

Engineering and Testing for EMC and Safety Compliance

TYPE CERTIFICATION REPORT

Sony Ericsson Mobile Communications (US, Inc.) 7001 Development Drive P.O. Box 13969 Research Triangle Park, NC 27709 919-472-1697 (Pierre Chery)

MODEL: R300ds

FCC ID: AXATR-421-A2

November 12, 2001

STANDARDS REFERENCED FOR THIS REPORT						
PART 2: 1999 FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULAT						
PART 15: 1999 §15.109: RADIATED EMISSIONS LIMITS						
PART 22: 1998	PUBLIC MOBILES SERVICES					
ANSI C63.4-1992	STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND					
PERIPHERALS						
ANSI/TIA/EIA603- 1992	LAND MOBILE FM OR PM COMMUNICATIONS EQUIPMENT					
MEASUREMENT AND PERFORMANCE STANDARDS						
ANSI/TIA/EIA 603-1-1998	ADDENDUM TO ANSI/TIA/EIA 603-1992					

FCC Rules Parts	Frequency Range	Output Power ERP (W)	Freq. Tolerance	Emission Designator
22.901(d)	824-849 MHz	0.447	1.5	28K5DXW
22(H)	824-849 MHz	0.347	1.5	40K0F1D, 40K0F8W

REPORT PREPARED BY:

EMC Test Engineer: Daniel Baltzell Administrative Writer: Melissa Fleming

Document Number: 2001303 / QRTL01-334

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.

Phone: 703-689-0368; Fax: 703-689-2056; Metro: 703-471-6441

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	4
	1.1 1.2	TEST FACILITYRELATED SUBMITTAL(S)/GRANT(S)	4
2		NFORMANCE STATEMENT	
3		STED SYSTEM DETAILS	
J			
	3.1 3.2	COMPONENTSCONFIGURATION OF TESTED SYSTEM	
4	FC	C RULES AND REGULATIONS PART 2.1046 (A); RF POWER OUTPUT: RADIATED ERP PER PART 22.913	7
	4.1	TEST PROCEDURE	
	4.2 4.3	TEST DATA TEST EQUIPMENT	
_		C RULES AND REGULATIONS PART 2 §2.1053 (A): FIELD STRENGTH OF SPURIOUS RADIATION	
Э		TEST PROCEDURE	
	5.1 5.2	TEST PROCEDURE	
	5.3	TEST EQUIPMENT	10
6	FC	C RULES AND REGULATIONS PART 22.901(D): BAND-EDGE COMPLIANCE	11
	6.1 6.2	TEST DATA FOR PART 22.901(D) TEST EQUIPMENT	
7		C RULES AND REGULATIONS PART 22.917 (F) EMISSIONS IN BASE STATION FREQUENCY BAND FROM	10
-		S	17
	7.1	TEST DATA	
	7.2	TEST EQUIPMENT	
8	FC	C RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH	
	8.1	TEST PROCEDURE	
	8.2 8.3	TEST DATA TEST EQUIPMENT	
9	FC	C RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY	
	9.1	TEST PROCEDURE	
	9.2	TEST DATA	
	9.2 9.2		
10	0	FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO	
Г		ENCY RESPONSE	
	10.1 10.2	TEST PROCEDURETEST DATA	
	10.3	TEST EQUIPMENT	
1° Pa		FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO LOW	41
	11.1	TEST PROCEDURE	
		rtification Page 2 / QRTL01-334 Sony Ericsson Mobile Communications (US, Inc.) R300ds	

11.2	TES1	DATA	41
11.3	TES1	EQUIPMENT	41
12		LES AND REGULATIONS PART 2 §2.1047 (B): MODULATION CHARACTERISTICS - MODULATION	
_IMITIN	IG42		
12.1		PROCEDURE	
12.2		DATA	
12.3		EQUIPMENT	
13	FCC RU	LES AND REGULATIONS PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH	46
14	FCC RU	LES AND REGULATIONS PART 2.1033(C)(8)); DC VOLTAGES AND CURRENTS	46
15	TEST C	ONFIGURATION PHOTOGRAPHS	47
APPEN	DIX A:	FCC PART 15 §15.107 (A) - AC LINES CONDUCTED EMISSIONS	.51
TES1	F PROCED	URE	.51
TES1	ΓDATA		. 52
		ENT	
APPEN	DIX B:	FCC PART 15 §15.109 (A) RADIATED EMISSIONS	.53
FIELI	D STRENC	GTH CALCULATION	.53
TES1	T PROCED)URE	. 54
TEST	LEOUIPM	FNT	54

1 GENERAL INFORMATION

The following Report of a Type Certification is prepared on behalf of Sony Ericsson Mobile Communications, (US Inc.) in accordance with the Federal Communications Commissions. The Equipment Under Test (EUT) was the R300ds unit; FCC ID: AXATR-421-A2. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with FCC Rules and Regulations CFR 47 and ANSI/TIA/EIA603-1992 /-1-1998 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.1 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

1.2 RELATED SUBMITTAL(S)/GRANT(S)

This is an original application for Certification

2 CONFORMANCE STATEMENT

We, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this attached test record. No modifications were made to the equipment during testing in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the FCC Part 2, FCC Part 15, FCC Part 22(H) and Part 22.901(d) Certification methodology.

Signature: Date: November 11 2001

Typed/Printed Name: Bruno Clavier Position: Vice President of Operations

(NVLAP Signatory)

Signature: Date: November 11 2001

Typed/Printed Name: Daniel W. Baltzell Position: EMC Test Engineer

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 200061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

3 TESTED SYSTEM DETAILS

Listed below is the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.

3.1 COMPONENTS

PART	MANUFACTURER	MODEL	SERIAL NUMBER	FCC ID	CABLE DESCRIPTION	RTL BAR CODE
PHONE	ERICSSON, INC.	R300ds	UA2020LBTK	N/A	N/A	13847
PHONE	ERICSSON, INC.	R300ds	UA2020LC6S	N/A	N/A	13839
BATTERY	ERICSSON, INC.	30000044	13461585CPDBWP	N/A	N/A	13848
BATTERY	ERICSSON, INC.	30000044	13461434CPDBWP	N/A	N/A	13843
BATTERY CHARGER	ERICSSON, INC.	316AMS43001	N/A	N/A	N/A	13842
BATTERY CHARGER	ERICSSON, INC.	316AMS43001	N/A	N/A	N/A	13840

3.2 CONFIGURATION OF TESTED SYSTEM

(EUT)

4 FCC RULES AND REGULATIONS PART 2.1046 (A); RF POWER OUTPUT: RADIATED ERP PER PART 22.913

4.1 TEST PROCEDURE

Substitution Method:

The EUT was setup at an antenna to EUT distance of 3 meters on an open area test site. The EUT was placed on a nonconductive turntable 1.0 meter above the ground plane.

The physical arrangement of the EUT was varied through three orthogonal planes in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations.

The worst-case, maximum radiated emission was recorded and used as reference for the measurement.

The EUT was then replaced by an ½ wave dipole antenna and polarized in accordance with the EUT's antenna polarization. The ½ wave dipole antenna was connected to a RF signal generator with a coaxial cable.

The search antenna height, and search antenna polarity was set to levels that produced the maximum reading obtained in step 3. The signal generator was adjusted to a level that produced the radiated emission level obtained in step 3.

The signal generator level was recorded and corrected by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal ½ wave dipole antenna. The signal generator corrected level is the ERP level.

4.2 TEST DATA

AMPS

Channel Number	Frequency (MHz)	Signal Generator (dBm)	Cable Loss* (dB)	TX Antenna Gain (dBd)	Corrected Signal Generator (dBm)	ERP (mW)
991	824.036	26.5	0.9	-1.2	24.4	275
383	836.490	26.3	1.0	-1.2	24.1	257
799	848.966	26.5	1.0	-1.2	24.3	269

TDMA

Channel Number	Frequency (MHz)	Signal Generator (dBm)	Cable Loss* (dB)	TX Antenna Gain (dBd)	Corrected Signal Generator (dBm)	ERP (mW)
991	824.036	28.6	0.9	-1.2	26.5	447
383	836.490	28.0	1.0	-1.2	25.8	380
799	848.966	27.8	1.0	-1.2	25.6	363

^{*}cable loss from transmitting antenna to signal generator Measurement accuracy is +/- .5 dB

4.3 TEST EQUIPMENT

Spectrum Analyzer HP8566B

Antenna BiLog Chase 6112L

5 FCC RULES AND REGULATIONS PART 2 §2.1053 (A): FIELD STRENGTH OF SPURIOUS RADIATION

5.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.12

Substitution Method:

The EUT was setup at an antenna to EUT distance of 3 meters on an open area test site. The EUT was placed on a nonconductive turntable 1.0 meter above the ground plane.

The physical arrangement of the EUT was varied through three orthogonal planes in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations.

The worst-case, maximum radiated emission was recorded and used as reference for the measurement.

The EUT was then replaced by an ½ wave dipole antenna and polarized in accordance with the EUT's antenna polarization. The ½ wave dipole antenna was connected to a RF signal generator with a coaxial cable.

The search antenna height, and search antenna polarity was set to levels that produced the maximum reading obtained in step 3. The signal generator was adjusted to a level that produced the radiated emission level obtained in step 3.

The signal generator level was recorded and corrected by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal ½ wave dipole antenna. The signal generator corrected level is the spurious radiation emission level.

The transmitter is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1000 Hz, and for digital mode the transmitter is set in continuous transmitting mode and modulated with pseudo random data using internal software.

5.2 TEST DATA

The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Channel 991 (824.036 MHz) AMPs mode (24.4 dBm ERP); substitution method

Frequency (MHz)	Signal Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Corrected Signal Generator (dBc)	Limit (dBc)	Margin (dB)
1648.072	-51.6	1.2	6.8	70.4	37.4	-33
2472.108	-60.6	1.2	6.8	79.4	37.4	-42
3296.144	<-80					
4120.180	<-80					
4944.216	<-80					
5768.252	<-80					
6592.288	<-80					
7416.324	<-80					
8240.360	<-80					

Channel 991 (824.036 MHz) TDMA mode (26.5 dBm ERP); substitution method

Frequency (MHz)	Signal Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Corrected Signal Generator (dBc)	Limit (dBc)	Margin (dB)
1648.072	-40.9	1.5	7.3	61.6	39.5	-22.1
2472.108	-62.7	1.5	7.3	83.4	39.5	-43.9
3296.144	<-80					
4120.180	<-80					
4944.216	<-80					
5768.252	<-80					
6592.288	<-80					
7416.324	<-80					
8240.360	<-80					

5.3 TEST EQUIPMENT

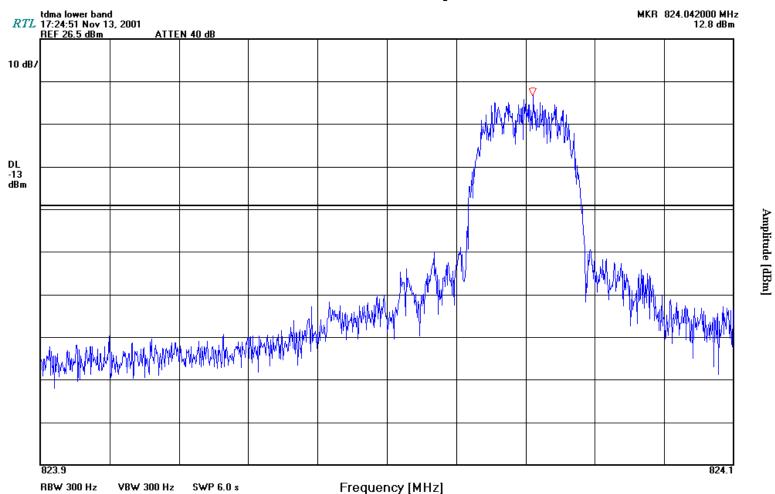
Antenna: CHASE CBL6112 s/n 2099

 Amplifier:
 HP8449B
 s/n 3008A00505

 Spectrum analyzer:
 HP8564E
 s/n 3943A01719

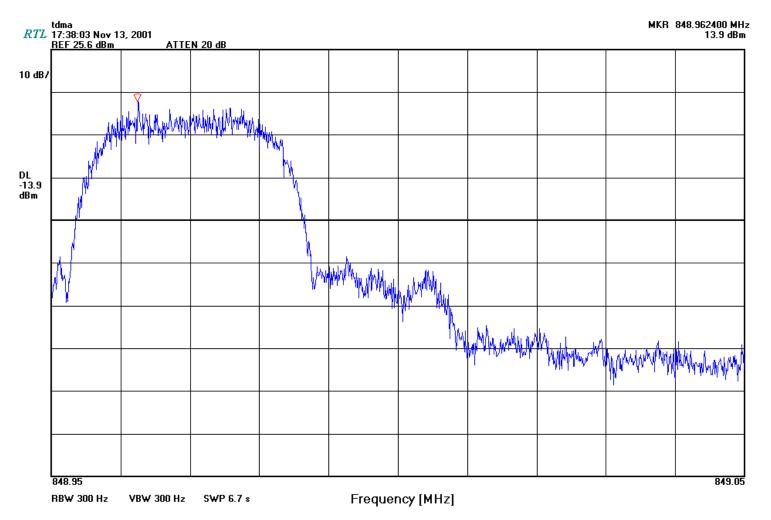
 RF Signal Generator
 HP8648C
 s/n 3537A01741

 Synthesized Sweeper
 HP83752A
 s/n 3610A00846

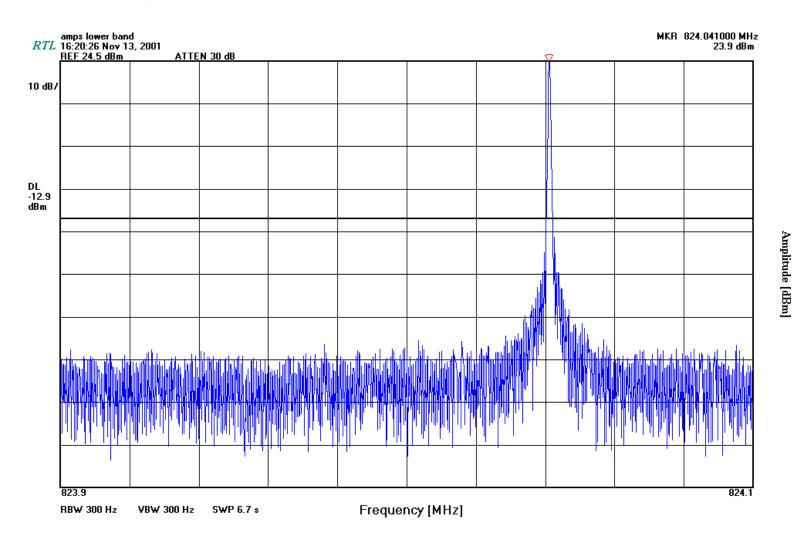


6 FCC RULES AND REGULATIONS PART 22.901(D): BAND-EDGE COMPLIANCE

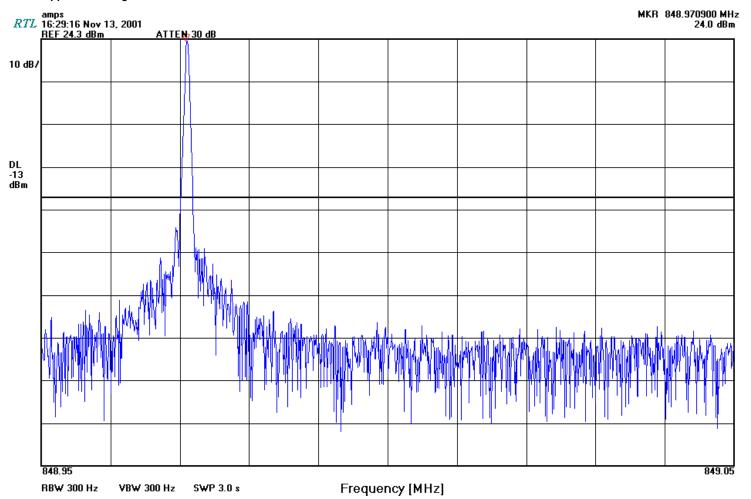
6.1 TEST DATA FOR PART 22.901(D)


The following plots were made using radiated measurements. The center frequency of the spectrum analyzer display was set to 824MHz for the lower band-edge and 849MHz for the upper band-edge.

TDMA Lower Band Edge



Page 12 R300ds

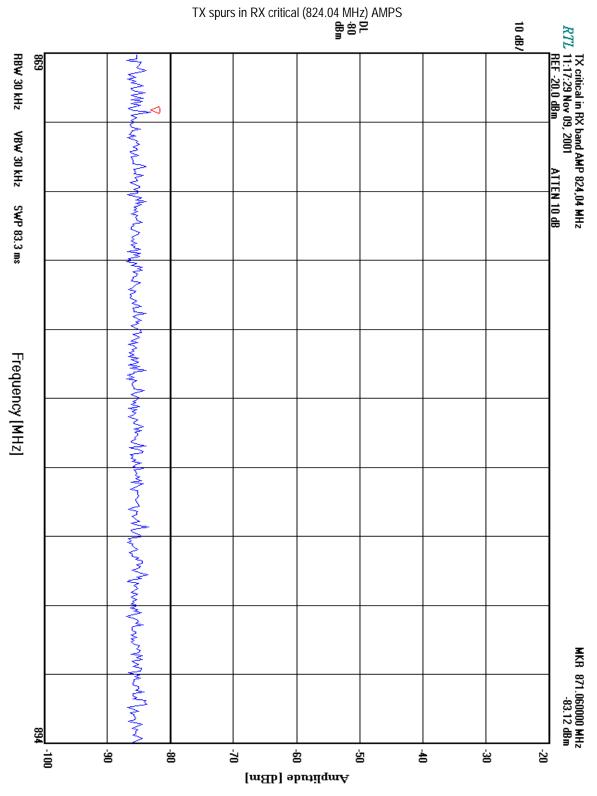

TDMA Upper Band Edge

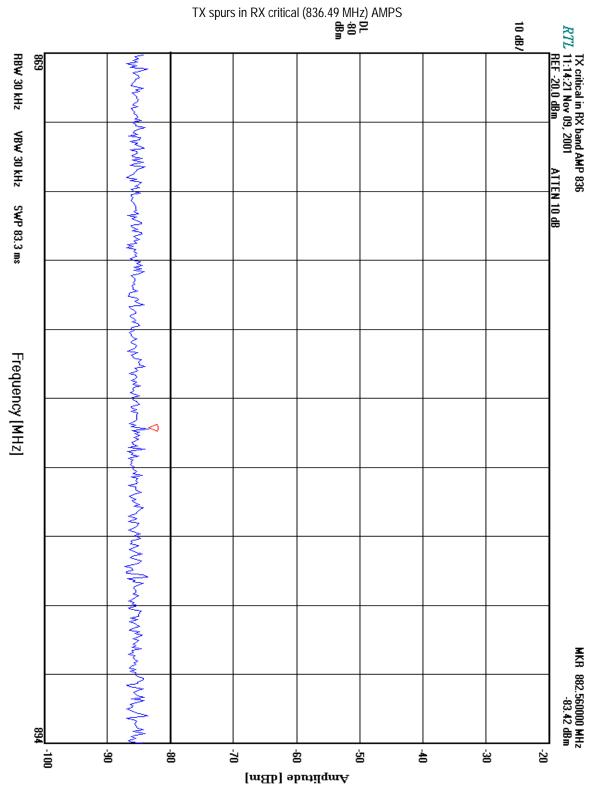
AMPS Lower Band Edge

AMPS Upper Band Edge

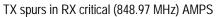
Amplitude [dBm]

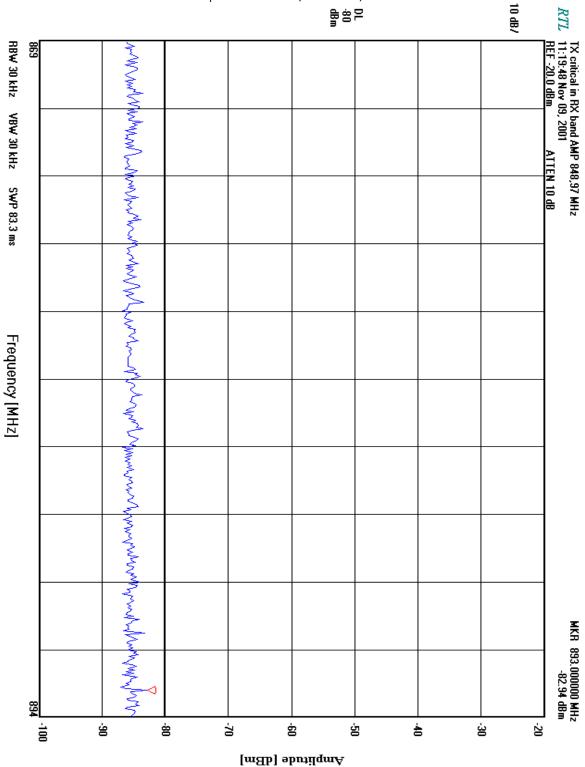
6.2 TEST EQUIPMENT

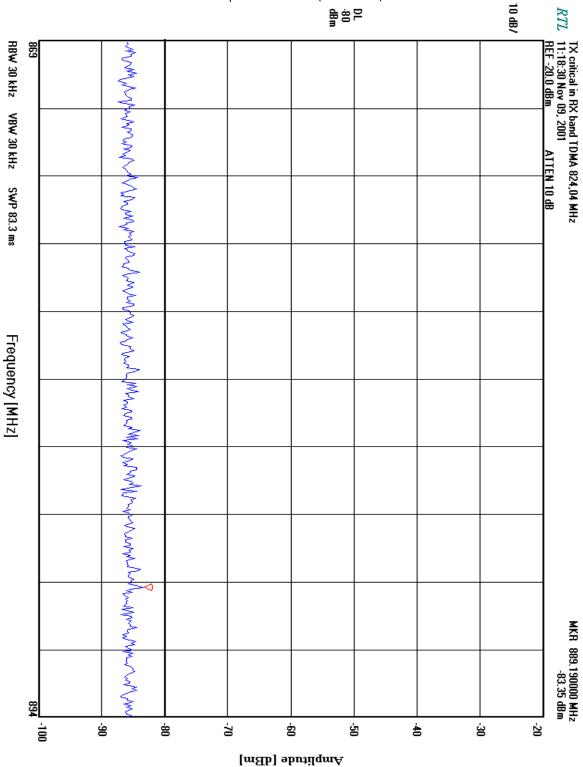

Spectrum Analyzer HP8566B Antenna BiLog Chase 6112L

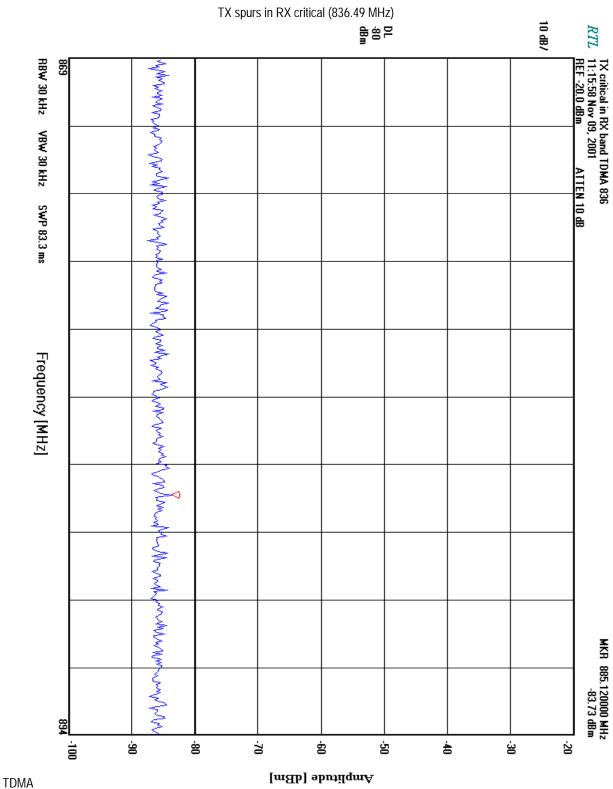

7 FCC RULES AND REGULATIONS PART 22.917 (F) EMISSIONS IN BASE STATION FREQUENCY BAND FROM MOBILES

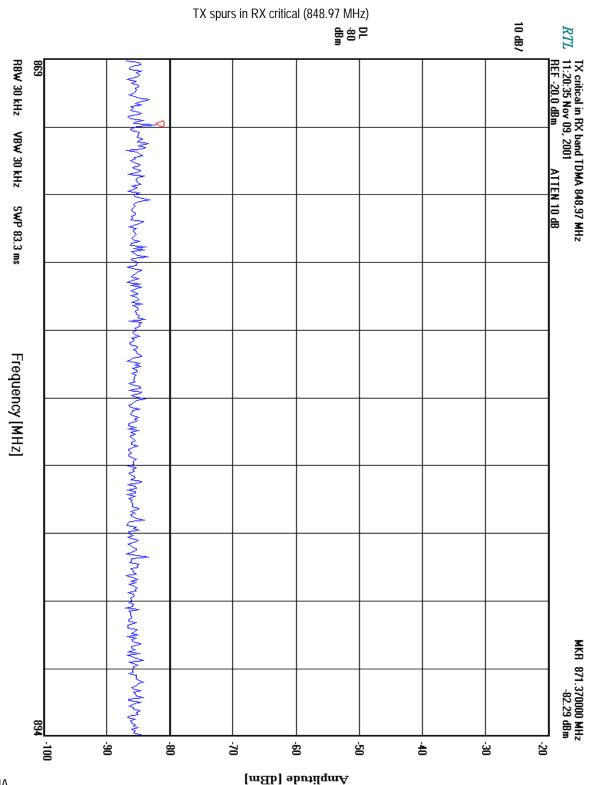
7.1 TEST DATA









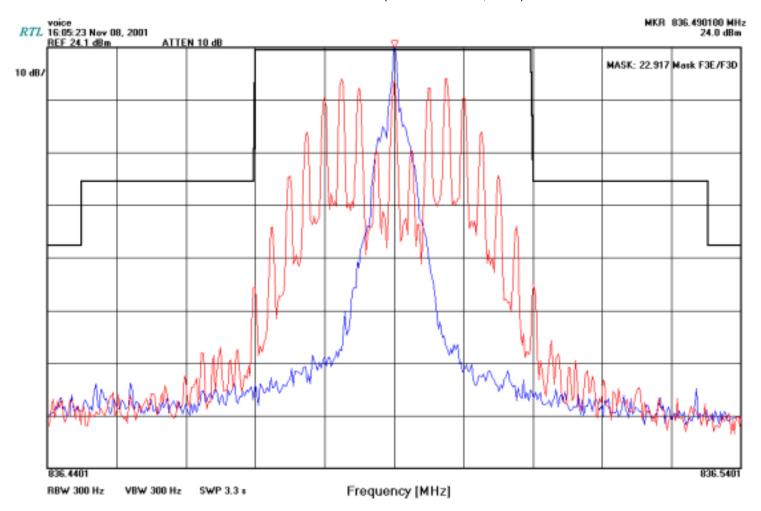

TX spurs in RX critical (824.04 MHz) TDMA

TDMA

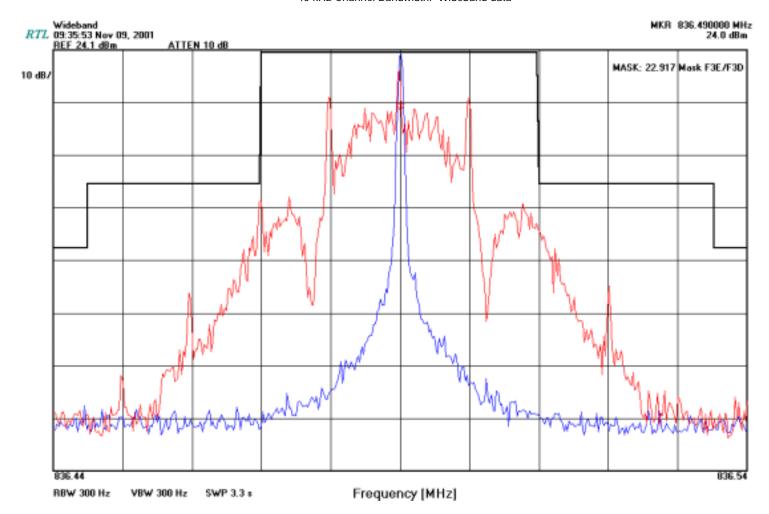
7.2 TEST EQUIPMENT

Spectrum Analyzer HP8564Es/n 3943A01719

8 FCC RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH

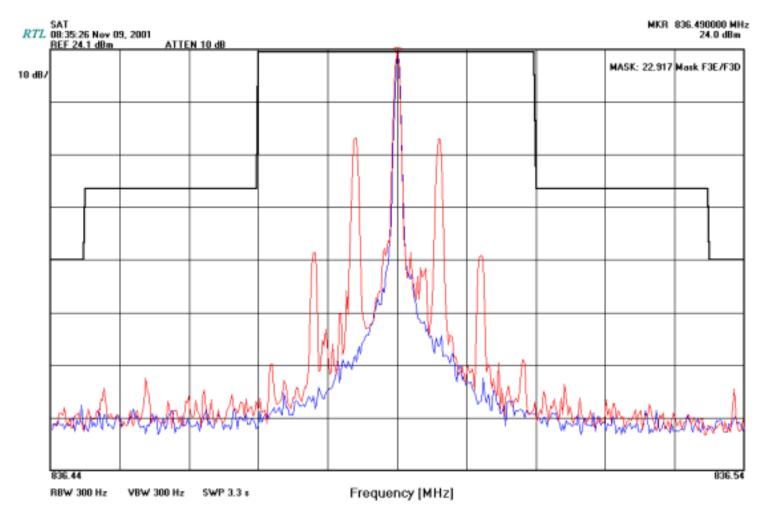

OCCUPIED BANDWIDTH - COMPLIANCE WITH THE EMISSION MASKS

8.1 TEST PROCEDURE

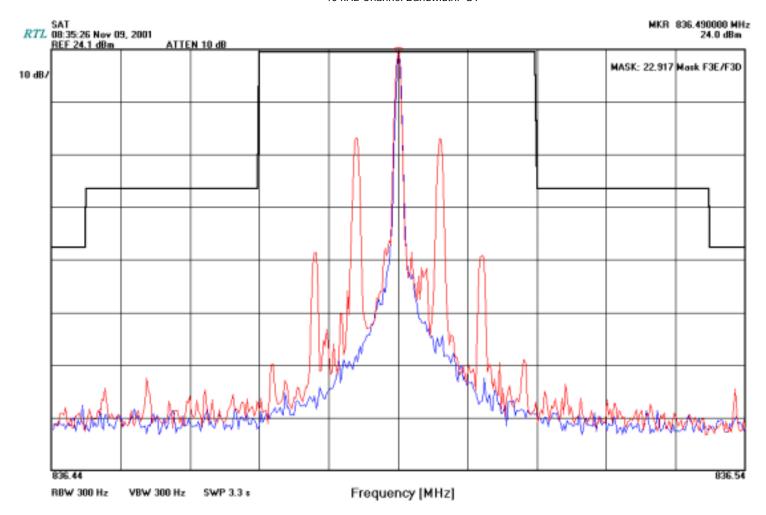

ANSI/TIA/EIA-603-1992, section 2.2.11 Part 22.917(b)

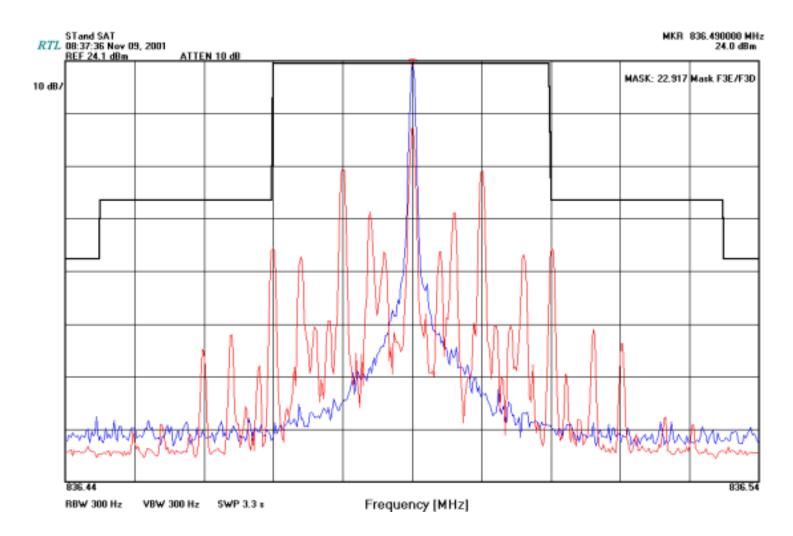
8.2 TEST DATA

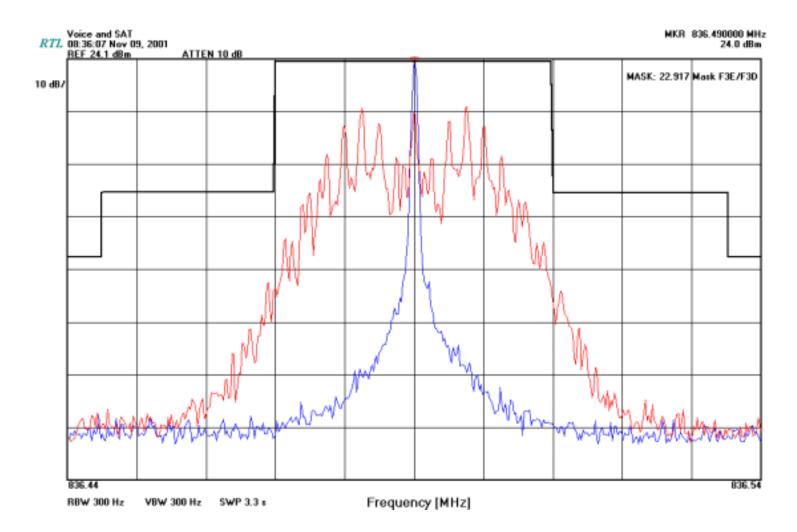
40 kHz Channel Bandwidth: (Audio Modulation: 2,500 Hz) Voice

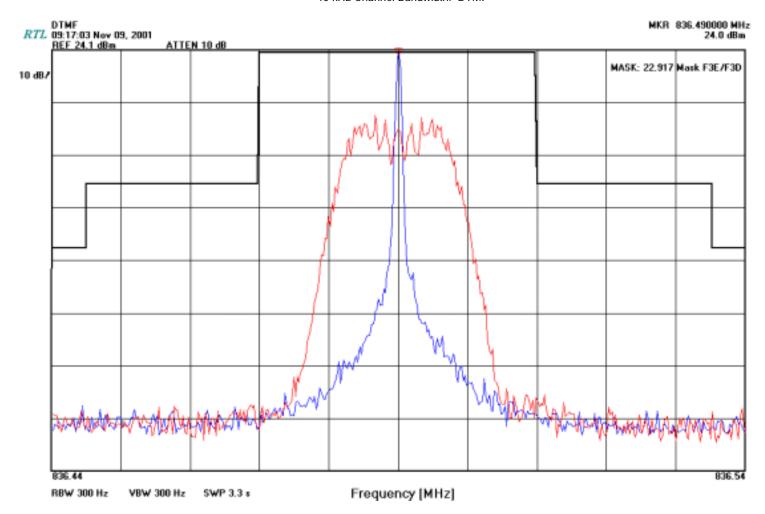


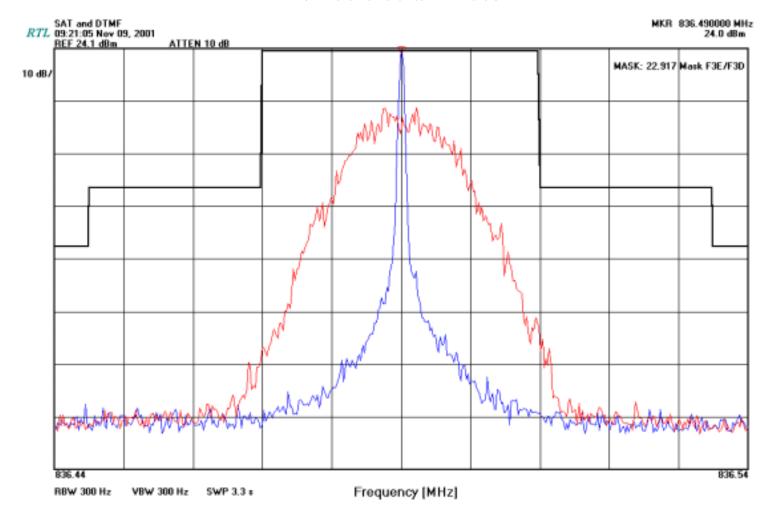
40 kHz Channel Bandwidth: Wideband data



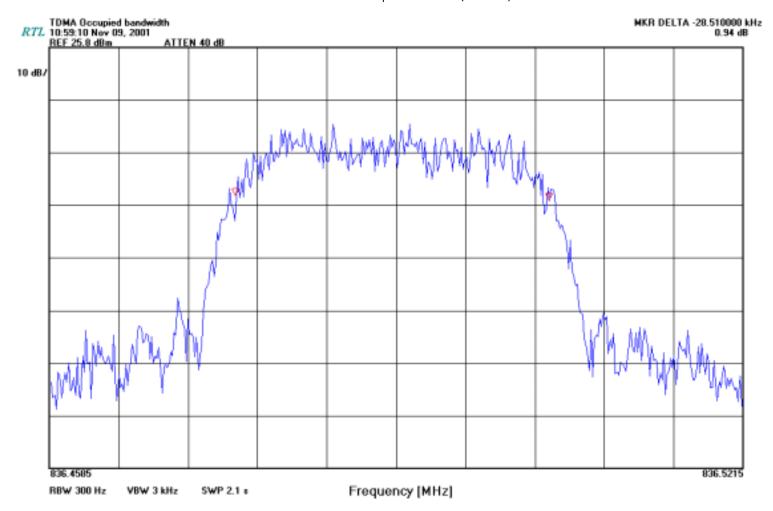

40 kHz Channel Bandwidth: SAT


40 kHz Channel Bandwidth: ST

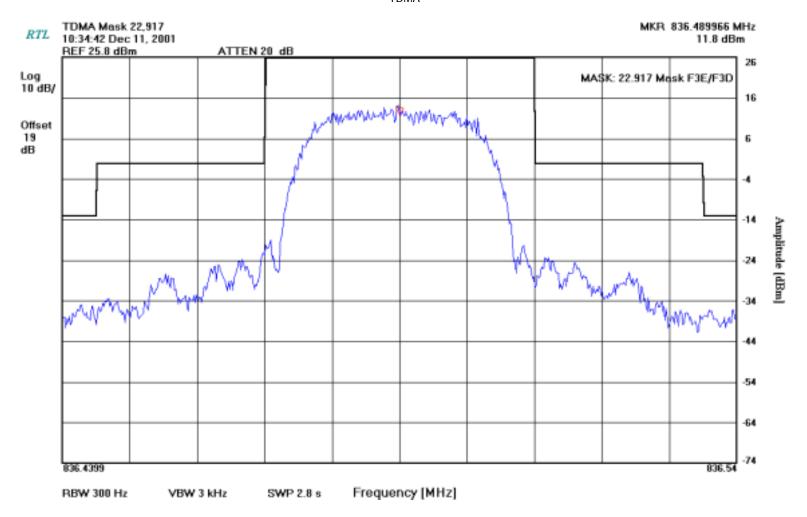

40 kHz Channel Bandwidth: SAT and ST


40 kHz Channel Bandwidth: SAT and Voice

40 kHz Channel Bandwidth: DTMF



40 kHz Channel Bandwidth: DTMF and SAT



TDMA – 99% Occupied Bandwidth (28.5 KHz)

TDMA

8.3 TEST EQUIPMENT

Spectrum Analyzer HP8564Es/n 3943A01719

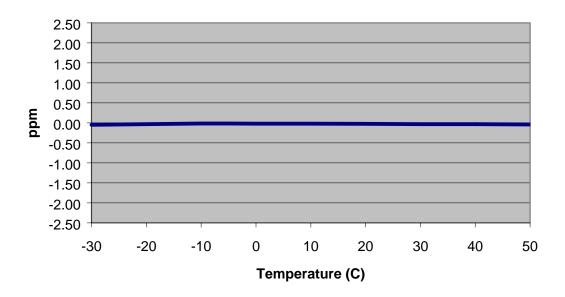
9 FCC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY

9.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.2 and FCC part 22.355

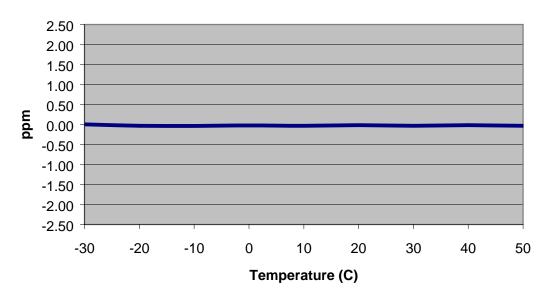
The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range -30°C to +50°C.

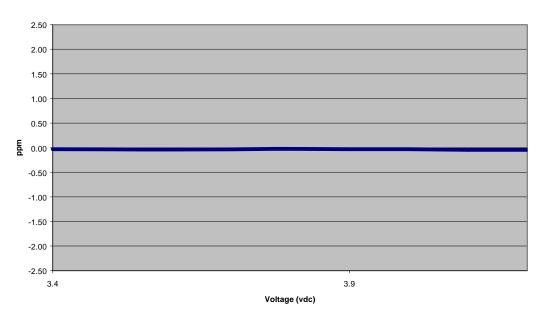

The temperature was initially set to -30°C and a period of time sufficient to stabilize all of the components of the oscillator circuit was observed prior to each frequency measurement of 10 degree intervals.

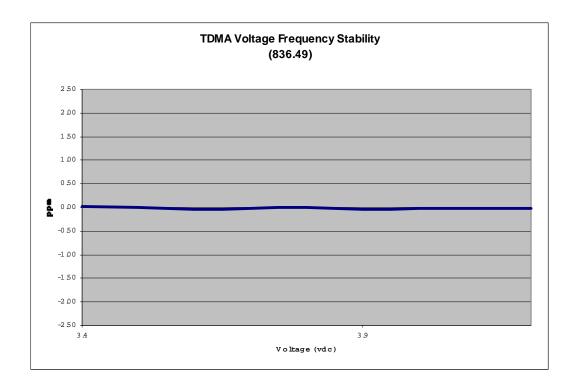
Additionally, the power supply voltage of the EUT was varied from 85% to 115% of the nominal voltage.

9.2 TEST DATA


9.2.1 FREQUENCY STABILITY/FREQUENCY VARIATION

AMPS Temperature Frequency Stability 836.49 MHz


TDMA Temperature Frequency Stability (836.49 MHz)

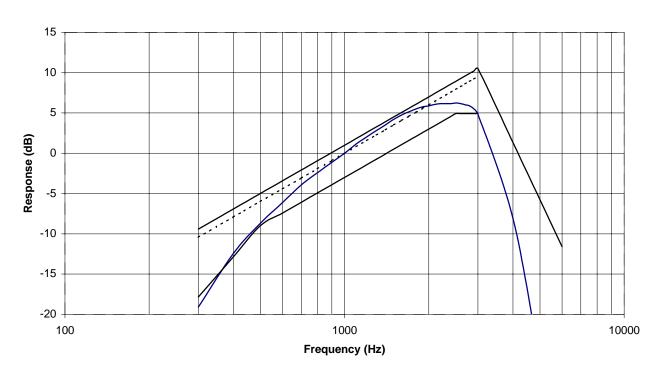

9.2.2 FREQUENCY STABILITY/VOLTAGE VARIATION

BATTERY END-POINT = 3.4 VDC

AMPS Voltage Frequency Stability (836.49 MHz)

10 FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE

10.1 TEST PROCEDURE


EIA/IS-19-B: 1988 Recommended Minimum Standards for 800MHz Cellular Subscriber Units

The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic. The input audio level at 1000 Hz is set to produce 20% of the rated system deviation. This point is shown as the 0 dB reference level, noted DEVref. The audio signal generator was varied from 100Hz to 5kHz with the input level held constant. The deviation in kHz was recorded using a modulation analyzer as DEVfreq. The response in dB relative to 1 kHz was calculated as follows: Audio Frequency Response = 20 LOG (DEVfreq/DEVref)

10.2 TEST DATA

Audio Frequency Response (836.49 MHz)

Audio Frequency Response

Frequency of Max Response 2262.935 Hz

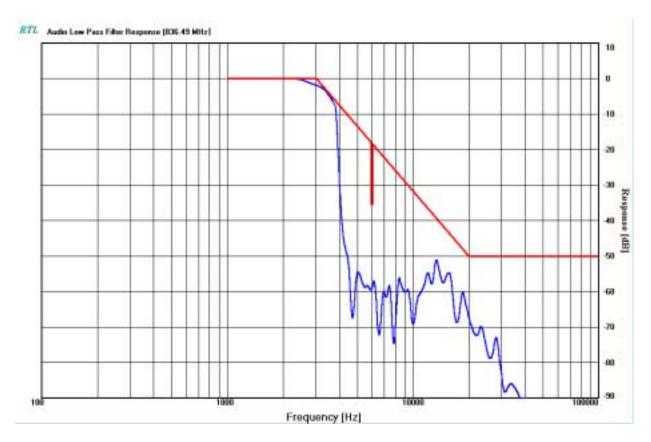
10.3 TEST EQUIPMENT

Audio generator Modulation analyzer Type Certification

2001303 / QRTL01-334

HP3336Bs/n 2127A00559 HP8901As/n 2545A04102

Sony Ericsson Mobile Communications (US, Inc.)


11 FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO LOW PASS FILTER RESPONSE

11.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, 2.2.15 and Part 22. 915(d)(1)

The Audio Low Pass Filter Response is the frequency response of the post limiter low pass filter circuit above 3000 Hz.

11.2 TEST DATA

11.3 TEST EQUIPMENT

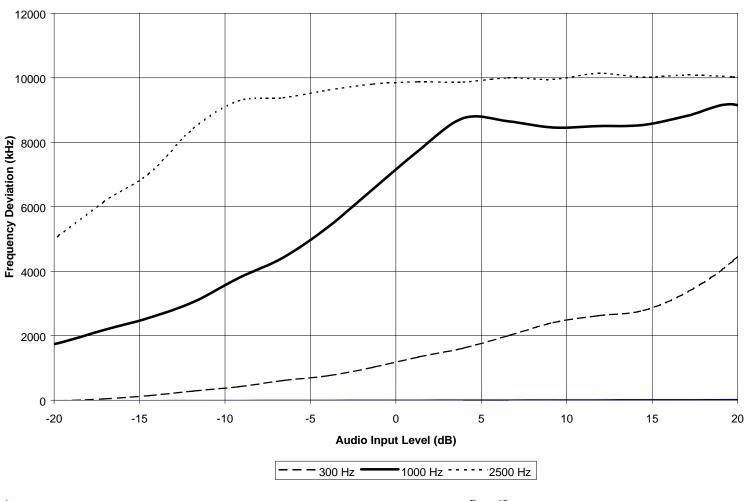
Audio generator HP3336Bs/n 2127A00559 Modulation analyzer HP8901As/n 2545A04102 Selective level meter HP3586Bs/n 1928A01892 Synthesizer/Level generator HP3336Bs/n 2514A02585

12 FCC RULES AND REGULATIONS PART 2 §2.1047 (B): MODULATION CHARACTERISTICS - MODULATION LIMITING

12.1 TEST PROCEDURE

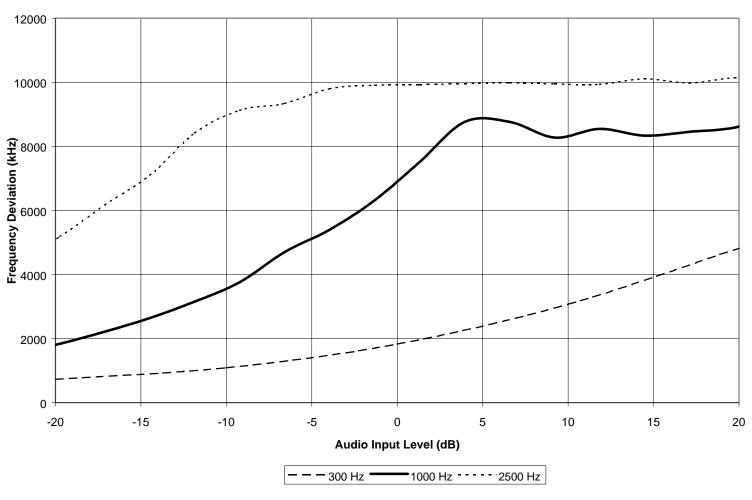
ANSI/TIA/EIA-603-1992, section 2.2.3 and Part 22.915 (B)

The transmitter is adjusted for full rated system deviation. The audio input level is adjusted for 60% of rated system deviation at 1000Hz. Using this level as a reference (0dB) the audio input level is varied from the reference to a level +25 dB above it and -25 dB under it, for modulation frequencies of 300Hz, 1,000Hz, and 2,500Hz. The system deviation obtained as a function of the input level is recorded.


Both Positive and Negative Peak deviations were recorded.

12.2 TEST DATA

Туре	Measured	Rated		
Voice	12	12		
Wideband	8.4	8		
SAT	1.98	2		
ST	7.47	8		



Modulation Limiting Negative Peak

Modulation Limiting Positive Peak

12.3 TEST EQUIPMENT

Audio generator HP3336Bs/n 2127A00559 Modulation analyzer HP8901As/n 2545A04102

13 FCC RULES AND REGULATIONS PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH

Type of Emission: F8W, F1D

Necessary Bandwidth and Emission Bandwidth: 40K0F1D 40K0F8W

Calculation for 40K0F8W

1/ Voice + SAT

Modulation: Voice is 2.5 kHz and SAT is 6kHz, thus the maximum modulation is M = 6 kHz Deviation: Voice is 12kHz and SAT is 2kHz, thus the maximum deviation is D= 12+2= 14 kHz Bn = 2xM+2xDK with K =1 Bn= 40 kHz

2/ Signaling Tone (ST) + SAT

Modulation: ST is 10 kHz and SAT is 6kHz, thus the maximum modulation is M = 10 kHz Deviation: ST is 8kHz and SAT is 2kHz, thus the maximum deviation is D = 8+2=10 kHz Bn = 2xM+2xDK with K = 1 Bn= 40 kHz

Calculation for 40K0F1D (wide Band Data)

1/ Voice + SAT

Modulation: Wideband Data is 10 kHz and SAT is 6kHz, thus the maximum modulation is M=10 kHz Deviation: Wideband Data is 8kHz and SAT is 2kHz, thus the maximum deviation is D=8+2=10 kHz Bn=2xM+2xDK with K=1 Bn=40 kHz

14 FCC RULES AND REGULATIONS PART 2.1033(C)(8)); DC VOLTAGES AND CURRENTS

The dc voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range.

The DC voltage and total input current of the entire final power amplifier module is 3.85 VDC and 380 mA in the highest level to 100 mA in the lowest power level.

15 TEST CONFIGURATION PHOTOGRAPHS

Radiated Back View

Radiated Front View

Conducted Front View

Conducted Back View

APPENDIX A: FCC PART 15 §15.107 (A) - AC LINES CONDUCTED EMISSIONS

TEST PROCEDURE

The EUT is operated with a battery. Power lines conducted emissions were measured when the radio was in transmit mode and while using a battery charger AC/DC powered from the mains.

The power line conducted emission measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50 ohm / 50 microhenry Line Impedance Stabilization Network (EUT LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the A.C. line through an isolation transformer. The 50-ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar 400 kHz high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 400 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable). The analyzer's 6 dB bandwidth was set to 9 kHz. No video filter less than 10 times the resolution bandwidth was used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 450 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in this report.

TEST DATA

Table 5-1: Conducted Emissions (Class B Limits) Neutral Side (Line 1)

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	Limit (dBuV)	Margin (dB)
0.467	Pk	37.1	0.8	37.9	48.0	-10.1
0.635	Pk	28.9	0.7	29.6	48.0	-18.4
0.845	Pk	20.5	0.7	21.2	48.0	-26.8
0.957	Pk	23.1	0.7	23.8	48.0	-24.2
1.360	Pk	29.2	0.9	30.1	48.0	-17.9
1.524	Pk	25.2	1.0	26.2	48.0	-21.8
15.690	Pk	17.1	2.8	19.9	48.0	-28.1
22.260	Pk	17.8	3.2	21.0	48.0	-27.0

Table 5-2: Conducted Emissions (Class B Limits) Hot Side (Line 2)

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	Limit (dBuV)	Margin (dB)
0.451	Pk	37.9	0.8	38.7	48.0	-9.3
0.671	Pk	34.2	0.7	34.9	48.0	-13.1
0.894	Pk	28.2	0.7	28.9	48.0	-19.1
1.496	Pk	31.0	0.9	31.9	48.0	-16.1
11.140	Pk	16.9	2.3	19.2	48.0	-28.8
13.144	Pk	16.3	2.4	18.7	48.0	-29.3
15.045	Pk	16.4	2.7	19.1	48.0	-28.9
17.545	Pk	17.5	2.8	20.3	48.0	-27.7

TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number
900931	НР	8566B	Spectrum Analyzer (100 Hz - 22 GHz)	3138A07771
900070	Solar		LISN	

APPENDIX B: FCC PART 15 §15.109 (A) RADIATED EMISSIONS

FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FI(dBuV/m) = SAR(dBuV) + SCF(dB/m)

FI = Field Intensity

SAR = Spectrum Analyzer Reading

SCF = Site Correction Factor

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

SCF(dB/m) = - PG(dB) + AF(dB/m) + CL(dB)

SCF = Site Correction Factor
PG = Pre-amplifier Gain
AF = Antenna Factor
CL = Cable Loss

The field intensity in microvolts per meter can then be determined according to the following equation:

 $FI(uV/m) = 10^{FI(dBuV/m)/20}$

For example, assume a signal at a frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

49.3 dBuV - 11.5 dB/m = 37.8 dBuV/m $10^{37.8/20} = 10^{1.89} = 77.6 \text{ uV/m}$

TEST PROCEDURE

The EUT was scanned at a three-meter open-field range in order to determine its emissions spectrum signature. The physical arrangement of the test system was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable 1.0 meter above the ground plane.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.

TEST DATA

Table 6-1: Radiated Emissions (Receiver-Digital Data) Temperature: 30°F, Humidity: 74%

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
178.942	Qp	V	0	1.0	45.4	-17.7	27.7	43.5	-15.8
357.884	Qp	V	225	1.0	37.8	-11.5	26.3	46.0	-19.7
536.826	Qp	V	0	1.0	35.1	-7.5	27.6	46.0	-18.4
881.490	Qp	V	145	1.0	34.8	-3.0	31.8	46.0	-14.2
881.490	Qp	V	145	1.0	34.8	-3.0	31.8	46.0	-14.2
979.560	Qp	V	145	1.0	35.9	-2.9	33.0	54.0	-21.0
1004.490	Av	V	45	1.0	35.2	-4.3	30.9	54.0	-23.1
1762.980	Av	V	1	1.0	17.8	4.0	21.8	54.0	-32.2
1959.120					<10				
2008.980					<10				
2644.460					<10				
2938.680					<10				
3013.470					<10				
3525.950					<10				
3918.240					<10				
4017.960					<10				
4407.440					<10				

TEST EQUIPMENT

Antenna: CHASE CBL6112B s/n 2648

 Amplifier:
 HP8449B
 s/n 3008A00505

 Spectrum analyzer:
 HP8566B
 s/n 3138A07771

 RF Signal Generator
 HP8648C
 s/n 3537A01741

 Synthesized Sweeper
 HP83752A
 s/n 3610A00846