0.40	0.87	± 12.0 %
2300	52.9	1.81	7.59	7.59	7.59	0.47	0.86	± 12.0 %
2450	52.7	1.95	7.49	7.49	7.49	0.36	0.90	± 12.0 %
2600	52.5	2.16	7.30	7.30	7.30	0.26	0.90	± 12.0 %
5250	48.9	5.36	4.80	4.80	4.80	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.10	4.10	4,10	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.28	4.28	4.28	0.50	1.90	± 13.1 %

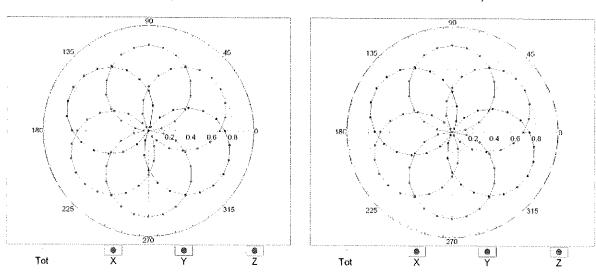
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

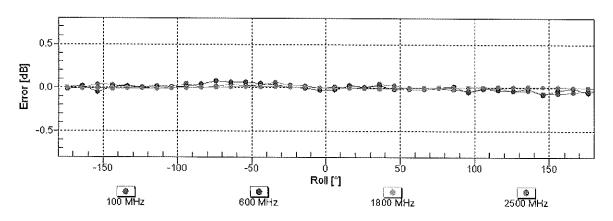

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^c At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^c Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

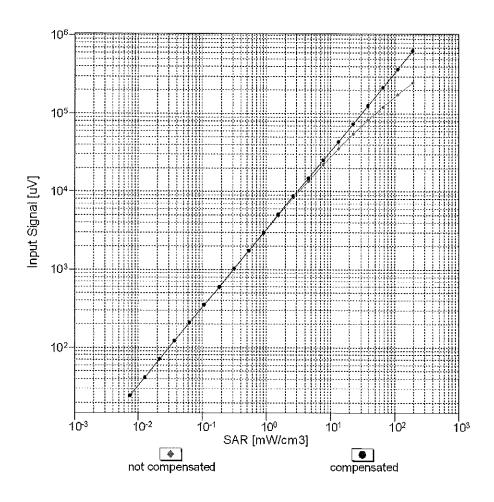
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

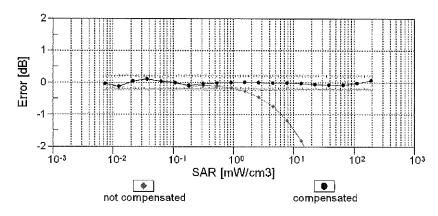

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



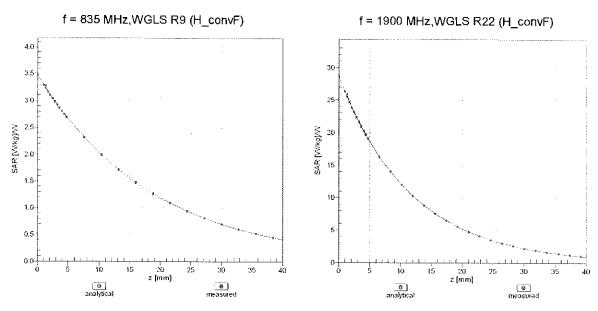
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

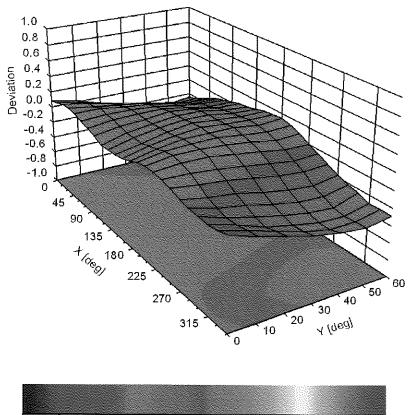
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4- SN:7420 November 21, 2019

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0		CW	CW	0.00	±4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6%
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6%
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6%
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5,30	±9.6%
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6%
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAC	IEEE 802,11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6%
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6%
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6%
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6%
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9,6 %
10105	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	10.01	±9.6 %
10108	CAG		LTE-FDD	5.80	± 9.6 %

EX3DV4- SN:7420 November 21, 2019

10100	CAC	LTE EDD (CC EDMA 4000) DD 40 MILE 46 OAM)	LITE COD	6.40	1000
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD LTE-FDD	6.43 5.75	± 9.6 % ± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QFSR)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6%
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6%
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6%
10142	CAE.	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6%
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6%
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152 10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6%
	 	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154 10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD LTE-FDD	5.75	±9.6 % ±9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43 5.79	
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QFSR)	LTE-FDD	6.49	±9.6 % ±9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6,43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6%
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6%
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6%
10181 10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	5.72	±9.6%
10182	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD LTE-FDD	6.52	±9.6%
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 13 MHz, 64-QAW)	LTE-FDD	6.50 5.73	± 9.6 % ± 9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %

T40000		LIEUE COO 44. CUT NO. 1. 40 CAMP. 40 CAMP.	144		
10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6 %
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10,26	± 9.6 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6%
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±96%
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6%
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6%
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9,6%
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6%
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6%
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6%
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6%
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3,46	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10293	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 30% RB, 20 MHz, QFSK)	LTE-FDD	5.72	± 9.6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QFSR)	LTE-FDD	6.39	
10299	WYU	LIL-I DD (OO-I DIWA, OO /O DD, O IWITE, TO-WAW)	LIL-TUU	<u> 0.58</u>	± 9.6 %

EX3DV4-- SN:7420 November 21, 2019

10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WiMAX	12,03	± 9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL	WIMAX	12.57	± 9.6 %
10002	7001	symbols)	VVIIVIA	12.01	± 9.0 /0
10303	AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	12.52	±9.6%
10304	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	11.86	±9.6 %
10305	AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15	WiMAX	15.24	± 9.6 %
		symbols)			_ = =
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18	WiMAX	14.67	± 9.6 %
		symbols)			
10307	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18	WiMAX	14.49	± 9.6 %
		symbols)			
10308	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WiMAX	14.46	± 9.6 %
10309	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18	WiMAX	14.58	±9.6 %
10010		symbols)			
10310	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18	WiMAX	14.57	± 9.6 %
10311	A A I D	symbols)	1 75 555	0.00	. 0 0 0/
10311	AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) iDEN 1:3	LTE-FDD	6.06	± 9.6 %
10313			iDEN	10.51	± 9.6 %
10314	AAA AAB	IDEN 1:6	IDEN	13.48	± 9.6 %
10316	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6 %
10310	AAC	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6%
10317	AAA	Pulse Waveform (200Hz, 10%)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%)	Generic	10.00	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 40%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%)	Generic	3.98	±9.6 %
10356	AAA		Generic	2.22	± 9.6 %
10336	AAA	Pulse Waveform (200Hz, 80%) QPSK Waveform, 1 MHz	Generic	0.97	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.10	± 9.6 %
10306	AAA	64-QAM Waveform, 100 kHz	Generic Generic	5.22	±9.6%
10399	AAA	64-QAM Waveform, 40 MHz		6.27	±9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Generic WLAN	6.27 8.37	±9.6 % ±9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.6 %
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9, Subframe Conf=4)	C12 100	1.02	20.070
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6%
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.14	± 9.6 %
		Long preambule)			
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8,19	±9.6 %
40:	<u> </u>	Short preambule)			
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10447	A A D	Subframe=2,3,4,7,8,9)	LTE ESS		. 0 0 0′
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6%
10448 10449	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	± 9.6 %
10449	AAC AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6 %
10400	LAMO	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9.6 %