DECLARATION OF COMPLIANCE SAR ASSESSMENT PCII Report Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory

Motorola Solutions Malaysia Sdn Bhd (Innoplex) Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. Date of Report: 10/24/2016 Report Revision: A

Responsible Engineer:Veeramani VeerapanReport Author:Veeramani VeerapanDate/s Tested:9/29/2016 - 10/06/2016Manufacturer:Motorola Solutions Inc.

DUT Description: Handheld Portable – 8/900 MHz 2.5W NKP GOB WIFI GNSS BT

Test TX mode(s): CW (PTT), Bluetooth, and WLAN 802.11 b/g/n

Max. Power output: 3.0 W (LMR 8/900 MHz Band), 10.0 mW (Bluetooth), 22.4 mW (802.11b), 8.3 mW

(802.11g), 12.6 mW (802.11n)

Nominal Power: 2.5 W (LMR 8/900 MHz Band), 8.9 mW (Bluetooth), 16.6 mW (802.11b), 6.6 mW

(802.11g), 10.0 mW (802.11n)

Tx Frequency Bands: LMR 806-825 MHz, 851-870 MHz, 896-902 MHz & 935-941 MHz; Bluetooth 2.402-

2.480GHz; WLAN 802.11 b/g/n 2.412-2.462 GHz

Signaling type: FM (LMR), FHSS (Bluetooth), 802.11 b/g/n (WLAN)

Model(s) Tested: PMUF1895A

Model(s) Certified: PMUF1895A & PMUF1894A

Serial Number(s): 126TSR0669

Classification: Occupational/Controlled

FCC ID: AZ489FT7067; LMR 806-824 MHz, 851-869 MHz, 896-902 MHz & 935-941 MHz,

Bluetooth 2.402-2.480 GHz, WLAN 2.412-2.462 GHz

This report contains results that are immaterial for FCC equipment approval, which are

clearly identified.

IC: 109U-89FT7067; This report contains results that are immaterial for IC equipment

approval, which are clearly identified.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Tiong

Tiong Nguk Ing Deputy Technical Manager Approval Date: 11/03/2016 Certification Date: 11/03/2016

Certification No.: L1161104

Part 1 of 2

1.0	Introduction	4
2.0	FCC SAR Summary	4
3.0	Abbreviations / Definitions	4
4.0	Referenced Standards and Guidelines	5
5.0	SAR Limits	6
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria	7
	7.1 Antennas	7
	7.2 Batteries	7
	7.3 Body worn Accessory	8
	7.4 Audio Accessory	8
8.0	Description of Test System	8
	8.1 Descriptions of Robotics/Probes/Readout Electronics	9
	8.2 Description of Phantom(s)	9
	8.3 Description of Simulated Tissue	10
9.0	Additional Test Equipment	10
10.0	SAR Measurement System Validation and Verification	11
	10.1 System Validation	
	10.2 System Verification	11
	10.3 Equivalent Tissue Test Results	12
11.0	Environmental Test Conditions	
12.0	DUT Test Setup and Methodology	14
	12.1 Measurements	
	12.2 DUT Configuration(s)	14
	12.3 DUT Positioning Procedures	
	12.3.1 Body	
	12.3.2 Head	15
	12.3.3 Face	
	12.4 DUT Test Channels	
	12.5 SAR Result Scaling Methodology	
	12.6 DUT Test Plan	
13.0	DUT Test Data	
	13.1 LMR assessments at the Body	
	13.2 LMR assessments at the Face	
	13.3 Shortened Scan Assessment	
14.0	Simultaneous Transmission between LMR, WLAN and BT	19
	Results Summary	
16.0	Variability Assessment	20
17.0	System Uncertainty	21

FCC	CID: AZ489FT7067 / IC: 109U-89FT7067	Report ID: P7083-EME-00002
API	PENDICES	
A	Measurement Uncertainty Budget	22
В	Probe Calibration Certificates	25
Par	t 2 of 2	
APl	PENDICES	
C	Dipole Calibration Certificates	2
D	System Verification Check Scans	12
E	DUT Scans	18
F	Shortened Scan of Highest SAR configuration	21
G	DUT Test Position Photos	

Report Revision History

Date	Revision	Comments
10/24/2016	A	Released of PCII results for design changes and new offered SMA antennas.

Antennas Dimension and photo......24

Η

1.0 Introduction

FCC ID: AZ489FT7067 / IC: 109U-89FT7067

This report details the utilization, test setup, test equipments, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number PMUF1895A. This device is classified as Occupational/Controlled. The information herein is to show evidence of Class II Permissive Change compliance base on SAR evaluation of a design change with replacement of antenna connector from ferrule connector to SMA type and new introduced antennas with SMA connector.

2.0 FCC SAR Summary

Table 1

Equipment	Engagenes hand (MHz)	Max Calc a	t Body (W/kg)	Max Calc at	Face (W/kg)
Class	Frequency band (MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR
TNF	806-941 MHz (LMR)	*5.77	3.96	*1.71	1.22
*DSS	2402-2480 MHz (Bluetooth)	NA	NA	NA	NA
DTS	2412-2462 MHz (WLAN 802.11 b/g/n)	0.0071	0.0023	0.0109	0.0033
Simultaneous Results		*5.78	3.96	1.72	1.22

^{*} Results not required per KDB 447498.

Note: * New highest reported SAR value for head, body-worn accessory, and simultaneous transmission exposure conditions are 1.71 W/kg, 5.77 W/kg, and 5.78 W/kg. (The initial filed results 1.41 W/kg, 5.04 W/kg and 5.05 W/kg are hereby replaced with results presented herein).

3.0 Abbreviations / Definitions

BT: Bluetooth

CNR: Calibration Not Required

CW: Continuous Wave

DSS: Direct Spread Spectrum

DTS: Digital Transmission System

DUT: Device Under Test

EME: Electromagnetic Energy

FHSS: Frequency Hopping Spread Spectrum

LMR: Land Mobile Radio

NA: Not Applicable NKP: No Keypad PTT: Push to Talk Li-Ion: Lithium-Ion

NiMH: Nickel Metal Hydrate

RF: Radio Frequency

SAR: Specific Absorption Rate

FCC ID: AZ489FT7067 / IC: 109U-89FT7067 Report ID: P7083-EME-00002

TNF: Licensed Non-Broadcast Transmitter Held to Face

WLAN: Wireless Local Area Network

WiFi: Wireless Fidelity

TIA: Telecommunications Industry Association

TX: Transmitter

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"

- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02

5.0 SAR Limits

Table 2

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /	(Occupational /		
EAI OSURE LIMITS	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

6.0 Description of Device Under Test (DUT)

This portable device operates in the LMR bands using frequency modulation (FM). This device also contains WLAN technology for data capabilities over 802.11 b/g/n wireless networks and Bluetooth technology for short range wireless devices.

The LMR bands in this device operates in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

This device also incorporates a Bluetooth v4.0, which include classis Bluetooth, and Bluetooth low energy. It is Class 1 Bluetooth device with Frequency Hopping Spread Spectrum (FHSS) technology. The Bluetooth radio modem is used to wireless link audio accessories. The maximum actual transmission duty cycle is imposed by the Bluetooth standard. The maximum duty cycle for BT is derived from 5-slots packet type operation which consists of receiving on 1-slot and transmitting on 5-slots, and thus maximum duty cycle = 77%.

WLAN 802.11 b/g/n operates using Direct Sequence Spread Spectrum (DSSS) and Orthogonal Frequency-Division Multiplexing (OFDM) accordance with the IEEE 802.11 b/g/n.

The intended operating positions are "at the face" with the DUT at least 2.5cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio. Operation at the body without an audio accessory attached is possible by means of BT accessories.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. The following section identifies the test criteria and details for each accessory category applicable for this PCII filing only. Detail listing of all approved offered accessories available in original filing report.

7.1 Antennas

There are optional new introduced removable antennas for this PCII filling. The Table below lists the antennas and their descriptions.

Table 3

Antenna Models	Description	Selected for test	Tested
NAF5087B	Whip Antenna, 806-870 MHz, ½ Wave; -3dBd	Yes	Yes
NAF5088B	Whip Antenna, 896-941 MHz, ½ Wave; -3dBd	Yes	Yes

7.2 Batteries

There are five batteries applicable for this PC II filling. The Table below lists the batteries and their descriptions.

Table 4

Battery Models	Description Selected for test		Tested	Comments
	Core Slim Li-Ion, 1650 mAh Battery 1600			
PMNN4406BR	Min 1650 Typical	Yes	Yes	
	Belize Slim Li-Ion, 2000 Min 2050			
PMNN4491A	Typical	Yes	Yes	
	Impress Li-Ion, 1650 mAh Slim Battery			
PMNN4407BR	1600 Min 1650 Typical	Yes	Yes	
	Belize Non-TIA High Capacity Low			
	Voltage Li-Ion Battery 2950 Min 3000			
PMNN4493A	Typical	Yes	Yes	
	Li-Mn 1400 mAh Low Temp -30C Battery			
	Submersible (IP57) 1300 Min 1400			
PMNN4435A	Typical	Yes	Yes	

7.3 Body worn Accessory

There are two body worn accessories applicable for this PC II filling. The table below describes the body worn accessories.

Table 5

Body worn Model	Description	Selected for test	Tested	Comments
HLN6602A	Chest Pack	Yes	Yes	
RLN4570A	Break-A-Way Chest Pack	Yes	Yes	

7.4 Audio Accessory

There are two audio accessories applicable for this PC II filling. The table below describes the description.

Table 6

Audio Acc. Model	Description	Selected for test	Tested	Comments
PMMN4024A	Remote Speaker MIC	Yes	Yes	
PMLN5102A	Core Ultra-Lite Headset	Yes	Yes	

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 7

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.8.2.969	DAE4	ES3DV3 EX3DV4 (E-Field)

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates.

The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

Table 8

Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)					
Triple Flat	NA	200MHz -6GHz; Er = 3-5, Loss Tangent = ≤0.05	280x175x175	(IIIII)	(mm)	(11111)					
SAM	NA	300MHz -6GHz; Er = < 5, Loss Tangent = ≤0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05					
Oval Flat	V	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190								

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 9. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)
Table 9

	900 MHz			
Ingredients	Head	Head		
Sugar	56.5	44.9		
Diacetin	0	0		
De ionized –	40.95	53.06		
Water	40.93	33.00		
Salt	1.45	0.94		
HEC	1	1		
Bact.	0.1	0.1		

9.0 Additional Test Equipment

The Table below lists additional test equipments used during the SAR assessment.

Table 10

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
Speag Probe	EX3DV4	3612	7/11/2016	7/11/2017
Speag Probe	ES3DV3	3196	11/17/2015	11/17/2016
Speag DAE	DAE4	684	4/29/2016	4/29/2017
Speag DAE	DAE4	688	4/21/2016	4/21/2017
Power Meter	E4418B	MY45100532	11/4/2015	11/4/2017
Power Sensor	8481B	SG41090248	12/14/2015	12/14/2016
Power Meter	E4418B	MY45100911	5/29/2015	5/29/2017
Power Sensor	8481B	MY41091170	11/11/2015	11/11/2016
Power Sensor	E4438C	MY45091270	7/26/2016	7/26/2018
Power Sensor	E4418B	MY45101014	11/4/2015	11/4/2017
Amplifier	10WD1000	28782	CNR	CNR
Signal Generator (Vector ESG 250KHz-6GHz)	E4438C	MY44270302	6/18/2015	6/18/2017
Signal Generator (Vector ESG 250KHz-6GHz)	E4438C	MY45091270	7/26/2016	7/26/2018

Continued Table 10

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
Dickson Temperature Recorder	TM320	12253047	11/19/2015	11/19/2016
Temperature Probe	80PK-25	080428.01	8/5/2016	8/5/2017
Thermometer	HH806AU	080307	4/8/2016	4/8/2017
Network Analyzer	E5071B	MY42403147	11/6/2015	11/6/2016
Dielectric Assessment Kit	DAK-12	1051	3/8/2016	3/8/2017
SPEAG Dipole	D900V2	1d025	3/20/2015	3/20/2017

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 11

Dates	Probe Calibration Point		Probe SN Measured Tiss Parameters			Validation					
	Foi	ші	SIN	σ	σ $\epsilon_{ m r}$		Linearity	Isotropy			
CW											
01/19/2016	Body	900	2106	1.10	52.4	Pass	Pass	Pass			
01/19/2016	Head	900	3196	1.01	39.7	Pass	Pass	Pass			
07/29/2016	Body	900	3612	1.10	52.8	Pass	Pass	Pass			
08/01/2016	Head	900	3012	1.01	40.0	Pass	Pass	Pass			

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 12

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	Results when normalized to 1W (W/kg)	Tested Date
3612 FC	FCC Body		10.8 +/- 10%	2.65	10.60	09/29/2016
3012	FCC Body	SPEAG D900V2 / 1d025		2.63	10.52	09/30/2016
	FCC Body			2.67	10.68	10/06/2016
3196 IE	IEEE/IEC Head		10.6 +/- 10%	2.58	10.32	10/04/2016
				2.63	10.52	10/05/2016

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 13

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
806.000	FCC Body	0.97 (0.92-1.02)	55.3 (52.5-58.1)	0.94	55.3	09/29/2016
800.000	IEEE/ IEC Head	0.90 (0.85-0.94)	41.6 (39.6-43.7)	0.90	41.4	10/04/2016
015 000	FCC Body	0.97 (0.92-1.02)	55.3 (52.5-58.0)	0.95	55.2	09/29/2016
815.000	IEEE/ IEC Head	0.90 (0.85-0.94)	41.6 (39.5-43.7)	0.91	41.2	10/04/2016
824.000	FCC Body	0.97 (0.92-1.02)	55.2 (52.5-58.0)	0.96	55.0	09/29/2016
024.000	IEEE/ IEC Head	0.90 (0.85-0.94)	41.6 (39.5-43.6)	0.91	41.2	10/04/2016
851.000	FCC Body	0.99 (0.94-1.04)	55.2 (52.4-57.9)	0.99	54.7	09/29/2016
831.000	IEEE/ IEC Head	0.92 (0.87-0.96)	41.5 (39.4-43.6)	0.94	40.9	10/04/2016
960 000	FCC Body	1.00 (0.95-1.05)	55.1 (52.4-57.9)	1.00	54.6	09/29/2016
860.000	IEEE/ IEC Head	0.93 (0.88-0.97)	41.5 (39.4-43.6)	0.95	40.8	10/04/2016
869.000	FCC Body	1.01 (0.96-1.06)	55.1 (52.3-57.9)	1.01	54.5	09/29/2016
809.000	IEEE/ IEC Head	0.94 (0.89-0.98)	41.5 (39.4-43.6)	0.96	40.7	10/04/2016

Continued Table 13

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
896.000	FCC Body	1.05 (0.99-1.10)	55.0 (52.3-57.8)	1.03	54.2	09/29/2016
890.000	IEEE/ IEC Head	0.97 (0.92-1.01)	41.5 (39.4-43.6)	1.01	40.0	10/05/2016
	FCC Body	1.05	55.0	1.04	54.2	09/29/2016
899.000		(1.00-1.10)	(52.3-57.8)	1.07	53.4	10/06/2016
	IEEE/ IEC Head	0.97 (0.92-1.02)	41.5 (39.4-43.6)	1.01	40.0	10/05/2016
		1.05	55.0	1.04	54.2	09/29/2016
	FCC Body	1.05 (1.00-1.10)	55.0 (52.3-57.8)	1.04	53.2	09/30/2016
900.000		(1.00-1.10)	(32.3-37.6)	1.07	53.4	10/06/2016
	IEEE/ IEC Head	0.97	41.5	0.99	40.4	10/04/2016
		(0.92-1.02)	(39.4-43.6)	1.01	39.9	10/05/2016
902.000	FCC Body	1.05 (1.00-1.10)	55.0 (52.3-57.8)	1.04	54.2	09/29/2016
902.000	IEEE/ IEC Head	0.97 (0.92-1.02)	41.5 (39.4-43.6)	1.01	39.9	10/05/2016
935.000	FCC Body	1.07 (1.02-1.12)	55.0 (52.2-57.7)	1.07	53.8	09/29/2016
933.000	IEEE/ IEC Head	0.99 (0.94-1.04)	41.5 (39.4-43.5)	1.03	39.5	10/05/2016
938.000	FCC Body	1.07 (1.02-1.12)	55.0 (52.2-57.7)	1.08	53.8	09/30/2016
938.000	IEEE/ IEC Head	0.99 (0.94-1.04)	41.5 (39.4-43.5)	1.03	39.5	10/05/2016
041,000	FCC Body	1.07 (1.02-1.13)	55.0 (52.2-57.7)	1.08	52.8	09/30/2016
941.000	IEEE/ IEC Head	0.99 (0.94-1.04)	41.5 (39.4-43.5)	1.04	39.4	10/05/2016

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 14

	Target	Measured
		Range: 18.0 – 24.9 °C
Ambient Temperature	18-25 °C	Avg. 21.5 °C
		Range: 20.1 – 22.8 °C
Tissue Temperature	NA	Avg. 21.45 °C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 15

Description	≤3 GHz	> 3 GHz								
Maximum distance from closest measurement point	5 + 1	1/ S ln(2) + 0.5 mm								
(geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$								
Maximum probe angle from probe axis to phantom surface	200 - 10	200 . 10								
normal at the measurement location	30° ± 1°	20° ± 1°								
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm								
	$2-3$ GHz: ≤ 12 mm	$4-6 \text{ GHz:} \leq 10 \text{ mm}$								
	When the x or y dimensi	When the x or y dimension of the test device, in								
Maximum area scan spatial resolution: ΔxArea, ΔyArea	the measurement plane of	the measurement plane orientation, is smaller								
Maximum area scan spatial resolution. AxArea, AyArea	than the above, the meas	than the above, the measurement resolution must								
	be \leq the corresponding x	or y dimension of the								
	test device with at least of	one measurement point								
	on the test device.									
Maximum zoom scan spatial resolution: ΔxZoom, ΔyZoom	≤ 2 GHz: ≤ 8 mm	$3-4 \text{ GHz:} \leq 5 \text{ mm*}$								
	$2-3 \text{ GHz:} \leq 5 \text{ mm*}$	$4-6 \text{ GHz:} \leq 4 \text{ mm*}$								
Maximum zoom scan spatial uniform grid: ΔzZoom(n)		$3 - 4 \text{ GHz}$: $\leq 4 \text{ mm}$								
resolution, normal to	≤ 5 mm	$4-5 \text{ GHz: } \leq 3 \text{ mm}$								
phantom surface		$5-6$ GHz: ≤ 2 mm								

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

12.2 **DUT Configuration(s)**

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

```
P_max = Maximum Power (W)
P_int = Initial Power (W)
Drift = DASY drift results (dB)
SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)
DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation
```

```
Note: for conservative results, the following are applied:

If P_int > P_max, then P_max/P_int = 1.

Drift = 1 for positive drift
```

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan.

LMR tests were performed in CW mode and 50% duty cycle was applied to PTT configurations in the final results.

No changes on Bluetooth and WLAN, hence SAR assessment results still remain as stated in the initial filing.

13.0 DUT Test Data

13.1 LMR assessments at the Body

Assessments at the Body were done with new offered antennas, default batteries and, default body worn accessories indicated in section 7.0 which represent the highest applicable configurations at the body found during the initial compliance assessment on file with the FCC. SAR plot of the highest result per Table (bolded) are presented in Appendix E.

Table 16

									Max	Max		
					-	a . P	3.5	Meas.	Calc.	Calc.		
		C	Cabla	Tool Enga	Init	SAR		10g-	1g-	10g-		
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr (W)	(dB)	1g-SAR (W/kg)		SAR	SAR (W/kg)	Run#	
Antenna	Dattery	Accessory	Accessory		(/	(ub)	(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)	Kull#	
	806-824											
				806.000	2.97	-0.73	7.66	5.35	4.58	3.20	ARF-AB-160929-	
				000.000	,,	01,70	7.00	0.00		0.20	02	
NAF5087B	PMNN4406BR	HLN6602A	PMMN4024A	815.000	2.92	-0.71	6.13	4.32	3.71	2.61	ARF-AB-160929-	
101 3007 B	TMINITIOODIC	11211000211	1 1/11/11 (102 171	013.000	2.72	0.71	0.13	1.32	3.71	2.01	03	
				824.000	2.90	-0.76	6.69	4.67	4.12	2.88	ARF-AB-160929-	
				024.000	2.70	0.70	0.07	4.07	7,12	2.00	04	
				851-869	9							
				0.51,000	2.01	0.71	4.77	2.26	2.00	2.04	ARF-AB-160929-	
				851.000	2.91	-0.71	4.77	3.36	2.90	2.04	05	
NAF5087B	PMNN4491A	RLN4570A	PMMN4024A	0.60,000	2.01	0.70	4.50	2.21	2.70	1.05	ARF-AB-160929-	
				860.000	2.91	-0.72	4.59	3.21	2.79	1.95	06	
				869.000	2.87	-0.76	4.45	3.10	2.77	1.93	AZ-AB-160929-07	
-		l .		896-902	2	ı	•					
				896.000	2.89	-0.57	8.53	5.80	5.05	3.43	AZ-AB-160929-09	
NAF5088B	PMNN4407BR	HLN6602A	PMMN4024A	899.000	2.88	-0.79	8.77	5.99	5.48	3.74	AZ-AB-160929-10	
				902.000	2.98	-0.36	8.71	5.98	4.76	3.27	AZ-AB-160929-14	
				935-94	1							
				935.000	2.98	-0.38	8.87	6.04	4.87	3.32	AZ-AB-160929-16	
NAFFORES	D)	HH MC 600 ;	D) (I) N(5102 :	938.000	2.95	-0.69	8.35	5.67	4.98	3.38	ARF-AB-160930-	
NAF5088B	PMNN4407BR	HLN6602A	PMLN5102A	750.000	2.75	0.07	0.55	3.07	1.70	3.30	03	
				941.000	2.96	-0.77	7.99	5.45	4.83	3.30	ARF-AB-160930-	
				711.000	2.70	0.77	1.22	3.13	1.03	3.30	05	

13.2 LMR assessments at the Face

Assessments at the Face were done with new offered antennas and default batteries indicated in section 7.0 which represent the highest applicable configurations at the face found during the initial compliance assessment on file with the FCC. SAR plot of the highest result per Table (bolded) are presented in Appendix E.

Table 17

Table 17												
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#	
	806-824											
				806.000	2.99	-0.26	1.84	1.35	0.98	0.72	ARF-FACE- 161004-11	
NAF5087B	PMNN4493A	NONE	NONE	815.000	2.99	-0.22	2.53	1.84	1.34	0.97	ARF-FACE- 161004-12	
				824.000	2.98	-0.30	2.42	1.76	1.31	0.95	ARF-FACE- 161004-13	
				851-8	869							
				851.000	3.00	-0.41	2.12	1.53	1.16	0.84	ARF-FACE- 161004-14	
NAF5087B	PMNN4491A	NONE	NONE	860.000	2.99	-0.39	1.72	1.24	0.94	0.68	ARF-FACE- 161004-15	
				869.000	2.98	-0.35	1.65	1.19	0.90	0.65	ARF-FACE- 161004-16	
				896-9	002							
				896.000	3.00	-0.34	3.08	2.20	1.67	1.19	AZ-FACE-161005- 02	
NAF5088B	PMNN4493A	NONE	NONE	899.000	3.00	-0.42	3.11	2.22	1.713	1.223	AZ-FACE-161005- 03	
				902.000	3.00	-0.46	3.06	2.17	1.70	1.21	AZ-FACE-161005- 04	
				935-9	41							
				935.000	2.92	-0.51	2.78	1.95	1.61	1.13	AZ-FACE-161005- 05	
NAF5088B	PMNN4435A	NONE	NONE	938.000	2.94	-0.47	3.01	2.12	1.711	1.205	AZ-FACE-161005- 07	
				941.000	2.96	-0.50	3.00	2.10	1.706	1.194	AZ-FACE-161005- 06	

13.3 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 18

		Carry	Cable	Test Freq	Init Pwr		Meas. 1g- SAR	Meas. 10g- SAR	Max Calc. 1g- SAR	Max Calc. 10g- SAR	
Antenna	Battery	Accessory	Accessory	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	Run#
NAF5088B	PMNN4407BR	HLN6602A	PMMN4024A	899.000	2.94	-0.24	10.70	7.34	5.77	3.96	AZ-AB-161006- 04

14.0 Simultaneous Transmission between LMR, WLAN and BT

This device uses a single transmitter module and antenna for both WLAN and BT. WLAN and BT cannot transmit simultaneously. Simultaneous transmission of BT had been excluded as derived in initial filing. WLAN 802.11b measured SAR during initial compliance assessment is used in conjunction with LMR for simultaneous results.

15.0 Results Summary

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

Table 19

	Frequency	Max Calc at	Body (W/kg)	Max Calc at Face (W/kg)						
Technologies	band (MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR					
		FCC/ Industr	ry Canada							
LMR	806-824	4.58	3.20	1.34	0.97					
	851-869	2.90	2.04	1.16	0.84					
LIVIK	896-902	*5.77	3.96	*1.713	1.22					
	935-941	4.98	3.38	1.711	1.21					
WLAN	2412-2462	0.0071	0.0023	0.0109	0.0033					
Overall										
LMR	806-941	5.77	3.96	1.713	1.223					
WLAN	2412-2462	0.0071	0.0023	0.0109	0.0033					

All results are scaled to the maximum output power.

The highest combined SAR results for simultaneous is indicated in following Table:

Table 20

Designator	Frequency bands	1g-SAR (W/kg)	10g-SAR (W/kg)
	Body		
ECC/	LMR (806-824 MHz) and WLAN band	4.59	3.20
FCC/ Industry - Canada -	LMR (851-869 MHz) and WLAN band	2.91	2.04
	LMR (896-902 MHz) and WLAN band	*5.78	3.96
	LMR (935-941 MHz) and WLAN band	4.99	3.38
Overall	LMR (806-941 MHz) and WLAN band	5.78	3.96
	Face		
ECC/	LMR (806-824 MHz) and WLAN band	1.35	0.97
FCC/	LMR (851-869 MHz) and WLAN band	1.17	0.84
Industry Canada	LMR (896-902 MHz) and WLAN band	1.724	1.22
Callada	LMR (935-941 MHz) and WLAN band	1.722	1.21
Overall	LMR (806-941 MHz) and WLAN band	1.724	1.22

All results are scaled to the maximum output power.

Note: * New highest reported SAR value for head, body-worn accessory, and simultaneous transmission exposure conditions are 1.71 W/kg, 5.77 W/kg, and 5.78 W/kg. (The initial filed results 1.41 W/kg, 5.04 W/kg and 5.05 W/kg are hereby replaced with results presented herein).

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing.

16.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are above 4.0W/kg (Occupational).

The Table below includes test results of the original measurement(s), the repeated measurement(s), and the ratio (SAR_{high}/SAR_{low}) for the applicable test configuration(s).

Table 21

Run#	Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq. (MHz)	Adj Calc. 1g-SAR (W/kg)	Ratio	Comments
AZ-AB-160929-10	NAE5000D	PMNN4407BR	HI N6602 A	DMMNI4024A	800 000	5.26	1.07	No additional repeated scans is required due to the Ratio
AZ-AB-161006-04	NAFJUOOD	FMINN440/BK	HLN0002A	FWIWIN4024A	899.000	5.65	1.07	$(SAR_{high}/SAR_{low}) < 1.20$

FCC ID: AZ489FT7067 / IC: 109U-89FT7067 Report ID: P7083-EME-00002

17.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

FCC ID: AZ489FT7067 / IC: 109U-89FT7067 Report ID: P7083-EME-00002

Appendix A Measurement Uncertainty Budget

TABLE A.1: Uncertainty Budget for Device Under Test for 900MHz

TABLE A.1. Officertainty Budget for Device Officer Test for 900Witz										
				e =			h =	<i>i</i> =		
a	b	c	d	f(d,k)	f	g	cxf/e	c x g / e	k	
	IEEE	Tol.					1 g	10 g		
	1528	(±	Prob		c_i	c_i	u_i	u_i		
Uncertainty Component	section	%)	Dist	Div.	(1 g)	(10 g)	(±%)	(±%)	v_i	
Measurement System										
Probe Calibration	E.2.1	6.0	N	1.00	1	1	6.0	6.0	8	
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8	
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞	
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8	
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞	
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8	
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8	
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8	
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8	
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8	
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8	
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8	
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞	
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞	
Test sample Related										
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29	
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8	
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞	
Phantom and Tissue Parameters										
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8	
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8	
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞	
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞	
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞	
Combined Standard Uncertainty			RSS				11	11	419	
Expanded Uncertainty			k=2				22	22		

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

TABLE A.2: Uncertainty Budget for System Validation (dipole & flat phantom) for 900 MHz

TABLE 11.2. Officer tallity budge	TABLE A.2. Uncertainty budget for System vanuation (dipole & flat phantom) for 900 Willz									
								i =		
				e =			<i>h</i> =	cxg/		
а	b	c	d	f(d,k)	f	g	cxf/e	e	k	
	IEEE						1 g	10 g		
	1528	Tol.	Prob.		c_i	c_i	u_i	u_i		
Uncertainty Component	section	(± %)	Dist.	Div.	(1 g)	(10 g)	(±%)	(±%)	v_i	
Measurement System										
Probe Calibration	E.2.1	6.0	N	1.00	1	1	6.0	6.0	∞	
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞	
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞	
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞	
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞	
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞	
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞	
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞	
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞	
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞	
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞	
Probe Positioner Mechanical										
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞	
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞	
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞	
Dipole										
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞	
Input Power and SAR Drift										
Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞	
Phantom and Tissue Parameters										
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞	
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞	
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	∞	
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞	
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	∞	
Combined Standard Uncertainty			RSS				9	9	99999	
Expanded Uncertainty										
(95% CONFIDENCE LEVEL)			k=2				18	17		

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

FCC ID: AZ489FT7067 / IC: 109U-89FT7067 Report ID: P7083-EME-00002

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Motorola Solutions MY

Certificate No: ES3-3196_Nov15

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3196

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 17, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	SN: S5129 (30b) 01-Apr-15 (No. 217-02133)	
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Mar-16 Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	De les
This calibration certificate	shall not be reproduced except in full	without written approval of the laboratory	Issued: November 17, 2015

Certificate No: ES3-3196_Nov15

Page 1 of 12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 8

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3196 Nov15

Page 2 of 12

November 17, 2015

Probe ES3DV3

SN:3196

Manufactured: Calibrated:

June 16, 2008

November 17, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3196_Nov15

Page 3 of 12

November 17, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.27	1,29	1.33	± 10.1 %
DCP (mV) ^B	104.9	104.0	102.6	2 10.1 70

Modulation	Calibration	Parameters

UID	Communication System Name		A dB	B dB√uV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	213.4	±3.3 %
		Y	0.0	0.0	1.0	-	214.3	20.0 /
		Z	0.0	0.0	1.0		218.9	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	2.95	69.6	19.1	1.87	148.8	±0.7 %
		Υ	3.00	69.4	18.9		147.7	
		Z	2.76	68.0	18.4		132.0	
	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	Х	11.06	71.2	23.8	9.46	143.4	±3.3 %
		Y	10.98	70.6	23.3		145.2	
		Z	10.86	70.5	23.4		124.5	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Х	3.25	70.7	19.7	2.12	147.8	±0.7 %
		Y	3.55	72.1	20.2		147.4	
		Z	3.08	69.5	19.2		131.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	×	11.24	71.6	24.3	9.83	140.4	±2.7 %
		Y	11.13	70.9	23.7		141.2	
		Z	11.61	72.5	24.9		149.5	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	10.05	68.9	21.4	8.10	127.0	±2.2 %
		Y	9.87	68.3	21.0		126.0	
		Z	10.23	69.4	21.7		134.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.01	68.8	21.3	8.07	127.5	±2.2 %
		Y	9.87	68.3	20.9		127.2	
		Z	10.21	69.3	21.7		134.9	
10193- CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	10.02	69.6	21.9	8.09	147.9	±2.5 %
		Y	9.96	69.2	21.5		149.5	
		Z	9.84	69.0	21.6		129.1	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	×	10.00	69.6	21.9	8.10	147.4	±2.2 %
		Y	9.92	69.1	21.5		147.7	
		Z	9.82	69.0	21.6		128.8	
10219- CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	×	9.88	69.5	21.8	8.03	146.9	±2.5 %
		Y	9.78	68.9	21.4		146.3	
40000	IEEE OOG 41 OFFICE A 1916	Z	9.73	69 0	21.6		127.8	
10222- CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	10.00	68.8	21.3	8.06	127.3	±2.2 %
		Y	9.80	68.2	20.9		126.3	
		Z	10.17	69.2	21.6		134.7	

Certificate No: ES3-3196_Nov15

Page 4 of 12

November 17, 2015

10422- AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	Х	10.28	69.9	22.2	8.32	149.2	±2.5 %
	2	Y	10.19	69.4	21.8		149.0	
		Z	10.09	69.3	21.9		129.5	
10425- AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	Х	10.45	69.3	21.8	8.41	129.4	±2.5 %
		Y	10.27	68.7	21.3		128.2	
		Z	10.65	69.8	22.1		135.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3196_Nov15

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

November 17, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	7.31	7.31	7.31	0.06	1.25	± 13.3 %
300	45.3	0.87	7.34	7.34	7.34	0.14	1.60	± 13.3 %
450	43.5	0.87	6.83	6.83	6.83	0.22	1.80	± 13.3 %
750	41.9	0.89	6.46	6.46	6.46	0.40	1.64	± 12.0 %
900	41.5	0.97	6.13	6.13	6.13	0.56	1.38	± 12.0 %
2450	39.2	1.80	4.54	4.54	4.54	0.68	1.36	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3196_Nov15

Page 6 of 12

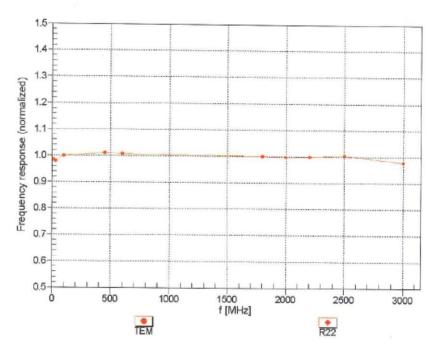
diameter from the boundary.

November 17, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	6.94	6.94	6.94	0.06	1.25	± 13.3 %
300	58.2	0.92	6.94	6.94	6.94	0.10	1.60	± 13.3 %
450	56.7	0.94	7.06	7.06	7.06	0.13	1.60	± 13.3 %
750	55.5	0.96	6.36	6.36	6.36	0.42	1.59	± 12.0 %
900	55.0	1.05	6.10	6.10	6.10	0.39	1.80	± 12.0 %
2450	52.7	1.95	4.43	4.43	4.43	0.71	1.28	± 12.0 %

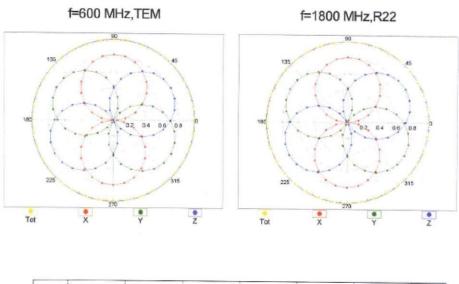

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 126, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Far the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. (and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

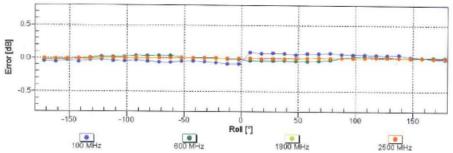
Certificate No: ES3-3196_Nov15

Page 7 of 12

November 17, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

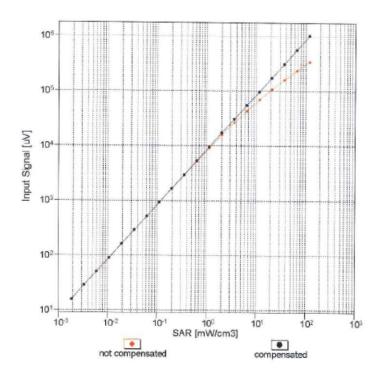

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

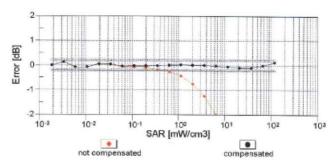

Certificate No: ES3-3196_Nov15

Page 8 of 12

November 17, 2015

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

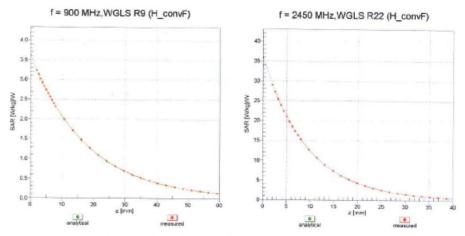

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ES3-3196_Nov15

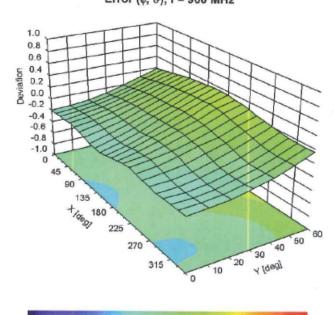
Page 9 of 12

November 17, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3196_Nov15


Page 10 of 12

ES3DV3- SN:3196 November 17, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (0, 3), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3196_Nov15

Page 11 of 12

ES3DV3-SN:3196

November 17, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	7.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3196_Nov15

Page 12 of 12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client Motorola Solutions MY

Certificate No: EX3-3612_Jul16

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3612

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

July 11, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Sahadulad Callington
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17 Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
		23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: July 12, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3612_Jul16

Page 1 of 12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

FCC ID: AZ489FT7067 / IC: 109U-89FT7067 Report ID: P7083-EME-00002

EX3DV4 - SN:3612

July 11, 2016

Probe EX3DV4

SN:3612

Manufactured: Calibrated:

March 23, 2007 July 11, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3612_Jul16

Page 3 of 12

EX3DV4- SN:3612 July 11, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3612

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.45	0.49	0.40	± 10.1 %
DCP (mV) ^B	96.5	95.7	96.5	2 10.1 70

	Mo	dula	ation	Calibratio	on Parameters
--	----	------	-------	------------	---------------

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	149.7	±3.0 %
		Y	0.0	0.0	1.0		144.3	33.0 //
		Z	0.0	0.0	1.0		159.8	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.56	69.2	21.5	8.07	146.5	±2.7 %
		Y	10.34	68.5	20.9		133.7	
		Z	10.33	68.6	21.1		131.0	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	10.17	68.9	21.5	8.10	139.2	±2.7 %
		Y	10.00	68.2	20.9		130.8	
		Z	9.92	68.3	21.1		126.6	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	3.08	70.7	20.1	1.54	137.8	±0.7 %
		Y	2.73	68.1	18.6		131.8	
		Z	3.09	70.5	19.7		129.6	
AAA OFDM, 6 Mb preambule)	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	Х	10.07	68.7	21.4	8.14	135.7	±2.7 %
		Y	9.91	68.1	20.9		124.7	
		Z	9.85	68.2	21.1		124.4	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	Х	3.12	71.1	20.3	1.58	138.3	±0.7 %
		Y	2.83	68.8	18.9		130.6	
		Z	3.11	70.9	20.0		128.7	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	Х	10.36	69.2	21.7	8.25	141.0	±3.0 %
		Y	10.10	68.3	21.0		126.4	
		Z	10.04	68.4	21.2		125.4	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	3.19	70.7	20.3	1.99	134.6	±0.7 %
		Y	2.91	68.4	18.9		149.9	
		Z	3.16	70.4	19.9		148.5	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	3.26	71.3	20.5	1.99	131.4	±0.7 %
		Y	2.98	69.1	19.3		146.3	
		Z	3.24	71.0	20.2		147.6	
10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 90pc duty cycle)	X	10.33	68.9	21.8	8.59	132.2	±2.7 %
		Y	10.54	69.1	21.7		149.8	
		Z	10.15	68.4	21.5		123.3	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	Х	10.39	69.0	21.8	8.60	133.0	±2.5 %
		Y	10.26	68.4	21.3		125.0	
		Z	10.21	68.6	21.6		124.4	

Certificate No: EX3-3612_Jul16

EX3DV4-SN:3612 July 11, 2016

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	10.49	69.0	21.8	8.63	134.7	±2.7 %
		Y	10.39	68.5	21.4		128.0	
		Z	10.37	68.7	21.6		127.8	
10592- IEEE 8 AAA MCS1.	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	×	10.67	69.2	22.0	8.79	135.2	±3.0 %
		Y	10.60	68.7	21.6		129.3	
		Z	10.53	68.8	21.8		127.8	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	Х	11.20	69.7	22.2	8.79	143.3	±2.7 %
		Y	10.97	69.0	21.6		134.0	
		Z	11.06	69.4	22.0		135.4	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	11.35	70.0	22.4	8.88	147.4	±2.7 %
		Y	11.05	69.1	21.7		134.7	
		Z	11.14	69.5	22.1		135.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3612_Jul16

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4-- SN:3612 July 11, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3612

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	9.90	9.90	9.90	0.00	1.00	± 13.3 %
300	45.3	0.87	9.33	9.33	9.33	0.10	1.20	± 13.3 %
450	43.5	0.87	9.05	9.05	9.05	0.17	1.20	± 13.3 %
750	41.9	0.89	8.47	8.47	8.47	0.39	0.97	± 12.0 %
900	41.5	0.97	8.05	8.05	8.05	0.50	0.80	± 12.0 %
2450	39.2	1.80	6.30	6.30	6.30	0.33	0.80	± 12.0 %

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3612_Jul16

July 11, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3612

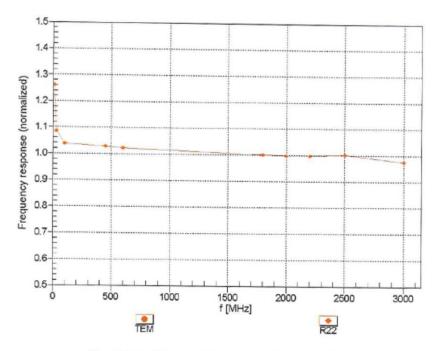
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	9.42	9.42	9.42	0.00	1.00	± 13.3 %
300	58.2	0.92	9.35	9.35	9.35	0.08	1.25	± 13.3 %
450	56.7	0.94	9.07	9.07	9.07	0.10	1.25	± 13.3 %
750	55.5	0.96	8.12	8.12	8.12	0.47	0.80	± 12.0 %
900	55.0	1.05	8.21	8.21	8.21	0.47	0.80	± 12.0 %
2450	52.7	1.95	6.43	6.43	6.43	0.37	0.80	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10. 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target fissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

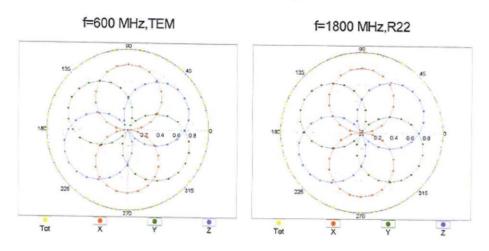

Certificate No: EX3-3612_Jul16

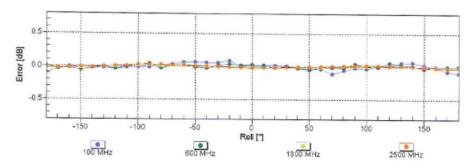
Page 7 of 12

July 11, 2016

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

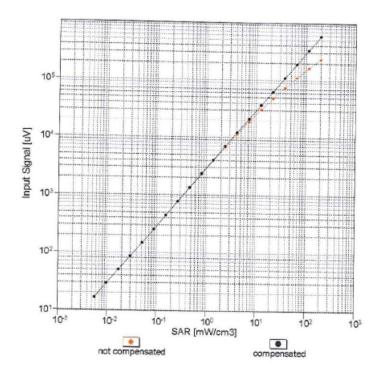

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

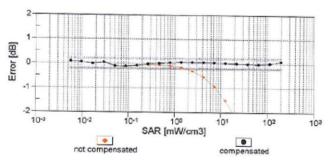

Certificate No: EX3-3612_Jul16

Page 8 of 12

July 11, 2016

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

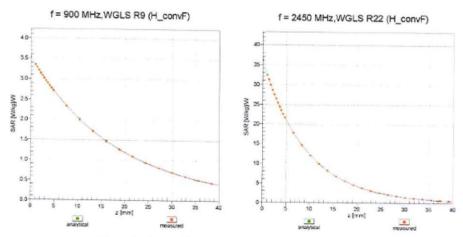

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3612_Jul16

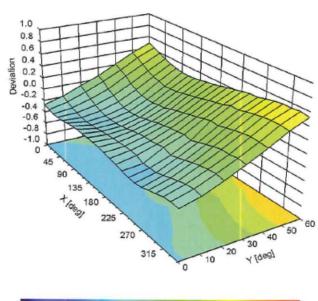
Page 9 of 12

July 11, 2016

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval} = 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3612_Jul16


Page 10 of 12

EX3DV4- SN:3612 July 11, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3612_Jul16

Page 11 of 12

July 11, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3612

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	80.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3612_Jul16

Page 12 of 12