

Page 1 of 26

JQA File No.: KL80170089R Issue Date: June 22, 2017

TEST REPORT

Applicant : SHARP CORPORATION, IoT Communication BU

Address : 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

Products : Smart Phone

Model No. : 606SH

Serial No. : 004401/11/612127/4

FCC ID : APYHRO00250

Test Standard : CFR 47 FCC Rules and Regulations Part 15

Test Results : Passed

Date of Test : May 18 ~ June 22, 2017

Asun

Kousei Shibata

Manager

Japan Quality Assurance Organization

KITA-KANSAI Testing Center

SAITO EMC Branch

7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 2 of 26

TABLE OF CONTENTS

		Page
1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	5
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Description of Test Setup	6
7	Test Requirements	8

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT: Equipment Under TestEMC: Electromagnetic CompatibilityAE: Associated EquipmentEMI: Electromagnetic InterferenceN/A: Not ApplicableEMS: Electromagnetic Susceptibility

N/T : Not Tested

☑ - indicates that the listed condition, standard or equipment is applicable for this report.

 \Box - indicates that the listed condition, standard or equipment is not applicable for this report.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 3 of 26

1 Description of the Equipment Under Test

1. Manufacturer : SHARP CORPORATION, IoT Communication BU

2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

2. Products : Smart Phone

3. Model No. : 606SH

4. Serial No. : 004401/11/612127/4

5. Product Type : Pre-production

6. Date of Manufacture : April, 2017

7. Power Rating : 4.0VDC (Lithium-ion Battery UBATIA270AFN1 3010mAh)

8. Grounding : None

9. Transmitting Frequency : 13.56 MHz10. Receiving Frequency : 13.56 MHz

11. Antenna Type : Internal Antenna (Integral)

12. EUT Authorization : Certification13. Received Date of EUT : May 15, 2017

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 4 of 26

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15

Subpart C – Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above.

Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \square - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

 \square - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.

- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita

Assistant Manager JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Tested by:

Shigeru Osawa

Deputy Manager

JQA KITA-KANSAI Testing Center

Kigen Osawa

SAITO EMC Branch

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 5 of 26

3 Test Procedure

Test Requirements : §15.225, §15.207 and §15.209

Test Procedure : ANSI C63.10–2013

Testing unlicensed wireless devices.

KDB 414788 D01

Radiated Test Site v01: April 18, 2017

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No. : VLAC-001-2 (Expiry date : March 30, 2018) VCCI Registration No. : A-0002 (Expiry date : March 30, 2018)

BSMI Registration No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006

(Expiry date: September 14, 2019)

IC Registration No. : 2079E-3, 2079E-4 (Expiry date: July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date: February 22, 2019)

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 6 of 26

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of:

	Item	Manufacturer	Model No.	Serial No.	FCC ID
Α	Smart Phone	Sharp	606SH	004401/11/612127/4	APYHRO00250

The auxiliary equipment used for testing:

None

Type of Cable:

None

6.2 Test Arrangement (Drawings)

A

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 7 of 26

6.3 Operating Condition

Power Supply Voltage : 4.0 VDC (for Battery)

The test were carried under 4 mode shown as follows:

- 1. Felica (Modulation Type: ASK)
- 2. ISO/IEC14443 Type A (Modulation Type: ASK)
- 3. ISO/IEC14443 Type B (Modulation Type: ASK)
- 4. ISO/IEC15693 Type V (Modulation Type: ASK)

The Radiated Emission test were carried under 1 test configurations shown in clause 6.2. In all tests, the fully charged battery is used for the EUT.

Detailed Transmitter portion:

Transmitter frequency: 13.560 MHz

Detailed Receiver portion:

Receiver frequency : 13.560 MHz

Other Clock Frequency 19.2MHz, 27MHz, 27.12MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement.

The test were carried out using the following test program supplied by applicant;

- Software Name: NFC Testing Software
- Software Version: Version 1.0.8
- Storage Location: EUT

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 8 of 26

7 Test Requirements

7.0 Summary of the Test Results

Test Item FCC Specification I		Reference of the	Results	Remarks
		Test Report		
Antenna Requirement	Section 15.203	Section 1.11	Passed	1
AC Powerline Conducted	Section 15.207	Section 7.1	N/A	-
Emission			*1)	
Radiated Emission	Section 15.225(a)(b)(c)(d)	Section 7.2	Passed	1
Occupied Bandwidth	Section 15.215(c)	Section 7.3	Passed	1
Frequency Stability	Section 15.225(e)	Section 7.4	Passed	-

Note: 1) See Section 7.1.

7.1 AC Powerline Conducted Emission

For the requirements,	\Box - Applicable $\ [\ \Box$ - Tested. $\ \Box$ - Not tested by applicant request.] $\ \boxdot$ - Not Applicable
	mart phone is connected to the AC Charger or Earphone, the RF(13.56MHz) ting function is not available.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 9 of 26

7.2	Radiated Emission

For the requirements, ☐ - Applicable [☐ - Tested. ☐ - Not tested by applicant request.] ☐ - Not Applicable

7.2.1 Test Results

7.2.1.1 Radiated Emission (§15.225(a)(b)(c))

For the standard,		\square - Failed	□ - Not j	udged			
Min. Limit Margin (§ Min. Limit Margin (§ Min. Limit Margin (§	15.225(b)) (Quasi	-Peak)	78.7 58.1 >50.7	dB dB dB	at at at	13.560 13.567 13.41/13.71	MHz MHz MHz
Uncertainty of Measu	rement Results		9 kHz	-30 M	IHz	\pm 3.0	$dB(2\sigma)$

Remarks: The Radited Emission at 30m of 13.560 MHz is 5.3 dB(uV/m). Type A mode, Z axis position. Antenna Orientation: parallel. The emission mask (§15.225(a), (b) and (c)) complies with the limits.

7.2.1.2 Radiated Emission (§15.225(d))

For the standard,	o - Passed	\square - Failed	□ - Not	judged			
Min. Limit Margin (Q	uasi-Peak)		3.8	_ dB	at	81.36	_ MHz
Uncertainty of Measurement Results			9 kH 30 MHz 300 MHz -		⁄ΙΗz	$ \begin{array}{r} \pm 3.0 \\ \pm 3.8 \\ \pm 4.8 \end{array} $	_ dB(2σ) _ dB(2σ) _ dB(2σ)

Remarks: Type A mode, Y axis position. The measurement result is within the range of measurement uncertainty. When the smart phone is connected to the AC Charger or Earphone, the RF(13.56MHz) communicating function is not available.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 10 of 26

7.2.2 Test Instruments

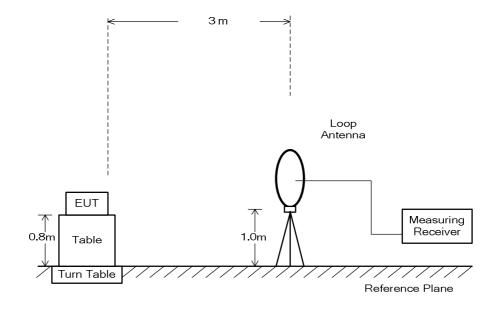
Anechoic Chamber A2								
Туре	Model	Model Serial No. (ID) Manuf		Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2018/02/28				
Loop Antenna HFH2-Z2		872096/25 (C-2) Rohde & Schwarz		2017/07/21				
RF Cable	RG213/U	(H-28)	HUBER+SUHNER	2017/07/21				
Pre-Amplifier	310N	304573 (A-17)	SONOMA	2018/04/02				
Biconical Antenna	VHA9103/BBA9106	2355 (C-30)	Schwarzbeck	2017/05/18				
Log-periodic Antenna	UHALP9108-A1	0694 (C-31)	Schwarzbeck	2017/05/18				
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2018/04/02				

NOTE: The calibration interval of the above test instruments is 12 months.

7.2.3 Test Method and Test Setup (Diagrammatic illustration)

7.2.3.1 Radiated Emission 9 kHz – 30 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.


The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

The measurement were performed about three antenna orientations (parallel, perpendicular, and ground-parallel).

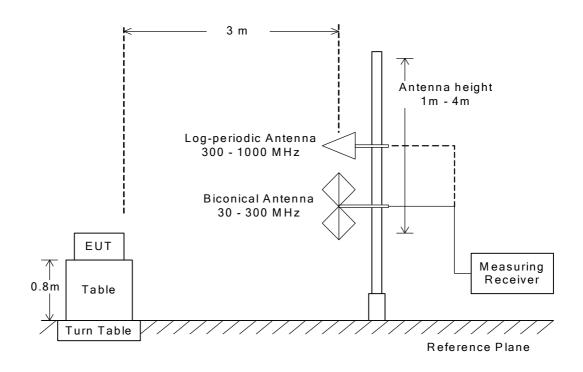
According to KDB 414788, a used anechoic chamber were equivalent to those on an open fields site based on comparison measurements.

This configurations was used for the final tests.

- Side View -

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 11 of 26


7.2.3.2 Radiated Emission 30 MHz - 1000 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

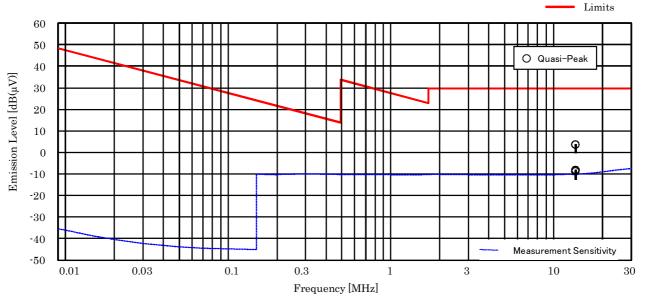
This configurations was used for the final tests.

- Side View -

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 12 of 26

7.2.4 Test Data


7.2.4.1 Radiated Emission (§15.225(a)(b)(c) & §15.209(a))

Test Mode: Felica

 $Test\ condition: Transmitting (Felica)$

<u>Test Date: May 18, 2017</u> Temp.: 23 °C, Humi: 43 %

Frequency	Correction Factor	Meter Readings at 3 m	Limits	Specified Distance	Extrapolated Results	Margin [dB]	Remarks
[MHz]	[dB(1/m)]	$[dB(\mu V)]$	$[dB(\mu V\!/m)]$	[m]	$[dB(\mu V/m)]$		
13.410	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
13.553	19.8	11.6	50.5	30.0	- 8.6	+59.1	-
13.560	19.8	24.0	84.0	30.0	3.8	+80.2	-
13.567	19.8	12.2	50.5	30.0	- 8.0	+58.5	-
13.710	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
27.120	22.2	< 10.0	29.5	30.0	< - 7.8	> +37.3	-

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 9 kHz to 30 MHz.
- 3. The correction factor includes the antenna factor and the cable loss.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. The testing loop antenna was rotated at the vertical and horizontal axis to maximize received emissions. The above Meter Reading was maximum emission level.
- 7. Calculation:

For fundamental, the measured field strength was extrapolated to distance 30m, using the formula that field strength using the formula that field strength aries as the inverse distance square(40 dB per decade of distance).

Fundamental : Correction Factor + Meter Reading = $19.8 + 24.0 = 43.8 \text{ dB}(\mu\text{V/m})$

Result at 30 m = -40 + 43.8 = 3.8 dB(μ V/m) (Conversion Factor : 40dB/decade)

Limits for 13.553-13.567MHz(§15.225(a)) = 20log10(15848) = 84.0 dB $\mu V/m$

Limits for $13.410 \cdot 13.553, 13.567 \cdot 13.710 MHz (\S 15.225(b)) = 20 \log 10 (334) = 50.5 \ dB \mu V/m$

 $Limits \ for \ 13.110 - 13.410, 13.710 - 14.010 MHz \ (\S 15.225(c)) = 20 log 10 (106) = 40.5 \ dB\mu V/m$

 $Harmonics: Correction \ Factor + Meter \ Reading = 22.2 + <10.0 = <32.2 \ dB(\mu V/m)$

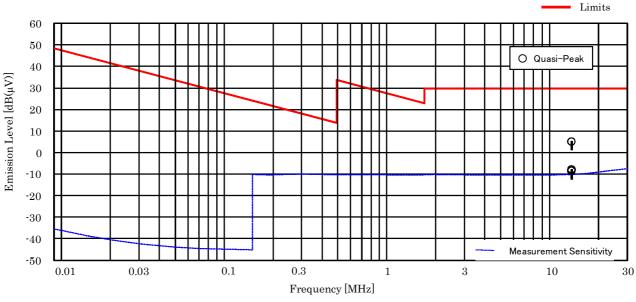
Result at 30 m = -40 + <32.2 = <-7.8 dB(μ V/m) (Conversion Factor : 40dB/decade)

Limits for Harmonics(§15.209(a)) = $20\log 10(30) = 29.5 \text{ dB}\mu\text{V/m}$ 7. Test receiver setting(s) :

Quasi-Peak Detector IF Bandwidth: 9kHz or 200Hz(Except for 9kHz -90kHz, 110kHz -490kHz)

Average Detector, IF Bandwidth: 9kHz or 200Hz(9 kHz -90 kHz, 110 kHz -490 kHz)

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 13 of 26

 $Test\ Mode : ISO/IEC14443\ Type\ A$

Test condition: Transmitting(Type A)

Test Date: N	Iay 18, 2017
Temp.: 23 °C.	Humi: 43 %

Frequency	Correction Factor	Meter Readings at 3 m	Limits	Specified Distance	Extrapolated Results	Margin [dB]	Remarks	
[MHz]	[dB(1/m)]			$[dB(\mu V\!/m)]$	[m]	$[dB(\mu V/m)]$	į. J	
13.410	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-	
13.553	19.8	11.9	50.5	30.0	- 8.3	+58.8	-	
13.560	19.8	25.5	84.0	30.0	5.3	+78.7	-	
13.567	19.8	12.6	50.5	30.0	- 7.6	+58.1	-	
13.710	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-	
27.120	22.2	< 10.0	29.5	30.0	< - 7.8	> +37.3	-	

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 9 kHz to 30 MHz.
- 3. The correction factor includes the antenna factor and the cable loss.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. The testing loop antenna was rotated at the vertical and horizontal axis to maximize received emissions.

 The above Meter Reading was maximum emission level.
- 7. Calculation:

For fundamental, the measured field strength was extrapolated to distance 30m, using the formula that field strength using the formula that field strength aries as the inverse distance square(40 dB per decade of distance).

Fundamental : Correction Factor + Meter Reading = $19.8 + 25.5 = 45.3 \text{ dB}(\mu\text{V/m})$

Result at 30 m = -40 + 45.3 = 5.3 dB(μ V/m) (Conversion Factor : 40dB/decade)

Limits for 13.553-13.567MHz(§15.225(a)) = $20log10(15848) = 84.0 \ dB\mu V/m$

Limits for $13.410 \cdot 13.553, 13.567 \cdot 13.710 MHz (\S 15.225(b)) = 20 \log 10 (334) = 50.5 \ dB \mu V/m$

Limits for $13.110 \cdot 13.410, 13.710 \cdot 14.010 \text{MHz}$ (§ 15.225(c)) = $20 \log 10(106) = 40.5 \text{ dB} \mu \text{V/m}$

 $Harmonics: Correction\ Factor + Meter\ Reading = 22.2 + <10.0 = <32.2\ dB(\mu V/m)$

Result at 30 m = -40 + <32.2 = <-7.8 dB(μ V/m) (Conversion Factor : 40dB/decade)

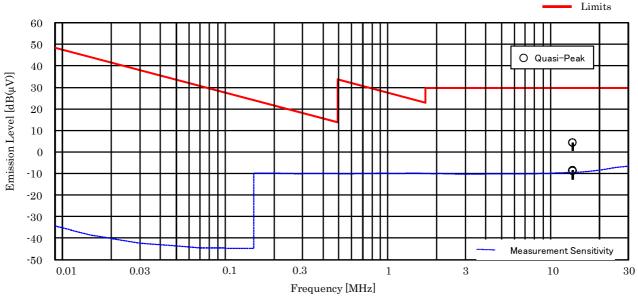
Limits for Harmonics(§15.209(a)) = $20log10(30) = 29.5 dB\mu V/m$

7. Test receiver setting(s):

Quasi-Peak Detector IF Bandwidth: 9kHz or 200Hz(Except for 9kHz - 90kHz, 110kHz - 490kHz)

Average Detector, IF Bandwidth: $9 \rm kHz$ or $200 \rm Hz (9~kHz$ -90~kHz, 110~kHz -490~kHz)

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 14 of 26

Test Mode: ISO/IEC14443 Type B

 $Test\ condition: Transmitting (Type\ B)$

<u>Test Date: May 18, 2017</u> <u>Temp.: 23 °C, Humi: 43 %</u>

Frequency	Correction Factor	Meter Readings at 3 m	Limits	Specified Distance	Extrapolated Results	Margin [dB]	Remarks
[MHz]	[dB(1/m)]	$[dB(\mu V)]$	$[dB(\mu V/m)]$	[m]	$[dB(\mu V/m)]$		
13.410	20.4	< 10.0	40.5	30.0	< - 9.6	> +50.1	-
13.553	20.5	11.2	50.5	30.0	- 8.3	+58.8	-
13.560	20.5	24.1	84.0	30.0	4.6	+79.4	-
13.567	20.5	11.0	50.5	30.0	- 8.5	+59.0	-
13.710	20.5	< 10.0	40.5	30.0	< - 9.5	> +50.0	-
27.120	23.1	< 10.0	29.5	30.0	< - 6.9	> +36.4	-

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 9 kHz to 30 MHz.
- 3. The correction factor includes the antenna factor and the cable loss.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. The testing loop antenna was rotated at the vertical and horizontal axis to maximize received emissions.

 The above Meter Reading was maximum emission level.
- 7. Calculation:

For fundamental, the measured field strength was extrapolated to distance 30m, using the formula that field strength using the formula that field strength aries as the inverse distance square(40 dB per decade of distance).

Fundamental : Correction Factor + Meter Reading = $20.5 + 24.1 = 44.6 \text{ dB}(\mu\text{V/m})$

Result at 30 m = $\cdot 40 + 44.6 = 4.6 dB(\mu V/m)$ (Conversion Factor : 40dB/decade)

Limits for 13.553-13.567MHz($\S15.225(a)$) = 20log10(15848) = $84.0~dB\mu V/m$

Limits for $13.410 \cdot 13.553, 13.567 \cdot 13.710 MHz (\S 15.225(b)) = 20 log 10 (334) = 50.5 dB \mu V/m$

Limits for 13.110-13.410,13.710-14.010MHz (§15.225(c)) = $20\log 10(106) = 40.5 \ dB\mu V/m$

Harmonics : Correction Factor + Meter Reading = 23.1 + <10.0 = <33.1 dB(μ V/m)

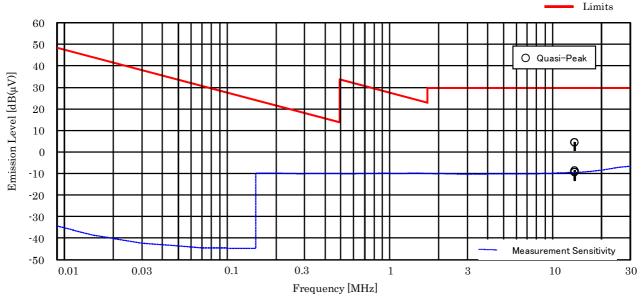
Result at 30 m = -40 + <33.1 = <-6.9 dB(μ V/m) (Conversion Factor : 40dB/decade) Limits for Harmonics(§15.209(a)) = 20log10(30) = 29.5 dB μ V/m

7. Test receiver setting(s):

Quasi-Peak Detector IF Bandwidth: 9kHz or 200Hz(Except for 9kHz -90kHz, 110kHz -490kHz)

Average Detector, IF Bandwidth: 9kHz or 200Hz(9 kHz -90 kHz, 110 kHz -490 kHz)

Standard : CFR 47 FCC Rules and Regulations Part 15


Page 15 of 26

Test Mode: ISO/IEC15693 Type V

 $Test\ condition: Transmitting (Type\ V)$

<u>Test Date: May 18, 2017</u> <u>Temp.: 23 °C, Humi: 43 %</u>

Fre quency	Correction Factor	Meter Readings at 3 m	Limits	Spe cified Distance	Extrapolated Results	Margin [dB]	Remarks
[MHz]	[dB(1/m)]	$[dB(\mu V)]$	$[dB(\mu V\!/m)]$	[m]	$[dB(\mu V/m)]$		
13.410	20.4	< 10.0	40.5	30.0	< - 9.6	> +50.1	-
13.553	20.5	10.4	50.5	30.0	- 9.1	+59.6	-
13.560	20.5	24.2	84.0	30.0	4.7	+79.3	-
13.567	20.5	11.1	50.5	30.0	- 8.4	+58.9	-
13.710	20.5	< 10.0	40.5	30.0	< - 9.5	> +50.0	-
27.120	23.1	< 10.0	29.5	30.0	< - 6.9	> +36.4	-

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 9 kHz to 30 MHz.
- 3. The correction factor includes the antenna factor and the cable loss.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. The testing loop antenna was rotated at the vertical and horizontal axis to maximize received emissions.

 The above Meter Reading was maximum emission level.
- 7. Calculation:

For fundamental, the measured field strength was extrapolated to distance 30m, using the formula that field strength using the formula that field strength aries as the inverse distance square(40 dB per decade of distance).

Fundamental : Correction Factor + Meter Reading = $20.5 + 24.2 = 44.7 \text{ dB}(\mu\text{V/m})$

Result at 30 m = $\cdot 40 + 44.7 = 4.7 dB(\mu V/m)$ (Conversion Factor : 40dB/decade)

Limits for 13.553-13.567MHz($\S15.225(a)$) = 20log10(15848) = $84.0~dB\mu V/m$

Limits for $13.410 \cdot 13.553, 13.567 \cdot 13.710 MHz (\S 15.225(b)) = 20 log 10 (334) = 50.5 dB \mu V/m$

Limits for 13.110-13.410,13.710-14.010MHz (§15.225(c)) = $20\log 10(106) = 40.5 \ dB\mu V/m$

Harmonics : Correction Factor + Meter Reading = 23.1 + <10.0 = <33.1 dB(μ V/m)

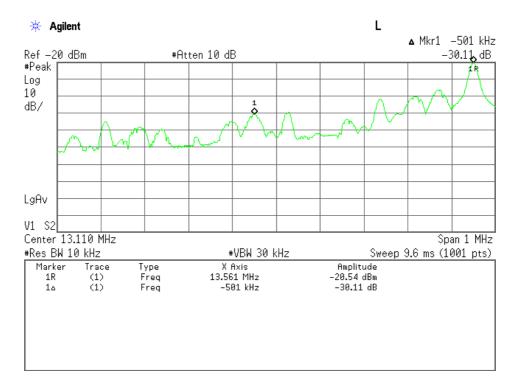
Result at 30 m = $\cdot 40$ + < 33.1 = $< \cdot 6.9$ dB(μ V/m) (Conversion Factor : 40dB/decade)

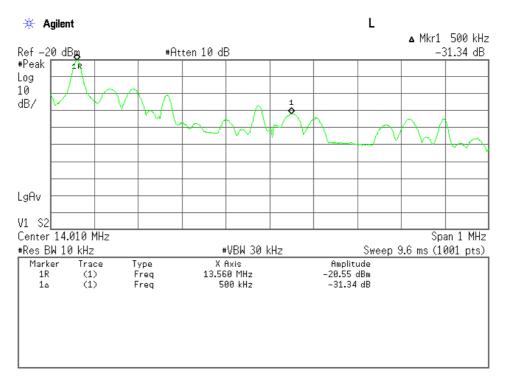
Limits for Harmonics(§15.209(a)) = $20\log 10(30) = 29.5 \text{ dB}\mu\text{V/m}$

7. Test receiver setting(s):

Quasi-Peak Detector IF Bandwidth: 9kHz or 200Hz(Except for 9kHz -90kHz, 110kHz -490kHz)

Average Detector, IF Bandwidth: 9kHz or 200Hz(9 kHz -90 kHz, 110 kHz -490 kHz)


Standard : CFR 47 FCC Rules and Regulations Part 15


Page 16 of 26

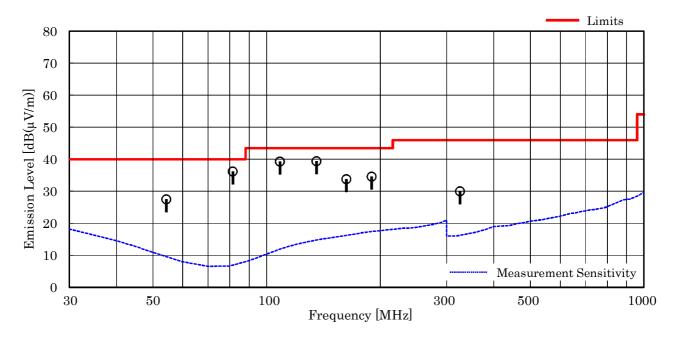
Emission Mask (§15.225(a)(b)(c)) (Relative measurement)

Test Mode: ISO/IEC14443 Type A (worst case)

Because the fundamental level is low, the level complies with §15.225(a), (b) and (c) limits for the level. In the following relative measurement, the emissions outside §15.225(a) are sufficiently attenuated to the level of the fundamental emission. Therefore the emissions complies with the emission mask (§15.225(a), (b) and (c)).

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 17 of 26


7.2.4.2 Radiated Emission (§15.209(a))(30MHz - 1000MHz)

Test Mode: Type A (Worst case)

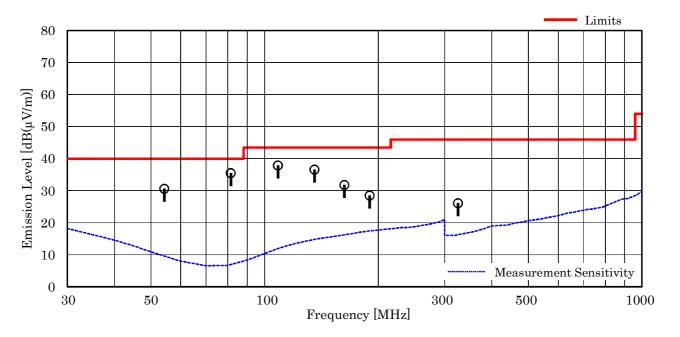
Test Date: May 18, 2017 Temp.: 23 °C, Humi: 43 %

Antenna pole : Horizontal

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	Limits [dB(μV/m)]	Results [dB(µV/m)]	Margin [dB]	Remarks
54.24	9.7	-27.2	45.0	40.0	27.5	+12.5	-
81.36	6.7	-26.9	56.4	40.0	36.2	+ 3.8	
108.48	11.6	-26.6	54.3	43.5	39.3	+ 4.2	_
135.60	14.2	-26.3	51.5	43.5	39.4	+ 4.1	_
162.72	15.3	-26.1	44.6	43.5	33.8	+ 9.7	_
189.84	16.4	-25.9	44.1	43.5	34.6	+ 8.9	_
325.44	14.2	-24.9	40.7	46.0	30.0	+16.0	_

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 81.36 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = 6.7 + (-26.9) + 56.4 = 36.2 dB(μ V/m) Antenna Height : 235 cm, Turntable Angle : 236 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 18 of 26

<u>Test Date: May 18, 2017</u> <u>Temp.: 23 °C, Humi: 43 %</u>

Antenna pole : Vertical

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	$Results \\ [dB(\mu V/m)]$	Margin [dB]	Remarks
54.24	9.7	-27.2	48.1	40.0	30.6	+ 9.4	-
81.36	6.7	-26.9	55.7	40.0	35.5	+ 4.5	_
108.48	11.6	-26.6	52.9	43.5	37.9	+ 5.6	_
135.60	14.2	-26.3	48.7	43.5	36.6	+ 6.9	_
162.72	15.3	-26.1	42.6	43.5	31.8	+11.7	_
189.84	16.4	-25.9	38.0	43.5	28.5	+15.0	_
325.44	14.2	-24.9	36.8	46.0	26.1	+19.9	_

NOTES

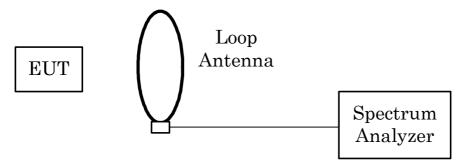
- 1. Test Distance : 3 m
- 2. The spectrum was checked from $30~\mathrm{MHz}$ to $1000~\mathrm{MHz}$.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 81.36 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = 6.7 + (-26.9) + 55.7 = 35.5 dB(μ V/m) Antenna Height: 100 cm, Turntable Angle: 117 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 19 of 26

7.3 Occupied Bandwidth

For the requirements,	☑ - Applicable □ - Not Applica		☐ - Not tested by app	olicant request.]
7.3.1 Test Results				
For the standard,		\square - Failed	\square - Not judged	
Uncertainty of Measure	ement Results			± 0.9 %(2 σ)
Remarks:				


7.3.2 Test Instruments

Shielded Room S4						
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due		
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2018/03/30		
Loop Antenna	LU-100A	(C-33)	TEXIO	N/A		

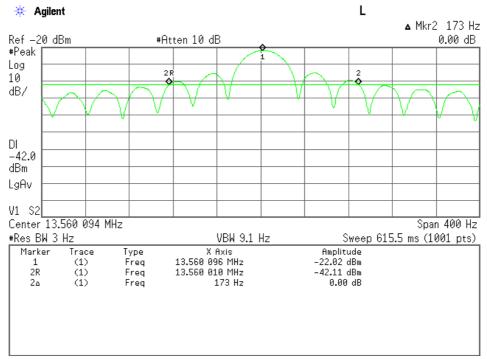
NOTE: The calibration interval of the above test instruments is 12 months.

7.3.3 Test Method and Test Setup (Diagrammatic illustration)

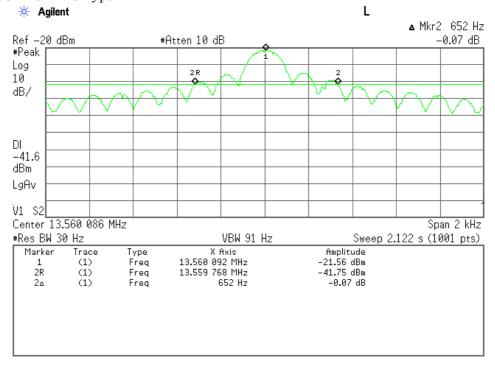
The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	3/10/30 Hz
Video Bandwidth	9.1/30/91 Hz
Span	$0.4/1/2~\mathrm{kHz}$
Sweep Time	AUTO
Trace	Maxhold


Standard : CFR 47 FCC Rules and Regulations Part 15

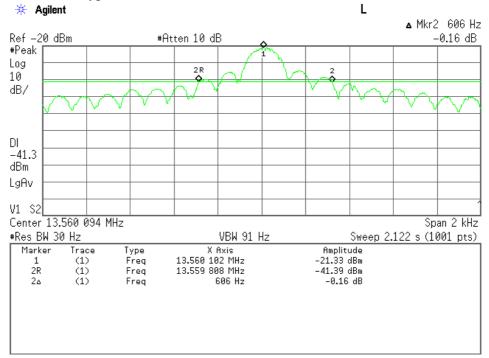
Page 20 of 26

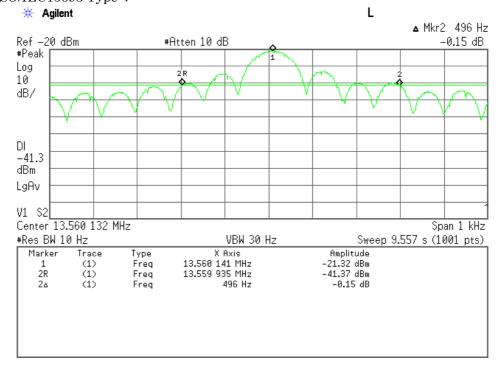

7.3.4 Test Data

<u>Test Date</u> :June 22, 2017 <u>Temp.</u>:26°C, Humi:56%

Test Mode: Felica

Test Mode: ISO/IEC14443 Type A




Standard : CFR 47 FCC Rules and Regulations Part 15

Page 21 of 26

Test Mode: ISO/IEC14443 Type B

Test Mode: ISO/IEC15693 Type V

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 22 of 26

7.4	Frequency	Stability
-----	-----------	-----------

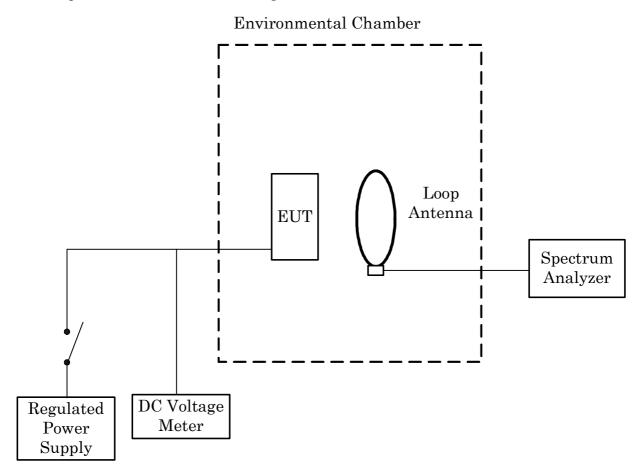
For the requirements,	☑ - Applicable □ - Not Applica		□ - Not tested b	y appl	licant reque	st.]
7.4.1 Test Results						
For the standard,		\square - Failed	\square - Not judged			
The Frequency Stabilit	y level is		+0.001925 %	at	13.560	MHz
Min. Limit Margin			+0.008075 %	at	13.560	MHz
Uncertainty of Measure	ement Results				<u>± 1.3</u>	ppm(20)

7.4.2 Test Instruments

Shielded Room S4							
Type	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Spectrum Analyzer	FSL3	100229 (A-40)	Rohde & Schwarz	2018/05/01			
Loop Antenna	LU-100A	(C-33)	TEXIO	N/A			
Environmental Chamber	SH-641	92010990 (F-32)	ESPEC	2017/07/13			

NOTE: The calibration interval of the above test instruments is 12 months.

Remarks:


Standard : CFR 47 FCC Rules and Regulations Part 15

Page 23 of 26

7.4.3 Test Method and Test Setup (Diagrammatic illustration)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -20, +20 and +50 degrees Celsius.

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 24 of 26

7.4.4 Test Data

Frequency Stability Measurement

Test Date: May 23, 2017

Transmitting Frequency : 13.560 MHz DC Supply Voltage : 4.0 VDC

Ambient				
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes
-20	13.560261	13.560261	13.560250	13.560244
20	13.560142	13.560165	13.560171	13.560176
50	13.560057	13.560057	13.560057	13.560051

Ambie nt		Diviation with	time elapse[%]		Limits	Margin
Tempe rature	Startup	2 minutes	5 minutes	10 minutes	[%]	[%]
[°C]						
-20	+ 0.001925	+ 0.001925	+ 0.001844	+ 0.001799	0.01	+ 0.008075
20	+ 0.001047	+ 0.001217	+ 0.001261	+ 0.001298	0.01	+ 0.008702
50	+ 0.000420	+ 0.000420	+ 0.000420	+ 0.000376	0.01	+ 0.009580

Sample of calculated result at 13.560 MHz, as the Minimum Margin point:

Ambient Temperature : -20 °C / Startup

DC Supply Voltage 4.0V

Minimum Margin: 0.010000 - 0.001925 = 0.008075 (%)

The point shown on "_____" is the Minimum Margin Point. The Maximum Deviation Point is shown on a thick letter.

Note: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.