

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com

CERT #2041.01

1.1.1

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 2/27/23 Test Site/Location: Element, Columbia, MD, USA Document Serial No.: 1M2302220014-01.A3L

FCC ID:

A3LSMS918U

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Application Type: FCC Rule Part(s): Model(s): Permissive Change(s): Date of Original Certification: Portable Handset Class II Permissive Change CFR §2.1093 SM-S918U, SM-S918U1 See FCC Change Document 12/08/2022

Equipment			SAR	
Class	Band & Mode	Tx Frequency	1g Head (W/kg)	
PCE	NR Band n77 DoD	3455.01 - 3544.98 MHz	0.67	
PCE	NR Band n77	0.83		
Simultaneous S	1.58			

Only operations relevant to this permissive change were evaluated for compliance. Please see the original compliance evaluation in RF Exposure Technical Report S/N: 1M2209010098-03.A3L for complete evaluation of all other operating modes. The operation description includes a description of all changed items.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.9 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Executive Vice President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: A3LSMS918U	s	SAR EVALUATION REPORT		SAR EVALUATION REPORT	
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset		Page 1 of 29		
			REV 22.0 03/30/2022		

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE AND	NR INFORMATION	10
3	INTRODU	JCTION	12
4	DOSIME	TRIC ASSESSMENT	13
5	DEFINITI	ON OF REFERENCE POINTS	14
6	TEST CC	NFIGURATION POSITIONS	15
7	RF EXPC	SURE LIMITS	16
8	FCC MEA	ASUREMENT PROCEDURES	17
9	RF CON	DUCTED POWERS	18
10	SYSTEM	VERIFICATION	20
11	SAR DAT	A SUMMARY	22
12	SAR ME	ASUREMENT VARIABILITY	24
13	EQUIPM	ENT LIST	25
14	MEASUR	EMENT UNCERTAINTIES	26
15	CONCLU	SION	27
16	REFERE	NCES	28
APPEN APPEN APPEN APPEN APPEN APPEN APPEN APPEN	idix B: Idix C: Idix D: Idix E: Idix F: Idix G: Idix H:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS MULTI-TX AND ANTENNA SAR CONSIDERATIONS SAR SYSTEM VALIDATION NR LOWER BANDWIDTH RF CONDUCTED POWERS DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS POWER REDUCTION VERIFICATION	

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 2 of 29
		REV 22.0 03/30/2022

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 13	Voice/Data	790.5 - 795.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)		
	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
LTE Band 38	Voice/Data	2572.5 - 2617.5 MHz
LTE Band 48	Voice/Data	3552.5 - 3697.5 MHz
NR Band n71	Voice/Data	665.5 - 695.5 MHz
NR Band n12	Voice/Data	701.5 - 713.5 MHz
NR Band n26	Voice/Data	816.5 - 846.5 MHz
NR Band n5	Voice/Data	826.5 - 846.5 MHz
NR Band n66	Voice/Data	1712.5 - 1777.5 MHz
NR Band n25	Voice/Data	1852.5 - 1912.5 MHz
NR Band n2	Voice/Data	1852.5 - 1907.5 MHz
NR Band n30	Voice/Data	2307.5 - 2312.5 MHz
NR Band n7	Voice/Data	2502.5 - 2567.5 MHz
NR Band n41	Voice/Data	2501.01 - 2685 MHz
NR Band n38	Voice/Data	2575 - 2615 MHz
NR Band n48	Voice/Data	3555 - 3694.98 MHz
NR Band n77 DoD	Voice/Data	3455.01 - 3544.98 MHz
NR Band n77	Voice/Data	3705 - 3975 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
U-NII-4	Voice/Data	5845 - 5885 MHz
U-NII-5	Voice/Data	5935 - 6415 MHz
U-NII-6	Voice/Data	6435 - 6515 MHz
U-NII-7	Voice/Data	6535 - 6875 MHz
U-NII-8	Voice/Data	6895 - 7115 MHz
Bluetooth	Data	
NFC		2402 - 2480 MHz 13.56 MHz
	Data	
NR Band n258	Data	24250 - 24450 MHz; 24750 - 25250 MHz
NR Band n260	Data	37000 - 40000 MHz
NR Band n261	Data	27500 - 28350 MHz
UWB	Data	6489.6 - 7987.2 MHz

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 3 of 29

REV 22.0 03/30/2022 hout permission in writing

1.2 Time-Averaging Algorithm for RF Exposure Compliance

This Device is enabled with the Qualcomm[®] Smart Transmit Gen2 feature. This feature performs time averaging algorithm in real time to control and manage transmitting power and ensure the time-averaged RF exposure is in compliance with FCC requirements all the time. Refer to Compliance Summary document for detailed description of Qualcomm[®] Smart Transmit feature (report SN could be found in Section 1.11 – Bibliography).

Note that WLAN operations are not enabled with Smart Transmit.

The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of *SAR_design_target*, below the predefined time-averaged power limit (i.e., *P*_{limit} for sub-6 radio), for each characterized technology and band (see RF Exposure Part 0 Test Report, report SN could be found in Section 1.11 - Bibliography).

The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of *SAR_design_target* or *PD_design_target*, below the predefined time-averaged power limit (i.e., *P*_{limit} for sub-6 radio, and *input.power.limit* for 5G mmW NR), for each characterized technology and band (see RF Exposure Part 0 Test Report, report SN can be found in Section 1.11 - Bibliography).

Smart Transmit allows the device to transmit at higher power instantaneously, as high as P_{max} , when needed, but enforces power limiting to maintain time-averaged transmit power to P_{limit} . Below table shows P_{limit} EFS settings and maximum tune up output power P_{max} configured for this EUT for various transmit conditions (Device State Index DSI). Note that the device uncertainty for sub-6GHz WWAN is 1.0dB for this EUT.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 4 of 29
Unless otherwise specified no part of this report		REV 22.0 03/30/2022

Exposure Senario			Body-Worn	Extremity	Head	Hotspot	Maximum
Averaging Volume		1g	10g	1g	1g	Tune-Up	
Spacing		15 mm	0 mm	0 mm	10 mm	Output	
DSI			0	0	2	3	Power*
Technology/Band	Antenna	Antenna Group					Pmax
GSM 850	A	AG0	28	3.5	31.4	25.6	25.3
GSM 1900	A	AG0	20).0	33.2	18.0	22.1
UMTS 850	A	AG0	2	7.4	31.3	26.2	24.0
UMTS 1750	A	AG0	19	9.0	31.8	19.0	23.0
UMTS 1900	A	AG0	19	9.5	32.2	17.5	23.0
LTE Band 71	A	AG0	2	7.8	34.3	27.8	24.5
LTE Band 12	A	AG0	2	7.5	33.4	27.5	24.5
LTE Band 13	A	AG0	28	3.6	31.9	27.6	24.5
LTE Band 14	A	AG0	2	7.9	31.7	27.9	24.5
LTE Band 26 (Cell)	A	AG0	2	7.6	31.1	26.7	24.5
LTE Band 5 (Cell)	A	AG0	2	7.8	30.9	26.6	24.5
LTE Band 66/4 (AWS)	А	AG0	20).0	31.4	19.5	23.5
LTE Band 66/4 (AWS)	F	AGI	20).0	18.0	20.0	23.5
LTE Band 25/2 (PCS)	A	AG0	20).0	33.9	17.5	23.5
LTE Band 25/2 (PCS)	F	AGI	18	3.0	17.0	18.0	23.5
LTE Band 30	A	AG0	2	1.5	33.2	19.0	22.5
LTE Band 30	F	AGI	20).0	17.0	20.0	22.5
LTE Band 7	В	AG0	20).0	37.7	20.0	23.0
LTE Band 7	F	AGI	18	3.5	16.0	18.5	23.0
LTE Band 48	G	AGl	18	3.0	16.0	18.0	20.5
LTE Band 41/38 (PC3)	В	AG0		0.0	22.0	20.0	22.0
LTE Band 41 (PC2)	В	AG0).0	22.0	20.0	22.1
LTE Band 41/38 (PC3)	F	AGI		9.0	17.0	19.0	22.0
LTE Band 41 (PC2)	F	AGI		9.0	17.0	19.0	22.1
NR Band n71	A	AG0		7.3	33.7	27.3	24.5
NR Band n12	A	AG0		7.0	32.8	27.0	24.5
NR Band n26/n5	A	AG0		7.4).0	31.6 32.3	25.8	24.5 23.5
NR Band n66 NR Band n66	A F	AG0 AG1).0	18.0	19.5 20.0	23.5
NR Band n25/n2 (PCS)	A	AG0).0	33.6	17.5	23.5
NR Band n25/n2 (PCS)	F	AGI).0	17.0	20.0	23.5
NR Band n30	A	AG0		1.5	35.4	19.0	22.5
NR Band n30	F	AGI).0	17.0	20.0	22.5
NR Band n7	В	AG0	20).0	36.7	20.0	23.0
NR Band n7	F	AG1	18	3.5	16.0	18.5	23.0
NR Band n41 Path 1 (PC2)	F	AGl	19	9.0	17.0	19.0	26.0
NR Band n41 Path 1 (PC2)	В	AG0	11	7.0	15.0	17.0	22.0
NR Band n41 Path 1 (PC2)	E	AGI		5.0	13.0	15.0	20.0
NR Band n41 Path 1 (PC2)	D	AG0		5.5	15.5	16.5	21.0
NR Band n41 Path 2 (PC2)	B	AG0		9.0	17.0	19.0	26.0
NR Band n41 Path 2 (PC2)	F	AG1		7.0	16.0	17.0	22.0
NR Band n41 Path 2 (PC2)	D	AG0		5.0	14.5	16.0	19.0
NR Band n41 Path 2 (PC2)	E	AG1		4.0 9.0	12.5	14.0	20.0
NR Band n38 NR Band n38	F B	AG1 AG0		9.0 9.0	17.0 17.0	19.0 19.0	24.0 24.0
NR Band n48	G	AGI		3.0	16.0	19.0	24.0
NR Band n48	C	AG0		3.5	11.5	13.5	18.5
NR Band n48	I	AGI		5.5	13.5	15.5	21.0
NR Band n48	D	AG0		3.5	11.5	13.5	19.0
NR Band n77 DoD (PC2)	G	AGI		3.0	17.0	18.0	26.0
NR Band n77 DoD (PC2)	C	AG0	14	4.0	14.0	14.0	20.5
NR Band n77 DoD (PC2)	I	AGI	1′	7.0	17.0	17.0	23.0
NR Band n77 DoD (PC2)	D	AG0	14	4.5	14.5	14.5	21.0
NR Band n77 (PC2)	G	AG1		3.0	17.0	18.0	26.0
NR Band n77 (PC2)	С	AG0		4.0	14.0	14.0	20.5
NR Band n77 (PC2)	I	AGl		7.0	17.0	17.0	23.0
NR Band n77 (PC2)	D	AG0	14	4.5	14.5	14.5	21.0

FCC ID: A3LSMS918U	SAR EVALUATION	REPORT Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 5 of 29
		REV 22.0

*Note all P_{limit} EFS and maximum tune up output power P_{max} levels entered in above Table correspond to average power levels after accounting for duty cycle in the case of TDD modulation schemes (e.g. GSM and LTE TDD).

*Maximum tune up output power P_{max} is used to configure EUT during RF tune up procedure. The maximum allowed output power is equal to maximum Tune up output power + 1dB device design uncertainty.

The maximum time-averaged output power (dBm) for any Sub6 WWAN technology, band, and DSI = minimum of " P_{limit} EFS" and "Maximum tune up output power P_{max} " + 1dB device uncertainty. SAR values in this report were scaled to this maximum time-averaged output power to determine compliance per KDB Publication 447498 D04v01.

The purpose of this report (Part 1 test) is to demonstrate that the EUT meets FCC SAR limits when transmitting in static transmission scenario at maximum allowable time-averaged power levels.

Measurement Condition: All conducted power and SAR measurements in this report (Part 1 test) were performed by setting *Reserve_power_margin* (Smart Transmit EFS entry) to 0dB.

1.3 Power Reduction for SAR

This device uses an independent fixed level power reduction mechanism for WLAN/BT operations during voice or VoIP held to ear scenarios and when 5G NR is active. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.4 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D04v01.

Note: Targets for 802.11ax RU operations can be found in 802.11ax RU SAR Exclusion Appendix in the original filing.

1.4.1 Licensed Output Power

			Modulat	ed Average Output Power (in dBm)		
	Antenna			DSI = 0		
Mode / Band			Pmax	(Body-Worn	DSI = 2	DSI = 3
				or	(Head)	(Hotspot)
				Extremity)		
NR Band n77 DoD (PC2)	G	Max Allowed Power	27.0	19.0	18.0	19.0
INK Barlu II/7 DOD (PC2)		Nominal	26.0	18.0	17.0	18.0
NR Band n77 (PC2)	G	Max Allowed Power	27.0	19.0	18.0	19.0
		Nominal	26.0	18.0	17.0	18.0

For NR TDD the above powers listed are TDD burst average values.

Only operations relevant to this permissive change were evaluated for compliance. No other target changes have been made. Targets for all other bands/exposure conditions can be found in the original filing.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 6 of 29
		REV 22.0 03/30/2022

1.4.2 WLAN and Bluetooth Output Power

Only operations relevant to this permissive change were evaluated for compliance. No other target changes have been made. Targets for all other bands/exposure conditions can be found in the original filing.

1.5 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in DUT Antenna Diagram & SAR Test Setup Photographs Appendix. Since the display diagonal dimension of this device is > 150 mm and <200 mm, it is considered a "phablet." Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filing.

1.6 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in DUT Antenna Diagram & SAR Test Setup Photographs Appendix in the original filling.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 7 of 29
Unloss otherwise specified as part of this range	It may be reproduced or utilized in any part, form or by any means, electronic or mochanical, including photoconving and	REV 22.0 03/30/2022

1.7 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D04v01, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D04v01 procedures.

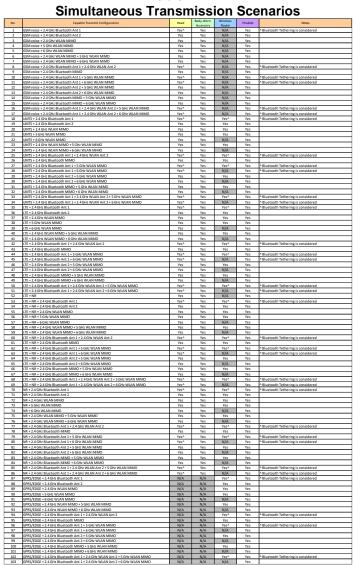


Table 1-1

- 1. No other simultaneous scenarios besides described above is supported for this model.
- 2. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 3. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 8 of 29
		REV 22.0 03/30/2022

- 4. 5 GHz Wireless Router is only supported for the U-NII-3 by S/W, therefore U-NII-1, U-NII-2A, U-NII-2C, and U-NII-4 were not evaluated for wireless router conditions.
- 5. 6 GHz Wireless Router is not supported, therefore it was not evaluated for wireless router conditions.
- 6. This device supports 2x2 MIMO Tx for WLAN 802.11a/b/g/n/ac/ax. 802.11a/b/g/n/ac/ax supports CDD and STBC and 802.11n/ac/ax additionally supports SDM.
- 7. This device supports VoWIFI.
- 8. This device supports Bluetooth Tethering on Ant 1 only.
- 9. This device supports VoLTE.
- 10. This device supports VoNR.
- 11. LTE + 5G NR FR1 Scenarios are limited to EN-DC combinations with anchor bands as shown in the NR FR1 checklist.
- 12. 5G NR FR2 n258, n260, and n261 cannot transmit simultaneously.
- 13. LTE + 5G NR FR2 Scenarios are limited to EN-DC combinations with anchor bands as shown in the NR FR2 checklist.
- 14. UWB and NFC were evaluated for phablet based on expected usage conditions.

1.8 Miscellaneous SAR Test Considerations

(A) WIFI/BT

There were no changes made to the WIFI and BT operations within this device. Please see the original filing for complete evaluation of these operating modes.

(B) Licensed Transmitter(s)

Only operations relevant to this permissive change were evaluated for compliance. Please see original filing for complete evaluation of all other operating modes. The operational description includes a description of all changed items.

NR implementation supports SA and NSA mode. In EN-DC mode, NR operates with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors.

1.9 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r05, D05Av01r02 (2G/3G/4G)
- FCC KDB Publication 447498 D04v01 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.10 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

1.11 Bibliography

Report Type	Report Serial Number
RF Exposure Part 0 Test Report	1M2212020131-02.A3L
RF Exposure Part 1 Test Report	Original Filing
RF Exposure Part 2 Original Filing Test Report	1M2209010098-04.A3L

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 9 of 29
		REV 22.0 03/30/2022

on in writing

2 LTE AND NR INFORMATION

	Ľ	TE Information			
orm Factor			Portable Handset Band 71 (665.5 - 695.5 N		
requency Range of each LTE transmission band		LTE	Band 12 (699.7 - 715.3 N	IHz)	
	LTE Band 13 (779.5 - 784.5 MHz)				
			Band 14 (790.5 - 795.5 N and 26 (Cell) (814.7 - 848.3		
			and 5 (Cell) (824.7 - 848.3		
		LTE Bar	id 66 (AWS) (1710.7 - 177	9.3 MHz)	
-			nd 4 (AWS) (1710.7 - 1754 nd 25 (PCS) (1850.7 - 1914		
			nd 2 (PCS) (1850.7 - 1909		
	LTE Band 30 (2307.5 - 2312.5 MHz)				
			Band 7 (2502.5 - 2567.5 M		
			Band 41 (2498.5 - 2687.5 Band 38 (2572.5 - 2617.5		
			Band 48 (3552.5 - 3697.5		
hannel Bandwidths			71: 5 MHz, 10 MHz, 15 Mi 12: 1.4 MHz, 3 MHz, 5 MH		
		LIE Ballu	TE Band 13: 5 MHz, 10 MI	Hz IO MHz	
			TE Band 14: 5 MHz, 10 MI		
		LTE Band 26 (Cell LTE Band 5): 1.4 MHz, 3 MHz, 5 MHz (Cell): 1.4 MHz, 3 MHz, 5	MHz, 10 MHz, 15 MHz	
		LTE Band 66 (AWS): 1	4 MHz, 3 MHz, 5 MHz, 10	MHz, 15 MHz, 20 MHz	
			4 MHz, 3 MHz, 5 MHz, 10 4 MHz, 3 MHz, 5 MHz, 10		
		LTE Band 2 (PCS): 1.4	MHz, 3 MHz, 5 MHz, 10	MHz, 15 MHz, 20 MHz	
		L ITE Band	TE Band 30: 5 MHz, 10 MI 7: 5 MHz, 10 MHz, 15 MH	Hz Iz 20 MHz	
		LTE Band	41: 5 MHz, 10 MHz, 15 MH	Hz, 20 MHz	
			38: 5 MHz, 10 MHz, 15 Mi 48: 5 MHz, 10 MHz, 15 Mi		
hannel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid Mid	Mid-High	High
TE Band 71: 5 MHz	665.5 (1	33147)	680.5 (133297)	695.5 (133447)
TE Band 71: 10 MHz	668 (13		680.5 (133297) 680.5 (133297)		33422)
TE Band 71: 20 MHz	673 (13		680.5 (133297)		33372)
TE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3	(23173)
TE Band 12: 3 MHz TE Band 12: 5 MHz	700.5 () 701.5 ()		707.5 (23095)		(23165)
TE Band 12: 10 MHz	701.5 (2)		707.5 (23095) 707.5 (23095)		(23155) 23130)
TE Band 13: 5 MHz	779.5 (782 (23230)		(23255)
TE Band 13: 10 MHz	N/		782 (23230)		/A
TE Band 14: 5 MHz TE Band 14: 10 MHz	790.5 (: N/		793 (23330) 793 (23330)		(23355) I/A
TE Band 26 (Cell): 1.4 MHz	814.7 (831.5 (26865)		(27033)
TE Band 26 (Cell): 3 MHz	815.5 (831.5 (26865)		(27025)
TE Band 26 (Cell): 5 MHz TE Band 26 (Cell): 10 MHz	816.5 (831.5 (26865)		(27015) 26990)
TE Band 26 (Cell): 15 MHz	819 (2 821.5 (831.5 (26865) 831.5 (26865)		
TE Band 5 (Cell): 1.4 MHz	824.7 (836.5 (20525)	841.5 (26965) 848.3 (20643)	
TE Band 5 (Cell): 3 MHz TE Band 5 (Cell): 5 MHz	825.5 (836.5 (20525)	847.5 (20635)	
TE Band 5 (Cell): 10 MHz	826.5 () 829 (2		836.5 (20525) 836.5 (20525)	846.5 (20625) 844 (20600)	
TE Band 66 (AWS): 1.4 MHz	1710.7 (1745 (132322)	1779.3 (132665)	
TE Band 66 (AWS): 3 MHz	1711.5 (1745 (132322)		(132657)
TE Band 66 (AWS): 5 MHz TE Band 66 (AWS): 10 MHz	1712.5 (1745 (132322) 1745 (132322)		(132647) 132622)
TE Band 66 (AWS): 15 MHz	1717.5 (1745 (132322)		(132597)
TE Band 66 (AWS): 20 MHz	1720 (1		1745 (132322)	1770 (132572) 1754.3 (20393)	
TE Band 4 (AWS): 1.4 MHz TE Band 4 (AWS): 3 MHz	1710.7		1732.5 (20175) 1732.5 (20175)	1754.3 (20393) 1753.5 (20385)	
TE Band 4 (AWS): 5 MHz	1712.5		1732.5 (20175)	1752.5 (20375)	
TE Band 4 (AWS): 10 MHz	1715 (2		1732.5 (20175)	1750 (20350)	
TE Band 4 (AWS): 15 MHz TE Band 4 (AWS): 20 MHz	1717.5		1732.5 (20175)	1747.5 (20325)	
TE Band 25 (PCS): 1.4 MHz	1720 (2 1850.7		1732.5 (20175) 1882.5 (26365)	1745 (20300) 1914.3 (26683)	
TE Band 25 (PCS): 3 MHz	1851.5		1882.5 (26365)	1913.5 (26675)	
TE Band 25 (PCS): 5 MHz	1852.5		1882.5 (26365)	1912.5 (26665)	
E Band 25 (PCS): 10 MHz E Band 25 (PCS): 15 MHz	1855 (2 1857.5		1882.5 (26365) 1882.5 (26365)	1910 (26640) 1907.5 (26615)	
E Band 25 (PCS): 10 MHz	1860 (2		1882.5 (26365)		(26590)
E Band 2 (PCS): 1.4 MHz	1850.7	(18607)	1880 (18900)	1909.3	(19193)
TE Band 2 (PCS): 3 MHz TE Band 2 (PCS): 5 MHz	1851.5		1880 (18900)		(19185)
E Band 2 (PCS): 5 MHz E Band 2 (PCS): 10 MHz	1852.5 (1		1880 (18900) 1880 (18900)		(19175) (19150)
E Band 2 (PCS): 15 MHz	1857.5	(18675)	1880 (18900)	1902.5	(19125)
E Band 2 (PCS): 20 MHz E Band 30: 5 MHz	1860 (1		1880 (18900) 2310 (27710)		(19100) (27735)
E Band 30: 10 MHz	2307.5 N/		2310 (27710) 2310 (27710)		(27735) VA
E Band 7: 5 MHz	2502.5		2535 (21100)	2567.5	(21425)
E Band 7: 10 MHz	2505 (2		2535 (21100)		(21400) (21375)
TE Band 7: 15 MHz TE Band 7: 20 MHz	2507.5 2510 (2		2405 (21100) 2535 (21100)		(21375) (21350)
FE Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2549.5 (40185)	2593 (40620)	2636.5 (41055)
TE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2549.5 (40185)	2593 (40620)	2636.5 (41055)
TE Band 41: 15 MHz TE Band 41: 20 MHz	2506 (39750) 2506 (39750)	2549.5 (40185) 2549.5 (40185)	2549.5 (40185) 2549.5 (40185)	2593 (40620) 2593 (40620)	2636.5 (41055 2636.5 (41055
E Band 38: 5 MHz	2500 (35730)		2595 (38000)		(38225)
E Band 38: 10 MHz	2575 (3	37800)	2595 (38000)	2615	(38200)
E Band 38: 15 MHz E Band 38: 20 MHz	2577.5		2595 (38000) 2595 (38000)		(38175) (38150)
E Band 48: 5 MHz	3552.5 (55265)	3600.8 (55748)	N/A	3649.2 (56232)	3697.5 (56715
TE Band 48: 10 MHz	3555 (55290)	3601.7 (55757)	N/A	3648.3 (56223)	3695 (56690)
E Band 48: 15 MHz E Band 48: 20 MHz	3557.5 (55315) 3560 (55340)	3602.5 (55765) 3603.3 (55773)	N/A N/A	3647.5 (56215) 3646.7 (56207)	3692.5 (56665) 3690 (56640)
E Category		0	LUE Cat 20, ULUE Cat 1	8	(
odulations Supported in UL TE MPR Permanently implemented per 3GPP TS 36.101		QP	SK, 16QAM, 64QAM, 2560	DAM	
action 6.2.3–6.2.5? (manufacturer attestation to be			YES		
ovided)			VEO		
MPR (Additional MPR) disabled for SAR Testing? TE Carrier Aggregation Possible Combinations			YES		
	The	technical description inc	ludes all the possible carri	er aggregation combinatio	ons
TE Additional Information	features as shown in Appendix in the original f	the RF Conducted Powe iling. All uplink communi	n 3GPP Release 16. It sup rs section of this report an cations are identical to the	d the Downlink LTE CA R	F Conducted Powers Uplink communicati

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 10 of 29
		REV 22.0 03/30/2022

sion in writing

	NF	t Information				
Form Factor Frequency Range of each NR transmission band			Portable NR Band n71 (66 NR Band n12 (70	5.5 - 695.5 MHz) 1.5 - 713.5 MHz)		
		NR Band n28 (616.5 - 846.5 MHz) NR Band n68 (526.5 - 846.5 MHz) NR Band n68 (1712.6 - 177.5 MHz)				
			NR Band n25 (185 NR Band n2 (1852	2.5 - 1912.5 MHz) 2.5 - 1907.5 MHz)		
		NR Band n30 (2307 5 - 2312 5 MHz) NR Band n7 (2502 5 - 2567 5 MHz) NR Band n41 (2501 51 - 2668 MHz)				
NR Band r38 (2575 - 2615 MHz) NR Band r43 (2555 - 3645 436 MHz)						
Channel Bandwidths	NR Band n77 LDD (3455 01 - 3544 98 MHz) NR Band n77 (3705 - 3975 MHz) NR Band n77 (3705 - 10 MHz, 15 MHz, 20 MHz					
			NR Band n12: 5 MH NR Band n26: 5 MHz, 10 NR Band n5: 5 MHz, 10	MHz, 15 MHz, 20 MHz		
		NR Band n8 NR Band n2	6: 5 MHz, 10 MHz, 15 MH	z, 20 MHz, 25 MHz, 30 M z, 20 MHz, 25 MHz, 30 M	IHz, 40 MHz IHz, 40 MHz	
		NR Band n	NR Band n30: 5 7: 5 MHz, 10 MHz, 15 MHz	MHz, 10 MHz ; 20 MHz, 25 MHz, 30 M	Hz, 40 MHz	
		NP	Band n38: 10 MHz, 15 MH Band n48: 10 MHz, 15 MH	z, 20 MHz, 30 MHz, 40 MHz, 40 MHz	464+	
Channel Numbers and Frequencies (MHz)	NR Band n77 NR Band n	DoD: 10 MHz, 15 MHz, 2 77: 10 MHz, 15 MHz, 20	20 MHz, 25 MHz, 30 MHz, MHz, 25 MHz, 30 MHz, 40	40 MHz, 50 MHz, 60 MH MHz, 50 MHz, 60 MHz,	iz, 70 MHz, 80 MHz, 90 M 70 MHz, 80 MHz, 90 MHz	Hz, 100 MHz , 100 MHz
NR Band n71: 5 MHz NR Band n71: 10 MHz	665.5 (1 668 (1	33600)	680.5 (1 680.5 (1	36100)	695.5 (1 693 (1	38600)
NR Band n71: 15 MHz NR Band n71: 20 MHz NR Band n12: 5 MHz	670.5 (* 673 (1: 701.5 (*	34600)	680.5 (1 680.5 (1 707.5 (1	(36100)	690.5 (1 688 (1 713.5 (1	37600)
NR Band n12: 10 MHz NR Band n12: 15 MHz	704 (14 706.5 (1	40800) 141300)	707.5 (1 707.5 (1	(41500) (41500)	711 (14 708.5 (1	42200) 141700)
NR Band n26: 5 MHz NR Band n26: 10 MHz NR Band n26: 15 MHz	816.5 (* 819 (10 821.5 (*	33800)	831.5 (1 831.5 (1 831.5 (1	(66300)	846.5 (1 844 (1 841.5 (1	38800)
NR Band nd: 5 20 MHz NR Band nd: 5 MHz	824.01 824 (11 826.5 (1	34800)	831.5 (1 836.5 (1	(66300)	839 (10	37800)
NR Band n5: 10 MHz NR Band n5: 15 MHz NR Band n5: 20 MHz	829 (10 831.5 (1	35800) 166300)	836.5 (1 836.5 (1	(67300) (67300)	844 (16 841.5 (1	38800) (68300)
NR Band n86: 5 MHz NR Band n66: 10 MHz	834 (10 1712.5 (1715 (3	342500)	836.5 (1 1745 (3 1745 (3	49000)	839 (10 1777.5 (1775 (3	355500)
NR Band n66: 15 MHz NR Band n66: 20 MHz	1717.5 (343500)	1745 (3 1745 (3	49000) 49000)	1772.5 (1770 (3	354500) 54000)
NR Band n86: 25 MHz NR Band n86: 30 MHz NR Band n86: 40 MHz	1722.5 (1725 (3 1730 (3	(45000)	1745 (3 1745 (3 1745 (3	49000)	1767.5 (1765 (3 1760 (3	53000)
NR Band n25: 5 MHz NR Band n25: 10 MHz	1852.5 (1855 (3	370500)	1882.5 (1882.5 (376500) 376500)	1912.5 (1910 (3	382500) 82000)
NR Band n25: 15 MHz NR Band n25: 20 MHz NR Band n25: 25 MHz	1857.5 (1860 (3 1862.5 ((72000)	1882.5 (1882.5 (1882.5 (376500)	1907.5 (1905 (3 1902.5 (81000)
NR Band n25: 30 MHz NR Band n25: 40 MHz	1865 (3	73000)	1882.5 (1882.5 (376500) 376500)	1900 (3	80000)
NR Band n2: 5 MHz NR Band n2: 10 MHz NR Band n2: 15 MHz	1852.5 (1855 (3	71000)	1880 (3 1880 (3 1880 (3	76000)	1907.5 (1905 (3	81000)
NR Band n2: 15 MHz NR Band n30: 5 MHz	1857.5 (1860 (3 2307.5 ((72000)	1880 (3 1880 (3 2310 (4	76000)	1902.5 (1900 (3 2312.5 (80000)
NR Band n30: 10 MHz NR Band n7: 5 MHz	N/ 2502.5 (A 500500)	2310 (4 2535 (5	62000) 07000)	N/ 2567.5 (A. 513500)
NR Band n7: 10 MHz NR Band n7: 15 MHz NR Band n7: 20 MHz	2505 (5 2507.5 (2510 (5	501500)	2535 (5 2535 (5 2535 (5	07000)	2565 (5 2562.5 (2560 (5	512500)
NR Band n7: 25 MHz NR Band n7: 30 MHz	2512.5 (2515 (5	502500) 03000)	2535 (5 2535 (5	07000) 07000)	2557.5 (2555 (5	511500) 11000)
NR Band n7: 40 MHz NR Band n41: 10 MHz NR Band n41: 15 MHz	2520 (5 2501.01 (500202) 2503.5 (500700)	04000) 2547 (509400) 2548.26 (509652)	2535 (5 2592.99 2592.99	(518598)	2550 (5 2639.01 (527802) 2637.75 (527550)	10000) 2685 (537000) 2682.51 (536502)
NR Band n41: 20 MHz NR Band n41: 30 MHz	2506.02 (501204) 2511 (502200)	2549.49 (509898) 2552.01 (510402)	2592.99 2592.99 N	(518598) (518598)	2636.49 (527298) 2634 (526800)	2679.99 (535998) 2674.98 (534996)
NR Band n41: 40 MHz NR Band n41: 50 MHz NR Band n41: 60 MHz	2516.01 (503202) 2521.02 2526 (5	05200)	2592.99 2592.99	(518598)	2618.67 (523734) 2664.99 2659.98	(531996)
NR Band n41: 70 MHz NR Band n41: 80 MHz NR Band n41: 90 MHz	2531.01 2536.02 2541 (5	(507204)	N N N	A	2655 (5 2649.99 2644.98	(529998)
NR Band n41: 100 MHz NR Band n38: 10 MHz	2546.01 2575 (5	(509202) 15000)	2592.99 2595 (5	(518598) 19000)	2640 (5 2615 (5	28000) 23000)
NR Band n38: 15 MHz NR Band n38: 20 MHz NR Band n38: 30 MHz	2577.5 (2580 (5 2585 (5	16000)	2595 (5 2595 (5 2595 (5	19000)	2612.5 (2610 (5 2605 (5	22000)
NR Band n38: 40 MHz NR Band n48: 10 MHz	2590 (5 3555 (637000)	18000) 3601.68 (640112)	2595 (5 N	19000) A	2600 (5 3648.33 (643222)	20000) 3694.98 (646332)
NR Band n48: 15 MHz NR Band n48: 20 MHz NR Band n48: 30 MHz	3557.52 (637168) 3560.01 (637334) 3565.02 (637668)	3602.49 (640166) 3603.33 (640222) 3605.01 (640334)	N/ N/	A	3647.49 (643166) 3646.68 (643112) 3645 (643000)	3692.49 (646166) 3690 (646000) 3684.99 (645666)
NR Band n48: 40 MHz NR Band n77 DoD: 10 MHz	3570 (638000) 3455.01	N/A	3624.99 3500.01	(641666)	N/A 3544.98	3679.98 (645332)
NR Band n77 DoD: 15 MHz NR Band n77 DoD: 20 MHz NR Band n77 DoD: 25 MHz	3457.5 (3460.02	(630668)	3500.01 3500.01	(633334)	3542.49 3540 (6	36000)
NR Band n77 DoD: 30 MHz NR Band n77 DoD: 40 MHz	3462.51 3465 (6 3470.01	31000)	3500.01 3500.01 N	(633334)	3537.48 3534.99 3470.01	(635666)
NR Band n77 DoD: 50 MHz NR Band n77 DoD: 60 MHz NR Band n77 DoD: 70 MHz	3475.02 N	A	N/ 3500.01	633334)	3475.02 (631668) N/A N/A	
NR Band n77 DoD: 80 MHz NR Band n77 DoD: 90 MHz	NU NU NU	A	3500.01 3500.01 3500.01	633334)	N/	A
NR Band n77 DoD: 100 MHz NR Band n77: 10 MHz	3705 (647000)	A 3759 (650600)	3500.01 3813 (654200)	633334) 3867 (657800)	N/ 3921 (661400)	A 3975 (665000)
NR Band n77: 15 MHz NR Band n77: 20 MHz NR Band n77: 25 MHz	3707.52 (647168) 3710.01 (647334) 3712 5 (647500)	3760.5 (650700) 3762 (650800) 3763.5 (650900)	3813.51 (654234) 3813.99 (654266) 3814.5 (654300)	3866.49 (657766) 3866.01 (657734) 3865.5 (657700)	3919.5 (661300) 3918 (661200) 3916.5 (661100)	3972.48 (664832) 3969.99 (664666) 3967.5 (664500)
NR Band n77: 30 MHz NR Band n77: 40 MHz	3715.02 (647668) 3720 (648000)	3765 (651000) 3768 (651200)	3815.01 (654334) 3816 (654400)	3864.99 (657666) 3864 (657600)	3915 (661000) 3912 (660800)	3964.98 (664332) 3960 (664000)
NR Band n77: 50 MHz NR Band n77: 60 MHz NR Band n77: 70 MHz	3725.01 (648334) 3730.02 (648668)	3782.49 (652166) 3803.34 (653556)	3840 (6 N/A	N/A	3897.51 (659834) 3876.66 (658444)	3954.99 (663666) 3949.98 (663332)
IR Band n77: 70 MHz IR Band n77: 80 MHz IR Band n77: 90 MHz	3735 (649000) 3740.01 (649334) 3745.02 (649668)	3804.99 (653666) N/A N/A	N 3840 (6 3840 (6	56000)	3875.01 (658334) N/A N/A	3945 (663000) 3939.99 (662666) 3934.98 (662332)
NR Band n77: 100 MHz SCS for NR Band n71/n12/n26/n5/n86/n25/n2/n30/n7	3750 (650000)	N/A	N/A 15 F	N/A Hz	N∕A	3930 (662000)
SCS for NR Band n41/n38/n48/n77 Modulations Supported in UL		DFT=-OFDL=12B5K, OPSK, HOAM, 64OAM, 256OAM CP-OFDL=025K, 160AM, 64OAM, 256OAM				
A-MPR (Additional MPR) disabled for SAR Testing? EN-DC Carrier Aggregation Possible Combinations		YES The technical description includes all the possible carrier aggregation combinations				
TE Anchor Bands for NR Band n71			LTE Band	2/48/66		
TE Anchor Bands for NR Band n12 TE Anchor Bands for NR Band n26 TE Anchor Bands for NR Band n5			LTE Band	A		
LE Anchor Bands for NR Band n5 LTE Anchor Bands for NR Band n66 TE Anchor Bands for NR Band n25			LTE Band 2/5/ LTE Band 2/5/	12/13/14/30/48		
. IE Anchor Bands for NR Band n25 .TE Anchor Bands for NR Band n2 .TE Anchor Bands for NR Band n30			LTE Bard LTE Band 4/5/12 LTE Band 2	/13/14/30/48/66		
TE Anchor Bands for NR Band n7 TE Anchor Bands for NR Band n7 TE Anchor Bands for NR Band n41			LTE Band 2 N LTE Band	A		
TE Anchor Bands for NR Band n38			N	A		
TE Anchor Bands for NR Band n77		LTE Band 2/66 LTE Band 2/51/2/13/14/30/66/71				

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 11 of 29
		REV 22.0

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation $SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dy} \right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 12 of 29
		REV 22.0 03/30/2022

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

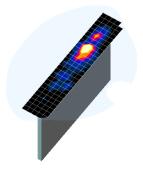


Figure 4-1 Sample SAR Area Scan

03/30/2022

on in writing

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.

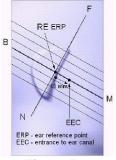
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)		Minimum Zoom Scan	
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	Gi	raded Grid	Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤ 5	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
3-4 GHz	≤12	≤ 5	≤ 4	≤3	≤ 1.5*∆z _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥ 22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6


FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 13 of 29
		REV 22.0

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 **Close-Up Side view** of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

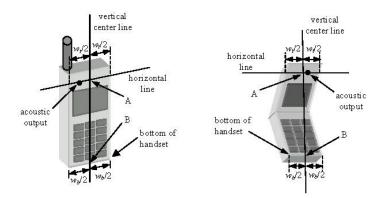
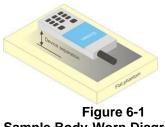


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager	
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 14 of 29	
REV 22.0 03/30/2022 Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing			

ed, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, w e any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM. less otherwise specified, no part m Element. If you have any quest


6 **TEST CONFIGURATION POSITIONS**

Device Holder 6.1

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

Body-Worn Accessory Configurations 6.2

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-1). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D04v01 should be used to test for body-worn accessory SAR compliance. without a headset connected to it. This enables the test results for such configuration to be compatible with that required for

Sample Body-Worn Diagram

on in writing

hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Extremity Exposure Configurations 6.3

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D04v01 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D04v01, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

FCC ID: A3LSMS918U		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset		Page 15 of 29
			REV 22.0 03/30/2022

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUMAN EXPOSURE LIMITS							
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT <i>Occupational</i> (W/kg) or (mW/g)					
Peak Spatial Average SAR Head	1.6	8.0					
Whole Body SAR	0.08	0.4					
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20					

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMS918U	5	SAR EVALUATION REPORT			
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset		Page 16 of 29		
			REV 22.0 03/30/2022		

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D04v01, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 17 of 29
Unless otherwise specified, no part of this report	may be reproduced or utilized in any part. form or by any means, electronic or mechanical, including photocopying and	REV 22.0 03/30/2022

9 RF CONDUCTED POWERS

All conducted power measurements for Sub6 WWAN technologies and bands in this section were performed by setting *Reserve_power_margin* (Qualcomm® Smart Transmit EFS entry) to 0dB, so that the EUT transmits continuously at minimum (P_{limit} , maximum tune up output power P_{max}).

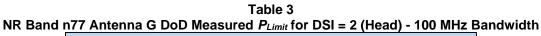
9.1 NR Conducted Powers

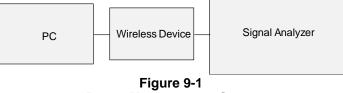
Per October 2020 TCB Workshop Guidance, NR FR1 SAR evaluations are being generally based on adapting the existing LTE SAR procedures (FCC KDB Publication 941225 D05v02r05). Therefore, NR SAR for the lower bandwidths was not required for testing based on the measured output power and the reported NR SAR for the highest bandwidth. Lower bandwidth conducted powers for all NR bands can be found in LTE and NR Lower Bandwidth RF Conducted Powers Appendix of the original filing.

Note: Some bands do not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	Table 2										
IR Band n77 Antenna G Measured PLimit for DSI = 2 (Head) - 100 MHz Bandwidth											
NR Band n77 100 MHz Bandwidth											
	Channel										
Modulation	RB Size	RB Offset	650000 (3750 MHz)	662000 (3930 MHz)	MPR Allowed per	MPR [dB]					
			Conducted I	Power [dBm]	3GPP [dB]						
	1	1	16.34	16.36		0.0					
	1	137	16.10	16.32	0	0.0					
	1	271	15.64	16.07		0.0					
DFT-s-OFDM π/2 BPSK	135	0	16.25	16.35	0-0.5	0.0					
M2 DI SIX	135	69	15.97	16.37	0	0.0					
	135	138	15.74	16.28	0-0.5	0.0					
	270	0	15.92	16.32	0-0.5	0.0					
	1	1	16.35	16.37		0.0					
	1	137	16.10	16.30	0	0.0					
DFT-s-OFDM	1	271	15.67	16.10		0.0					
QPSK	135	0	16.26	16.33	0-1	0.0					
QI OI	135	69	15.98	16.34	0	0.0					
	135	138	15.77	16.27	0-1	0.0					
	270	270 0 15.96		16.31	0-1	0.0					
DFT-s-OFDM 16QAM	1	1	16.55	16.37	0-1	0.0					
CP-OFDM QPSK	1	1	16.42	16.27	0-1.5	0.0					

9.1.1 NR Band n77 Antenna G


FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 18 of 29
		REV 22.0


03/30/2022

9.1.1 NR Band n77 Antenna G DoD

n77 Antenna G DoD Measured P _{Limit} for DSI = 2 (Head) - 100 MHz B										
NR Band n77 DoD 100 MHz Bandwidth										
	Channel									
Modulation	RB Size	RB Offset	633334 (3500.01 MHz)	MPR Allowed per	MPR [dB]					
			Conducted Power [dBm]	3GPP [dB]						
	1	1	15.98		0.0					
	1	137	16.03	0	0.0					
DFT-s-OFDM π/2 BPSK	1	271	15.93		0.0					
	135	0	16.08	0-0.5	0.0					
	135	69	16.14	0	0.0					
	135	138	16.07	0-0.5	0.0					
	270	0	16.09	0-0.5	0.0					
	1	1	16.20		0.0					
	1	137	16.16	0	0.0					
	1	271	16.10		0.0					
DFT-s-OFDM QPSK	135	0	16.10	0-1	0.0					
	135	69	16.09	0	0.0					
	135	138	16.06	0-1	0.0					
	270	0	16.09	0-1	0.0					
DFT-s-OFDM 16QAM	1	1	16.24	0-1	0.0					
CP-OFDM QPSK	1	1	16.08	0-1.5	0.0					

Power Measurement Setup

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 19 of 29
Inless otherwise specified no part of this repo		REV 22.0 03/30/2022

10 SYSTEM VERIFICATION

Tissue Verification 10.1

	Measured Head Tissue Properties										
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε		
			3300	2.599	39.486	2.708	38.157	-4.03%	3.48%		
			3350	2.652	39.437	2.759	38.100	-3.88%	3.51%		
			3450	2.749	39.225	2.861	37.986	-3.91%	3.26%		
			3500	2.781	39.150	2.913	37.929	-4.53%	3.22%		
				3550	2.845	39.035	2.964	37.871	-4.01%	3.07%	
			3560	2.856	39.028	2.974	37.860	-3.97%	3.09%		
			3600	2.878	38.990	3.015	37.814	-4.54%	3.11%		
02/27/2023	3600 Head	19.5	3650	2.936	38.866	3.066	37.757	-4.24%	2.94%		
			3690	2.977	38.831	3.107	37.711	-4.18%	2.97%		
			3700	2.981	38.821	3.117	37.700	-4.36%	2.97%		
			3750	3.032	38.700	3.169	37.643	-4.32%	2.81%		
			3900	3.196	38.489	3.323	37.471	-3.82%	2.72%		
			3930	3.213	38.468	3.353	37.437	-4.18%	2.75%		
			4100	3.409	38.116	3.528	37.243	-3.37%	2.34%		
			4150	3.452	38.094	3.579	37.186	-3.55%	2.44%		

Table 10-1 - -...

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2. The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 20 of 29
	t may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and	

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in SAR System Validation Appendix.

Table 10-2							
System Verification Results - Head							

	System Verification TARGET & MEASURED																
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	DAE	Measured SAR 1g (W/kg)	1W Target SAR 1g (W/kg)	1W Normalized SAR 1g (W/kg)	Deviation 1g (%)	Measured SAR 10g (W/kg)	1W Target SAR 10g (W/kg)	1W Normalized SAR 10g (W/kg)	Deviation 10g (%)
L	3500	HEAD	02/27/2023	22.9	20.8	0.10	1059	7410	1583	6.170	63.700	61.700	-3.14%	2.380	23.900	23.800	-0.42%
L	3700	HEAD	02/27/2023	22.9	20.8	0.10	1067	7410	1583	6.520	66.900	65.200	-2.54%	2.430	24.300	24.300	0.00%
L	3900	HEAD	02/27/2023	22.9	20.8	0.10	1056	7410	1583	6,640	68,900	66,400	-3.63%	2.380	24,100	23,800	-1.24%

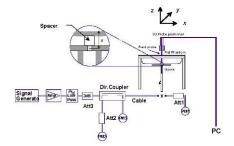


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: A3LSMS918U	SA	R EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset		Page 21 of 29
			REV 22.0 03/30/2022

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

	NR Band n77 Head SAR																				
	MEASUREMENT RESULTS																				
F	REQUENCY		Side	Test Position	Mode	Antenna	Serial	Bandwidth	Waveform	Modulation	RB Size	RB Offset	Maximum Allowed	Conducted	MPR (dB)	Power Drift	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	R Plot#
MHz	Ch.		olde	restrosition	mode	Config	Number	[MHz]	Materiorini	modulation	10020	no onset	Power [dBm]	Power [dBm]	11111(00)	[dB]	buty bythe	(W/kg)	ocaling Factor	(W/kg)	
3750.00	650000	Low	Right	Cheek	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	1	1	18.0	16.35	0	0.10	1:1	0.564	1.462	0.825	
3930.00	662000	High	Right	Cheek	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	1	1	18.0	16.37	0	0.02	1:1	0.484	1.455	0.704	
3750.00	650000	Low	Right	Cheek	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	135	0	18.0	16.26	0	0.02	1:1	0.547	1.493	0.817	
3930.00	662000	High	Right	Cheek	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	135	69	18.0	16.34	0	0.00	1:1	0.475	1.466	0.696	
3930.00	662000	High	Right	Cheek	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	270	0	18.0	16.31	0	0.03	1:1	0.466	1.476	0.688	
3750.00	650000	Low	Right	Tilt	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	1	1	18.0	16.35	0	-0.06	1:1	0.568	1.462	0.830	A1
3930.00	662000	High	Right	Tilt	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	1	1	18.0	16.37	0	-0.01	1:1	0.472	1.455	0.687	
3750.00	650000	Low	Right	Tilt	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	135	0	18.0	16.26	0	0.01	1:1	0.529	1.493	0.790	
3930.00	662000	High	Right	Tilt	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	135	69	18.0	16.34	0	0.01	1:1	0.466	1.466	0.683	
3930.00	662000	High	Right	Tilt	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	270	0	18.0	16.31	0	0.02	1:1	0.466	1.476	0.688	
3750.00	650000	Low	Right	Tilt	NR Band n77	G	0809M	100	CP-OFDM	QPSK	1	1	18.0	16.42	0	0.09	1:1	0.551	1.439	0.793	
3500.01	633334	Mid	Right	Tilt	NR Band n77 DoD	G	0809M	100	DFT-S-OFDM	QPSK	1	1	18.0	16.20	0	0.00	1:1	0.443	1.514	0.671	
3930.00	662000	High	Left	Cheek	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	1	1	18.0	16.37	0	-0.10	1:1	0.156	1.455	0.227	
3930.00	662000	High	Left	Cheek	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	135	69	18.0	16.34	0	0.06	1:1	0.154	1.466	0.226	
3930.00	662000	High	Left	Tilt	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	1	1	18.0	16.37	0	-0.07	1:1	0.166	1.455	0.242	
3930.00	662000	High	Left	Tilt	NR Band n77	G	0809M	100	DFT-S-OFDM	QPSK	135	69	18.0	16.34	0	-0.09	1:1	0.168	1.466	0.246	
				ANSI / IEE	E C95.1 1992 - SAFE Spatial Book	TY LIMIT									Hea 1.6 W/kg (
	Spatial Peak Uncontrolled Exposure/General Population														averaged over						

Table 11-1

11.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D04v01.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were not required since measured SAR for all frequency bands were less than 0.8 W/kg.
- 9. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the 1g thresholds for the equivalent test cases.
- 10. This device uses Qualcomm Smart Transmit for WWAN operations to control and manage transmitting power in real time to ensure RF Exposure compliance. Per FCC Guidance, compliance for was assessed at the minimum of the time averaged power and the maximum output power for each band/mode/exposure condition (DSI).

FCC ID: A3LSMS918U	S	AR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset		Page 22 of 29
			REV 22.0 03/30/2022

NR Notes:

- 1. NR implementation supports SA and NSA mode. In EN-DC mode, NR operates with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors.
- 2. Due to test setup limitations, SAR testing for NR TDD was performed using test mode software to establish the connection.
- 3. Simultaneous transmission analysis for EN-DC operations is addressed in the Part 2 Test Report in the original filing (Serial Number can be found in the bibliography).
- 4. This device additionally supports some EN-DC conditions where additional LTE carriers are added on the downlink only.
- 5. Per FCC Guidance, NR modulations and RB Sizes/Offsets were selected for testing such that configurations with the highest output power were evaluated for SAR tests.
- 6. Per FCC KDB Publication 447498 D04v01, when the reported NR Band n77 C-Band SAR measured at the highest output power channel in a given a test configuration was > 0.4 W/kg for 1g evaluations and > 1 W/kg for 10g evaluation, testing at the other channels was required for such test configurations.
- 7. For final implementation, NR Band n77 slot configuration is synchronized using maximum duty cycle of 100%. SAR testing was performed using FTM mode with a 100% duty cycle applied to match final duty cycle.
- Per FCC Guidance, C-Band for NR n77 (3705 3975 MHz) was fully tested according to FCC procedures. For each exposure condition and antenna, the worst-case position was additionally evaluated for the NR n77 DoD (3455.01 – 3544.98 MHz).

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 23 of 29
Unloss otherwise encoding an east of this encode	may be concedured or utilized in any part, form or by any means, electronic or mechanical including photoconving an	REV 22.0 03/30/2022

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg.

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 24 of 29
Unless otherwise specified no part of this repor		REV 22.0 03/30/2022

13 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent	E4438C	ESG Vector Signal Generator	1/18/2023	Annual	1/18/2024	MY47270002
Agilent	E4438C	ESG Vector Signal Generator	5/10/2022	Annual	5/10/2023	MY42082659
Agilent	N5182A	MXG Vector Signal Generator	11/30/2022	Annual	11/30/2023	MY47420603
Agilent	N5182A	MXG Vector Signal Generator	7/20/2022	Annual	7/20/2023	MY47420800
Agilent	8753ES	S-Parameter Vector Network Analyzer	6/14/2022	Annual	6/14/2023	US39170118
Agilent	8753ES	S-Parameter Vector Network Analyzer	1/12/2023	Annual	1/12/2024	MY40001472
Agilent	E5515C	Wireless Communications Test Set	5/12/2022	Annual	5/12/2023	GB43304278
Agilent	E5515C	Wireless Communications Test Set	4/24/2019	Triennial	CBT	GB46310798
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Anritsu	MN8110B	I/O Adaptor	N/A	N/A	N/A	6261747881
Anritsu	ML2496A	Power Meter	8/16/2022	Annual	8/16/2023	1351001
Anritsu	ML2495A	Power Meter	3/17/2022	Annual	3/17/2023	941001
Anritsu	MA2411B	Pulse Power Sensor	1/10/2023	Annual	1/10/2024	1315051
Anritsu	MA2411B	Pulse Power Sensor	10/21/2022	Annual	10/21/2023	1207364
Anritsu	MA24106A	USB Power Sensor	2/9/2023	Annual	2/9/2024	1520505
Anritsu	MA24106A	USB Power Sensor	2/9/2023	Annual	2/9/2024	2148505
Mini-Circuits	PWR-4GHS	USB Power Sensor	11/11/2022	Annual	11/11/2023	11710030062
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774678
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774685
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/17/2023	Annual	1/17/2024	160574418
Mitutoyo	500-196-30	CD-6"ASX 6Inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A20238413
Keysight Technologies	N6705B	DC Power Analyzer	5/5/2021	Triennial	5/5/2024	MY53004059
Keysight Technologies	N9020A	MXA Signal Analyzer	3/4/2022	Annual	3/4/2023	US46470561
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2050
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Seekonk	TSF-100	Torque Wrench	7/11/2022	Annual	7/11/2023	47639-29
SPEAG	DAK-3.5	Dielectric Assessment Kit	12/15/2022	Annual	12/15/2023	1278
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/15/2022	Annual	8/15/2023	1041
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1379
SPEAG	D3500V2	3500 MHz SAR Dipole	1/19/2021	Triennial	1/19/2024	1059
SPEAG	D3700V2	3700 MHz SAR Dipole	1/13/2023	Annual	1/13/2024	1067
SPEAG	D3900V2	3900 MHz SAR Dipole	10/9/2020	Triennial	10/9/2023	1056
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/18/2022	Annual	7/18/2023	1583
SPEAG	EX3DV4	SAR Probe	7/19/2022	Annual	7/19/2023	7410

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Note: All equipment was used solely within its respective calibration period.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 25 of 29
		REV 22.0 03/30/2022

14 MEASUREMENT UNCERTAINTIES

	h		d		f	a	h	:	Ŀ
a	b	С	a	e=	Т	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE 1528	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	ui	u _i	\mathbf{v}_{i}
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	7	Ν	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	8
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	8
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	8
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	8
Readout Electronics	E.2.6	0.3	Ν	1	1	1	0.3	0.3	8
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	8
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	8
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	8
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.732	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	8
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	8
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	8
Combined Standard Uncertainty (k=1)	1 1		RSS			•	12.2	12.0	191
Expanded Uncertainty			k=2				24.4	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: A3LSMS918U		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset		Page 26 of 29
			REV 22.0

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 27 of 29
Unless otherwise specified, no part of this report	t may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and	REV 22.0 03/30/2022

Unless Element is policine, no part of mis report may be reproduced or fullized in any part, form or by any means, electronic or mechanical, including photocopying and micromine, including photocopying and micromine, including and the second se

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMS918U		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset		Page 28 of 29
			REV 22.0 03/30/2022

on in writing

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D04
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMS918U	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2302220014-01.A3L	DUT Type: Portable Handset	Page 29 of 29
	may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@EL	