

Brief Explanations on Processing Gain Data

1. The formula of Processing Gain is: $G_p = (S/N)o + M_j + L_{sys}$

Where G_p : Processing Gain;

$(S/N)o$: the ratio of signal energy vs noise power density. Based on the data provided by the chip set manufacturer, it is 16.4dB @11Mb/s, 13.4dB @5.5Mb/s, 13.3dB @2.0Mb/s, 10.3dB @1.0Mb/s;

L_{sys} : test system loss. The measurement result to our test set-up is 2.0dB;

M_j : Jamming Margin. It is the ratio of jammer vs WLAN channel signal;

2. The purpose of the measurement here is to figure out M_j at different frequencies. Processing Gain will be gotten through calculation based on the above formula at different frequencies;
3. During the tests (see the Block Diagram of Test Set-up), the input signal to RX is about -60dBm (not exactly at -60dBm) and M_j (dB) = Jammer level (dBm) - Channel signal level (dBm);
4. The criteria we define the transmission link failure is: $PER = 8\%$;
5. FCC defines that when testing the Processing Gain for a specific channel, if the frequency is f_0 , the jammer frequency has to scan from $f_0-8.5$ MHz to $f_0+8.5$ MHz with 50 KHz per step. In another word, 340 data will be taken just for a single channel measurement;
6. Having calculated out 340 Processing Gains for a specific channel, use the percentile average function of Microsoft Excel to figure out the final result.

Example: see the first row of 11Mb/s @ Channel 6

Frequency—Jammer frequency = $f_0-8.5 = 2437-8.5 = 2428.50$ MHz;

$(S/N)o$ —16.4 dB @11 Mb/s (see Item 1);

L_{sys} —2.0 dB (see Item 1);

PER — 8.0%, which is the failure criteria;

Jammer— -57.2dBm, which is the Jammer level @ $PER=8.0\%$;

M_j —Jamming Margin. 5.5 (dB) = -57.2 (dBm) - (-62.7) (dBm) (see Item 3). On here, also see the next page of spread sheet, which shows that XMIT level = -62.7 dBm);

G_p —Processing Gain = $(S/N)o + M_j + L_{sys} = 16.4 + 5.5 + 2.0 = 23.9$ (dB).

After having calculated out 340 G_p s, use the percentile function of Microsoft Excel, the final G_p of 11Mb/s @ Ch 6 is 12.9 dB. At the same time, incorporate those 340 data into f — G_p chart, you'll get a whole picture of it.

Chip/symbol rate, the symbol/bit rate and the Chip/bit

Bit rate	Chip/symbol rate	Bit/symbol rate	Chip/bit rate	Gp (dB)	Spec (dB)
1 Mbit/sec	11	1, DBPSK	11	13.2	10
2 Mbit/sec	11	2, DQPSK	5.5	12.6	10
5.5 Mbit/sec	8	4, CCK	2	13.4	10
11 Mbit/sec	8	8, CCK	1	12.9	10

Note: 1. Gp is Processing Gain;

2. Spec is Processing Gain specifications defined by FCC on DSSS systems.