	Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P William Stewart			EUS/CV/R-01:1059/REP			
	Approved	Checked				
	SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc	

SAR Test Report: R300ds (AXATR-421-A2)

Date of test: October 22-23,25, 2001

Laboratory: SAR Testing Laboratory

> Sony Ericsson Mobile Communications, Inc. 7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA

Tested by: William Stewart

Development Engineer, Antenna Development Group

Test Responsible: Mark Douglas, Ph.D.

Senior Technical Leader, Antenna Development Group

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following

electromagnetic tests: Specific Absorption Rate (SAR), dielectric parameters,

and RF power measurement

on the following types of products: Wireless communications devices.

A2LA certificate Number: 1650-01

Statement of Compliance: Sony Ericsson Mobile Communications, Inc. declares under its sole

responsibility that the product

R300ds

FCC ID: AXATR-421-A2

to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested using specifications that closely conform to the latest appropriate measurement standards, guidelines and recommended practices. Any deviations from these specifications or from ISO/IEC 17025-1999 are noted below:

Uncalibrated thermometers were used for liquid temperature measurement. The thermometers were verified against calibrated thermometers in air and are therefore believed to be accurate.

© Sony Ericsson Mobile Communications, Inc. 2001

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

All feedback on this report is encouraged, both positive and negative.

REPORT

2 (25)

repared (also subject responsible if other) SEM/CV/PF/P William Stewart	No. EUS/CV/R-01:1059/REP			
pproved SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Table of Contents

1. Introduction	3
2. Device Under Test 2.1 Antenna description 2.2 Device description	3 3 3
3. Test equipment 3.1 Dosimetric system 3.2 Additional calibrated equipment	3 3 4
4. Electrical parameters of the tissue simulating liquid	4
5. System accuracy verification	5
6. Test results 6.1 Results for head 6.2 Results against the body	5 5 6
References	7
Appendix 1: SAR distribution comparison for system accuracy verification	8
Appendix 2: SAR distribution plots	13
Appendix 3: Photographs of Device Under Test	16
Appendix 4: Position of Device on Phantom	20
Appendix 5: Probe calibration parameters	23

				0 (-0)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		EUS/CV/R-01:	1059/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

1. Introduction

In this report, compliance of the R300ds wireless handset with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in [1].

2. Device Under Test

2.1 Antenna description

Type	Internal antenna Inside the back cover, near the top				
Location					
Dimensions	Maximum length	34.5 mm			
Dimensions	Maximum width	41 mm			
Configuration	Patch antenna				

2.2 Device description

Device model	R300ds				
FCC ID	AXATR-421-A2				
Serial number	UA2020LBTP				
Mode	800 AMPS 800 TDMA				
Multiple Access Scheme	FDMA TDMA				
Maximum Output Power Setting ¹	26.0 dBm 26.0 dBm				
Factory Tolerance in Power Setting	± 0.25 ± 0.25				
Maximum Peak Output Power ²	26.25 dBm	26.25 dBm			
Duty Cycle	1	1/3			
Transmitting Frequency Range	824 – 849 MHz	824-849 MHz			
Prototype or Production Unit	Prototype				
Device Category ³	Portable				
RF exposure environment [2]	General population /	uncontrolled			

3. Test equipment

3.1 Dosimetric system

SAR measurements were made using a DASY3 professional system (software version 3.1c) with a SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The extended SAR assessment uncertainty (K = 2) is $\pm 24\%$ [1]. The list of calibrated equipment is given below.

<u>Description</u>	Serial Number	Due Date
DASY3 DAE V1	431	05/2002
E-field probe ET3DV6	1539	01/2002
Dipole Validation Kit, D835V2	428	12/2002
Dipole Validation Kit, D900V2	049	01/2003

¹ This is the peak conducted power measured at the antenna port when the device is set to its highest power setting. It is measured at the middle of the transmit frequency band. Note that the output power may be different at other frequencies.

² This equals the maximum output power setting plus the factory tolerance.

The device is categorized as either mobile or portable according to United States Code of Federal Regulations 47 CFR §§ 2.1091 and 2.1093.

Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:1	059/REP	
SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

3.2 Additional calibrated equipment

<u>Description</u>	Serial Number	Due Date
Signal Generator HP8648C	3537A01598	9/2002
Dielectric probe kit HP 85070B	US33020390	3/2002
Network analyzer HP 8752C	3410A03105	7/2002
Power meter HP 437B	3125U12026	10/2001
Power sensor HP 8482H	3318A07097	2/2002
Power meter HP 437B	3125U113481	6/2002
Power sensor HP 8482H	MY41090240	6/2002
Power meter HP 437B	3125U13729	1/2002
Power sensor HP 8482H	MY41090239	6/2002
Hygrometer/Thermometer	21242911	10/2002
Thermometer FS15043A	8813	N/A
Thermometer FS15043A	94-29884	N/A
Spectrum Analyzer MS2623A	M07418	10/2002

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values, as well as, the temperature/humidity of the test facility, and the temperature/depth of the tissue simulant during the measurements are shown in the table below. The mass density, p, entered into the DASY3 program is also given. Recommended values for permittivity, conductivity and mass density are also shown. It is seen that the measured parameters are within tolerance of the recommended limits.

f (MHz)	Tissue type	Limits / Measured	Dielec	ctric Par	ameters	Ambient Temp.	Sim	ılant	Humidity (%)		
						(°C)	Temp	Depth			
			\mathbf{e}_{r}	e_r s					(°C)	(mm)	
				(S/m)	(g/cm^3)						
	Head	Measured, 10/22/01	41.01	0.895	1.00	23.4	21.9	153	44.4		
		Measured, 10/23/01	41.27	0.90	1.00	22.7	22.7	153	47.6		
835		Recommended 4	41.5	0.90	1.00	20 - 25		>150	30-70		
	Body	Measured, 10/25/01	56.26	0.976	1.00	24.2	24.2	162	39.6		
		Recommended 5	55.2	0.97	1.00	20 - 25		>150	30-70		
900	Body	Measured, 10/25/01	55.73	1.04	1.00	24.2	24.2	162	39.6		
		Recommended 5	55.0	1.05	1.00	20 - 25		>150	30-70		

⁴ For head parameters, recommended dielectric parameters are those given by [2] and [3]. Measured dielectric parameters also comply with closest tabulated values in [4].

⁵ For body parameters, recommended dielectric parameters are those given by [2]. No specifications for body parameters are given in [3,4].

	Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P William Stewart			EUS/CV/R-01:1059/REP			
	Approved	Checked				
	SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc	

5. System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kits listed in Section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below (SAR values are scaled to 1 Watt power delivered to the antenna). It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. Reference values are taken from IEEE P1528 for 835MHz head simulant and from the manufacturer for 900MHz muscle simulant. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). Also shown are the temperature/humidity of the test facility, and the temperature/depth of the tissue simulant during the test.

Daily, prior to conducting tests, measurements were made with RF sources powered off to determine system noise. The highest system noise value was 0.0013 W/kg, which is approximately 1/10th the recommended limit in [2].

f	J Hissue		ured / SAR		Dielectric Parameters			Simulant		Humidity
MHz	Hz type	Reference	(W/kg) 1 g/10 g	\mathbf{e}_r	S (S/m)	r (g/cm³)	Temp. (°C)	Temp.	Depth (mm)	(%)
835	Head	Measured, 10/22/01	9.87 / 6.39	41.01	0.895	1.00	24.1	22.2	153	44.1
033	oss Heau	Measured, 10/23/01	9.75 / 6.32	41.27	0.90	1.00	23.6	22.7	153	44.8
		Reference ⁶ (IEEE P1528)	9.5 / 6.2	41.5	0.90	1.00	18 - 25	+/-2.0 of value in §4	>150	
900	Rody	Measured, 10/25/01	11.1 / 7.07	55.73	1.04	1.00	24.1	24.1	162	40.0
	Body	Reference (SPEAG)	11.1 / 7.1	56.1	0.99	1.00				

6. Test results

The measured 1- and 10-gram averaged SAR values of the device are provided in Tables 1 and 2. Also shown are the measured conducted output powers and the temperature of the tissue simulant during the test. The depth of the tissue simulating liquid was at least 15 cm for all the cases. The humidity and ambient temperature of the test facility were within 30%-70% and 20-26°C respectively. Test commands were used to control the device during the SAR measurements. The phone was supplied with a fully charged battery for the tests.

6.1 Results for head

SAR measured against the head, using battery BKB-193-1043 (1400mAh) is presented in Table 1. The device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom using both the "Cheek" and "Tilted" positions. For 800 AMPS, the device was tested at the lowest, middle, and highest frequencies of the transmit band. For 800 TDMA mode, the maximum power is significantly lower than that of AMPS mode, therefore SAR values are also lower and not listed. Also included in Table 1 are the results using battery BKB-193-1027 (750mAh). This configuration was tested only at the frequency/mode that gave the highest SAR value from battery BKB-193-1043 results. The results show that the choice of battery does not have a significant influence on SAR.

⁶ Since SAR reference values are from [3] (no reference values are provided in [2,4]), the temperature and humidity specifications provided in the table are also from [3]. However, measured values of temperature and humidity also comply with the specifications of [2,4].

				0 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		EUS/CV/R-01:	1059/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Mode /	f	Output	Left hand (CHEEK)			Right hand (CHEEK)			
Battery	(MHz)	Power	Simulant	SAR, 1g	10g (W/kg)	Simulant	SAR, 1g /10g (W/kg)		
		(dBm)	Temps.	measured	Calculated	Temps. (°C)	measured	Calculated	
			` /		to max.			to max.	
					power			power	
800 AMPS /	824	25.91	23.0	0.82/0.54	0.88/0.58	23.3	0.84 /0.54	0.90 /0.58	
BKB-193-1043	837	25.94	23.1	0.73/0.48	0.78/0.52	23.3	0.74/0.49	0.80/0.53	
	849	25.97	23.1	0.67/0.44	0.72/0.47	23.3	0.71/0.47	0.76/0.51	
800 AMPS /									
BKB-193-1027	824	25.91				23.6	0.81/0.53	0.87/0.57	
			Left hand (TILT)			Right hand (TILT)			
800 AMPS /	824	25.91	23.2	0.85/0.49	0.91/0.53	23.4	0.80/0.46	0.86/0.49	
BKB-193-1043	837	25.94	23.3	0.78/0.44	0.84/0.47	23.5	0.70/0.42	0.75/0.45	
	849	25.97	23.3	0.73/0.42	0.79/0.45	23.5	0.65/0.39	0.70/0.42	
800 AMPS / BKB-193-1027	824	25.91	23.7	0.87 /0.50	0.93 /0.54				

Table 1: SAR measurement results for the R300ds telephone at highest possible output power. Measured against the head.

6.2 Results against the body

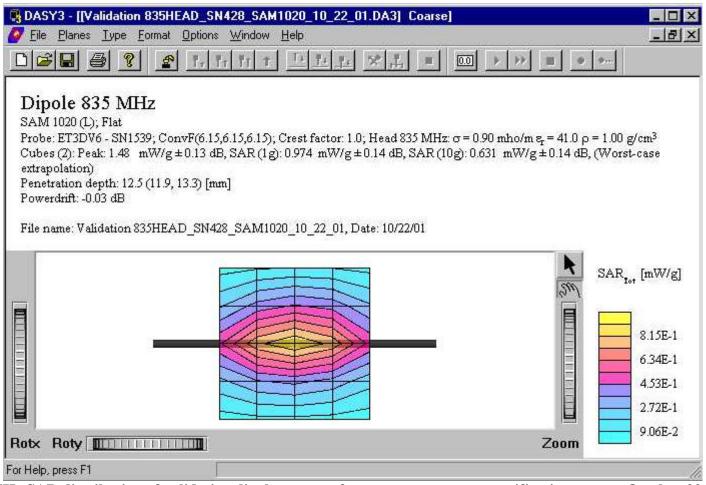
SAR measured against the body, using battery BKB-193-1043 (1400mAh) is presented in Table 2. For body worn measurements, the device was tested against a flat phantom, representing the user's body, using carry accessory SXK 109 4460 and hands free accessory RLF-501-25. For 800 AMPS, the device was tested at the lowest, middle, and highest frequencies of the transmit band. For 800 TDMA mode, the maximum power is significantly lower than that of AMPS mode, therefore SAR values are also lower and not listed. Also included in Table 2 are the results using battery BKB-193-1027 (750mAh). This configuration was tested only at the frequency/mode that gave the highest SAR value from battery BKB-193-1043 results. The results show that the choice of battery does not have a significant influence on SAR.

Mode	f	Output	SXK 109 4460				
	(MHz)	Power	Simulant	SAR, 1g	/10g (W/kg)		
		(dBm)	Temp.	measured	Calculated to		
			(°C)		max. power		
800	824	25.91	23.9	0.80/0.56	0.86/0.60		
AMPS	837	25.94	23.8	0.78/0.53	0.84/0.57		
BATTERY BKB-193-1043	849	25.97	23.8	0.36/0.24	0.39/0.26		
800	824	25.91	23.8	0.82/0.56	0.88 /0.60		
AMPS BATTERY	837						
BKB-193-1027	849						

Table 2: SAR measurement results for the R300ds telephone at highest possible output power. Measured against the body using carry accessory SXK 109 4460 with hands free accessory RLF 501 25.

REPORT

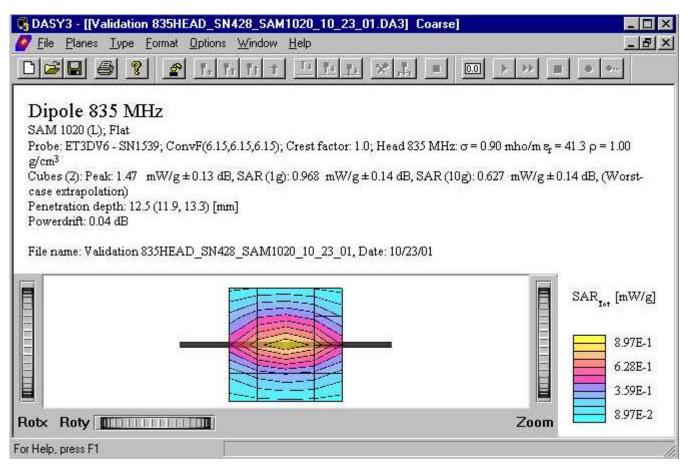
Jong Chesson				7 (25)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		EUS/CV/R-01:	1059/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc


References

- [1] M. Douglas, "SAR Measurement Specification of Mobile Phones," Sony Ericsson internal document EUS/CV/R-01:1061/REP, November 2001.
- [2] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).
- [3] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-200X, Draft 6.5 August 20, 2001.
- [4] CENELEC, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)", European Standard EN 50361, July 2001.

Jong Chesson					8 (25)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P William Stewart		EUS/CV/R-01:1	059/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc	

Appendix 1: SAR distribution comparison for system accuracy verification



835 MHz SAR distribution of validation dipole antenna from system accuracy verification test on October 22, 2001.

Using head tissue. Antenna input power = 98.7mW.

						9 (25)
Prepared (also subject response	onsible if other)		No.			
SEM/CV/PF/P William Stewart			EUS/CV/R-01:1059/REP			
Approved		Checked				
SEM/CV/PF/P D	Oulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc	

835 MHz SAR distribution of validation dipole antenna from system accuracy verification test on October 23, 2001.

Using head tissue. Antenna input power = 99.2 mW.

REPORT

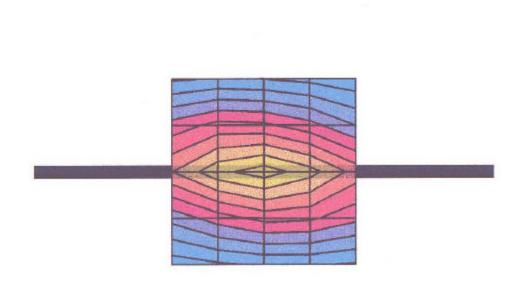
10 (23)	1	0 ((25)
---------	---	-----	------

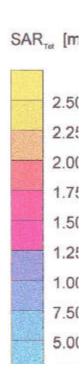
Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:1059)/REP	
SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

12/20/00

Validation Dipole D835V2 SN:428, d = 15 mm

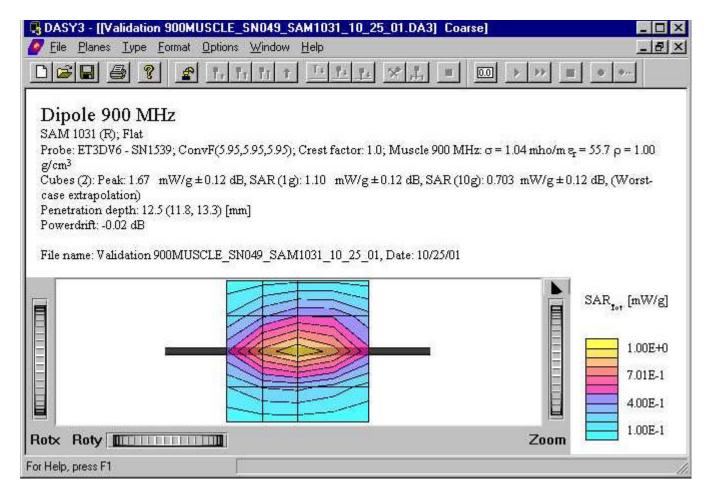
Frequency: 835 MHz; Antenna Input Power: 250 [mW]

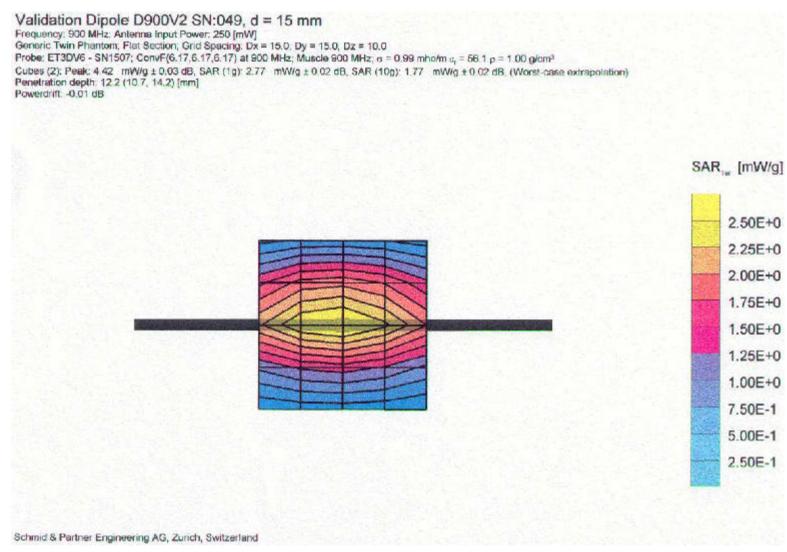

Generic Twin Phantom; Flat Section; Grid Spacing: Dx = 15.0, Dy = 15.0, Dz = 10.0


Probe: ET3DV6 - SN1507; ConvF(6.50,6.50,6.50) at 900 MHz; IEEE1528 835 MHz; σ = 0.88 mho/m ε_r = 42.5 ρ = 1.00 g/cm³

Cubes (2): Peak: 3.85 mW/g ± 0.05 dB, SAR (1g): 2.42 mW/g ± 0.02 dB, SAR (10g): 1.56 mW/g ± 0.01 dB, (Worst-case extrapolation)

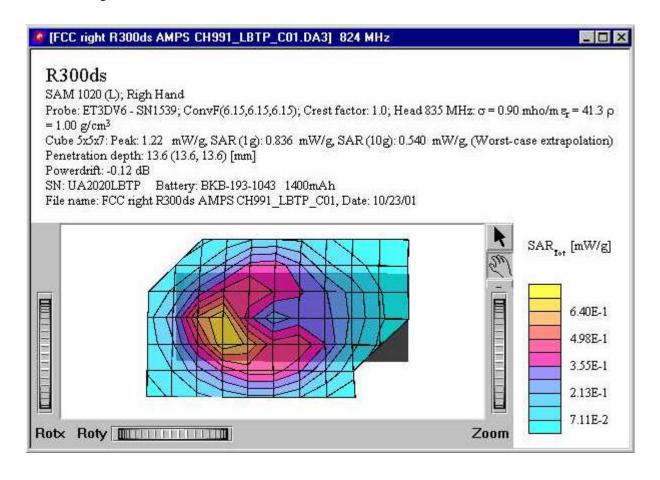
Penetration depth: 12.2 (10.7, 14.0) [mm]


Powerdrift: 0.00 dB


				: (=0)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		EUS/CV/R-01:	1059/REP	
Approved	Checked		I	
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

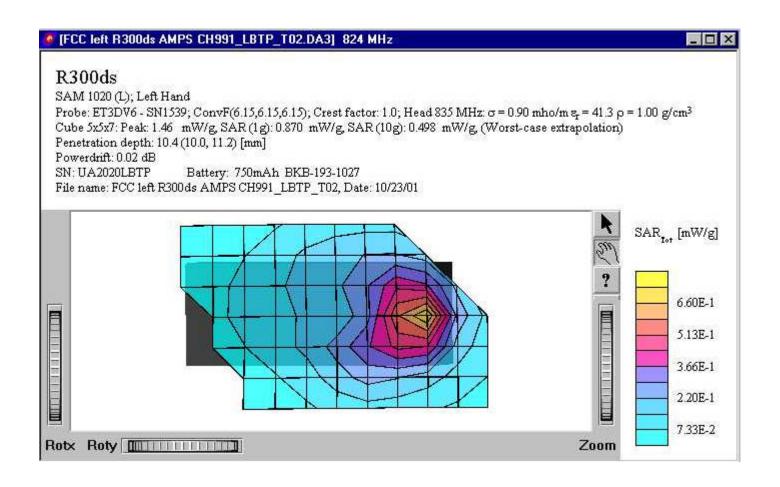
900 MHz SAR distribution of validation dipole antenna from system accuracy verification test on October 25, 2001. Using muscle tissue. Antenna input power = 99.4 mW.

Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:	1059/REP	
SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

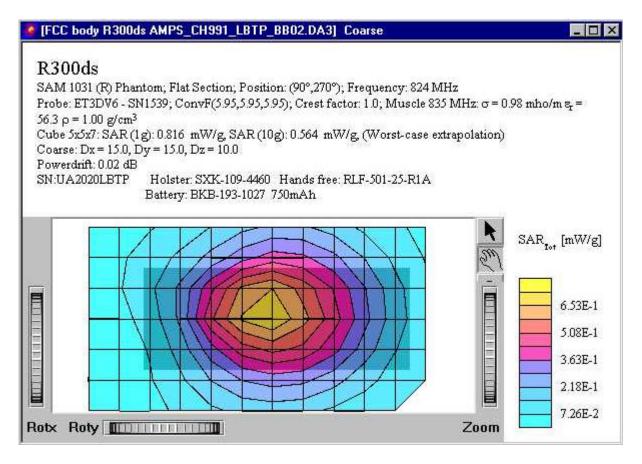


900 MHz SAR distribution of validation dipole antenna from reference measurement. Using muscle tissue.

				13 (25)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		EUS/CV/R-01:1	1059/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc


Appendix 2: SAR distribution plots

Distribution of maximum SAR in 800 AMPS band. Measured against the head in the "Cheek" position.


				(=0)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		EUS/CV/R-01:	1059/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Distribution of maximum SAR in 800 AMPS band. Measured against the head in the "Tilt" position.

Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:	1059/REP	
SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Distribution of maximum SAR in 800 AMPS band. Measured against the body using carry accessory SXK 109 4460 and hands free accessory RLF 501 25

16 (25)
------	-----

Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:10	59/REP	, ,
SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	0	C:\TEMP\r300dsreport1.doc

Appendix 3: Photographs of Device Under Test

Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:	1059/REP	
SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Front view of device

Back view of device

Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:1	1059/REP	
SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Side view of device.

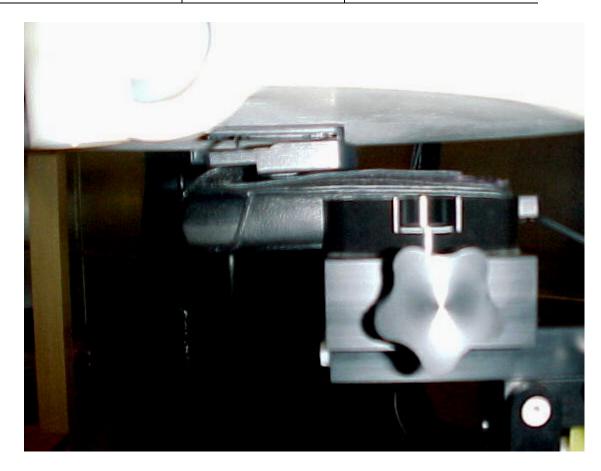
				. 5 (=5)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		EUS/CV/R-01:	1059/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Front, back, and side views of product number SXK -109-4460

Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:	1059/REP	
Approved SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Appendix 4: Position of Device on Phantom

Position of device against head phantom using the "cheek" position


					<u> </u>	٠,
Prepared (also subject responsible if other)			No.			
SEM/CV/PF/P William Ste	ewart		EUS/CV/R-01:	1059/REP		
Approved	Checked					
SEM/CV/PF/P Dulce Altal	bella	DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc	

Position of device against head phantom using the "tilt" position

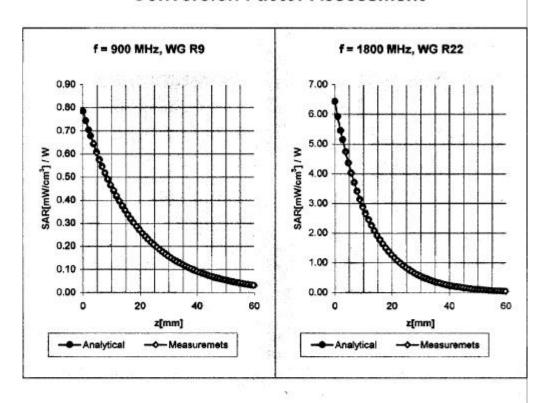
Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart		No. EUS/CV/R-01:1	059/REP	
Approved SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc

Position of device against flat phantom using carry accessory SXK 109 4460 with hands free accessory RLF 501 25

					20 (20)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P William Stewart		EUS/CV/R-01:	1059/RE	ΕP	
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22	(С	C:\TEMP\r300dsreport1.doc

Appendix 5: Probe calibration parameters

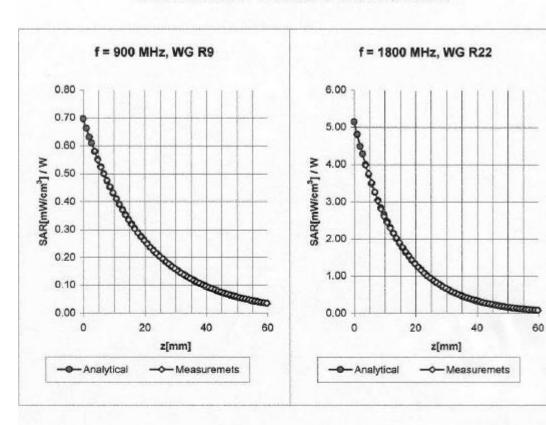
ET3DV6	CNI.	1530


Sonoi	tivity in Free	Conco		Diode Con	oproceio		
Sensi	uvity in Free	Space		Diode Con	pression	11	
	NormX		μV/(V/m) ²	DC	PX	96	mV
	NormY	1.24	μV/(V/m) ²	DC	PY	96	mV
	NormZ	1.36	μV/(V/m) ²	DC	PZ	96	mV
Sensi	tivity in Tiss	ue Simi	ulating Liquid				
Brain	450 N	IHz	$e_{\rm r}$ = 48 ± 5%	a = 0.5	0 ± 10% mh	o/m	
	ConvF X	6.64	extrapolated	Bo	Boundary effect:		
	ConvF Y	6.64	extrapolated	Alp	ha	0.83	
	ConvF Z	6.64	extrapolated	De	pth	1.52	
Brain	Brain 900 MHz		$\varepsilon_{\rm r}$ = 42.5 ± 5%	σ = 0.8	6 ± 10% mh	io/m	
	ConvF X	6.27	± 7% (k=2)	Box	undary effec	ŧ	
	ConvF Y	6.27	± 7% (k=2)	Alp	ha	0.78	
	ConvF Z	6.27	± 7% (k=2)	De	pth	1.73	
Brain	1500 N	lHz	ε _r = 41 ± 5%	σ = 1.3	2 ± 10% mh	io/m	
	ConvF X	5.78	interpolated	Box	t:		
	ConvF Y	5.78	interpolated	Alp	ha	0.70	
	ConvF Z	5.78	interpolated	De	pth	2.01	
Brain	1800 N	lHz	$\epsilon_{\rm r}$ = 41 ± 5%	σ = 1.6	9 ± 10% mh	io/m	
	ConvF X	5.54	± 7% (k=2)	Box	undary effec	t:	
	ConvF Y	5.54	± 7% (k=2)	Alp	ha	0.66	
	ConvF Z	5.54	± 7% (k≈2)	De	pth	2.15	
Senso	r Offset						
	Probe Tip to	Sensor Ce	enter	2.7	mm	ř	
	Optical Surfa	ce Detecti	on	1.3 ± 0.2	mm		

					2 : (20)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P William Stewart		EUS/CV/R-01:	1059/R	REP	
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA	2002-1-22		С	C:\TEMP\r300dsreport1.doc

ET3DV6 SN:1539

Conversion Factor Assessment


Head	900 MHz		$\epsilon_{\rm r}$ = 42 ± 5%	σ = 0.97 ± 10%	g = 0.97 ± 10% mho/m	
			± 7% (k=2)	Boundary effect:		
			± 7% (k=2)	Alpha	0.35	
	ConvF Z	6.15	± 7% (k=2)	Depth	2.99	
Head	1800 MHz		$\varepsilon_{\rm r}$ = 40 ± 5%	σ = 1.40 ± 10% mho/m		
	ConvF X	5.26	± 7% (k=2)	Boundary effect:		
	ConvF Y	5.26	± 7% (k=2)	Alpha	0.67	
	ConvF Z	E 26	± 7% (k=2)	Depth	2.05	

Prepared (also subject responsible if other) SEM/CV/PF/P William Stewart	` ' '			No. EUS/CV/R-01:1059/REP			
SEM/CV/PF/P Dulce Altabella	Checked DA	2002-1-22	С	C:\TEMP\r300dsreport1.doc			

ET3DV6 SN:1539

Conversion Factor Assessment

luscle	900 MHz		$\varepsilon_r = 56 \pm 5\%$	σ = 0.99 ± 10%	σ = 0.99 ± 10% mho/m		
	ConvF X 5.95		± 7% (k=2)	Boundary e	Boundary effect:		
	ConvF Y	5.95	± 7% (k=2)	Alpha	0.41		
	ConvF Z	5.95	± 7% (k=2)	Depth	2.75		
Muscle	1800 MHz		$\epsilon_r = 54 \pm 5\%$	σ = 1.4 ± 10% r	nho/m		
	ConvF X	4.64	±7% (k=2)	Boundary e	ffect		
	ConvF Y	4.64	± 7% (k=2)	Alpha	0.70		
	ConvF Z	4.64	± 7% (k=2)	Depth	2.19		