

ELEMENT MATERIALS TECHNOLOGY

(Formerly PCTEST)
7185 Oakland Mills Road, Columbia, MD 21046 USA
Tel. +1.410.290.6652 / Fax +1.410.290.6654
http://www.element.com

NEAR-FIELD POWER DENSITY EVALUATION REPORT

Applicant Name

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing 09/20/2022 - 10/31/2022 Test Site/Location Element, Columbia, MD, USA Document Serial No: 1M2209010098-01.A3L (Rev2)

FCC ID: A3LSMS918U

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Portable Handset Application Type: Certification CFR §2.1093

Model: SM-S918U; SM-S918U1

Band & Mode	Tx Frequency	Measured psPD	Reported psPD	
Baria & Wode	MHz	mW/cm²	mW/cm²	
n258	24250 - 24450; 24750 - 25250	0.464	0.891	
n261	27500 - 28350	0.485	0.891	
n260	37000 - 40000	0.540	0.891	
Total Exposure Ratio		0.	999	
Verdict		P.	\ss	

Note: This revised Test Report supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Executive Vice President

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 1 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	1 490 1 01 20

TABLE OF CONTENTS

1	DE	EVICE UNDER TEST	3
	1.1	NR FR2 Checklist	3
	1.2	Time-Averaging Algorithm for RF Exposure Compliance	3
	1.3	Power Density Design Target and Uncertainty	3
	1.4	Input Power Specifications	4
	1.5	DUT Antenna Locations	10
	1.6	Simultaneous Transmission Capabilities	11
	1.7	Guidance Applied	12
	1.8	Bibliography	12
2	ME	EASUREMENT SYSTEM	13
	2.1	Measurement Setup	13
	2.2	SPEAG EUmmWVx Probe / E-Field 5G Probe	13
	2.3	Peak Spatially Averaged Power Density Assessment Based on E-field Measurements	14
	2.4	Reconstruction Algorithm	14
3	RF	EXPOSURE LIMITS FOR POWER DENSITY	15
	3.1	Uncontrolled Environment	15
	3.2	Controlled Environment	15
	3.3	RF Exposure Limits for Frequencies Above 6 GHz	15
4	SY	STEM VERIFICATION	16
	4.1	Test System Verification	16
5	PO	OWER DENSITY DATA @ INPUT.POWER.LIMIT	18
	5.1	Power Density Results	18
	5.2	Power Density Test Notes	20
6	Co	mbined Power Density Verification	21
	6.1	Verification Criteria 1 (Power Density per beam):	21
	6.2	Verification Criteria 2 (combined Power Density):	22
7	EQ	QUIPMENT LIST	26
8	ME	EASUREMENT UNCERTAINTIES	27
9	CC	DNCLUSION	28
	9.1	Measurement Conclusion	28
1	0	REFERENCES	29

APPENDIX A: POWER DENSITY TEST PLOTS
APPENDIX B: SYSTEM VERIFICATION PLOTS
APPENDIX C: TOTAL EXPOSURE RATIO

APPENDIX D: PROBE AND VERIFICATION SOURCE CALIBRATION CERTIFICATES

APPENDIX E: DUT ANTENNA DIAGRAM AND TEST SETUP PHOTOGRAPHS

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 2 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

1 DEVICE UNDER TEST

1.1 NR FR2 Checklist

NR FR2 Operations Information				
Form Factor	Portable Handset			
Subcarrier Spacing (kHz)	120			
Total Number of Supported Uplink CCs (SISO)	4			
Total Number of Supported Uplink CCs (MIMO)	4			
Total Number of Supported DL CCs	8			
CP-OFDM Modulations Supported in UL	QPSK, 16QAM, 64QAM			
DFT-s-OFDM Modulations Supported in UL	PI/2 BPSK, QPSK, 16QAM, 64QAM			
LTE Anchor Bands	n258: 2/5/12/14/30/66, n261: 2/4/5/12/13/48/66, n260: 2/5/12/13/14/30/48/66			
NR FR1 Anchor Bands	n258: 2/5/12/25/30/41/66/77, n261: 2/5/25/41/48/66/77, n260: 2/5/12/25/30/41/48/66/77			
Duplex Type (mmWave)	TDD			

	NR FR2 Channels & Frequencies						
NR Band	Bandwidth	Lo	ow Mid		Low Mid High		igh
INK Ballu	(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
n258	100	2018333	24350.04	2025833	24800.04	2032499	25200.00
n258	50	2018333	24350.04	2025833	24800.04	2032915	25224.96
n261	100	2071667	27550.08	2077915	27924.96	2084165	28299.96
n261	50	2071249	27525.00	2077915	27924.96	2084581	28324.92
n260	100	2229999	37050.00	2254165	38499.96	2278331	39949.92
n260	50	2229599	37026.00	2254165	38499.96	2278749	39975.00

1.2 Time-Averaging Algorithm for RF Exposure Compliance

The device is enabled with Qualcomm® Smart Transmit (GEN2) feature. This feature performs time averaging algorithm in real time to control and manage transmitting power and ensure the time-averaged RF exposure is in compliance with FCC requirements all the time. Refer to Compliance Summary document for detailed description of Qualcomm® Smart Transmit. Note that WLAN operations are not enabled with Smart Transmit.

The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of SAR_design_target or PD_design_target, below the predefined time-averaged power limit (i.e., P_{limit} for sub-6 radio, and input.power.limit for 5G mmW NR), for each characterized technology and band (see RF Exposure Part 0 Test Report).

Smart Transmit allows the device to transmit at higher power instantaneously when needed, but manages power limiting to maintain time-averaged transmit power to *input.power.limit*.

The purpose of this report (Part 1 test) is to demonstrate that the EUT meets FCC PD limits when transmitting in static transmission scenario at maximum allowable time-averaged power level given by *input.power.limit*.

1.3 Power Density Design Target and Uncertainty

Power Density Design	n Specifications
PD_design_target (mW/m²)	0.631
Design Related Total Uncertainty (dB)	2.0

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 3 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	Ü

1.4 Input Power Specifications

All power density measurements for this device were performed at the *input.power.limit* given in below tables. Input power is per antenna element and polarization for each antenna module. When input.power.limit is calculated to be above the maximum input power, the device is limited to the maximum input power.

Table 1-1
5G mmWave NR n258 Antenna M Patch input.power.limit

Band	Beam ID 1	Beam ID 2	input.power.limit
n258	0	-	11.0
n258	2	-	10.2
n258	4	-	10.5
n258	6	-	11.5
n258	8	-	10.8
n258	10	-	8.2
n258	11	-	7.3
n258	12	-	7.5
n258	13	-	9.8
n258	18	-	7.4
n258	19	-	6.5
n258	20	-	7.6
n258	24	-	4.6
		_	3.2
n258	25 26	-	
n258			2.9
n258	27	-	3.4
n258	28	-	5.5
n258	34	-	3.9
n258	35	-	2.6
n258	36	-	2.9
n258	37	-	4.0
n258	-	128	9.8
n258	-	130	9.6
n258	-	132	9.6
n258	-	134	8.9
n258	-	136	9.5
n258	-	138	6.6
n258	-	139	5.9
n258	-	140	6.4
n258	-	141	7.9
n258	-	146	6.2
n258	-	147	5.9
n258	_	148	6.2
n258	-	152	2.0
	-		
n258	-	153	1.5
n258	-	154	2.2
n258	-	155	2.3
n258	-	156	1.8
n258	-	162	1.8
n258	-	163	2.2
n258	-	164	2.2
n258	-	165	1.7
n258	0	128	6.7
n258	2	130	6.7
n258	4	132	6.8
n258	6	134	6.6
n258	8	136	6.7
n258	10	138	4.0
n258	11	139	3.6
n258	12	140	3.7
n258	13	141	5.3
n258	18	146	3.0
n258	19	147	3.8
n258	20	147	3.4
n258	24	152	-1.2
n258	25	153	-1.7
n258	26	154	-0.7
n258	27	155	-0.5
n258	28	156	-0.5
n258	34	162	-1.3
n258	35	163	-1.1
			-1.1 -0.6 -0.6

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 4 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

Table 1-2
5G mmWave NR n258 Antenna N Patch input.power.limit

Band Beam ID 1 Beam ID 2 input.power.li n258 1 - 9.4 n258 3 - 9.4 n258 5 - 10.2 n258 7 - 10.5 n258 9 - 10.3 n258 14 - 6.0 n258 15 - 5.6 n258 16 - 7.4 n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2	
n258 3 - 9.4 n258 5 - 10.2 n258 7 - 10.5 n258 9 - 10.3 n258 14 - 6.0 n258 15 - 5.6 n258 16 - 7.4 n258 21 - 6.5 n258 22 - 6.7 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 32 - 2.4 n258 33 - 3.3 n258 33 - 3.3 n258 39 - 2.5 n258 40 - 2.8 n258	
n258 5 - 10.2 n258 7 - 10.5 n258 9 - 10.3 n258 14 - 6.0 n258 15 - 5.6 n258 16 - 7.4 n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n25	
n258 7 - 10.5 n258 9 - 10.3 n258 14 - 6.0 n258 15 - 5.6 n258 16 - 7.4 n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n	
n258 9 - 10.3 n258 14 - 6.0 n258 15 - 5.6 n258 16 - 7.4 n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 14 - 6.0 n258 15 - 5.6 n258 16 - 7.4 n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 15 - 5.6 n258 16 - 7.4 n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 16 - 7.4 n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 17 - 6.7 n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 21 - 6.5 n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 22 - 6.7 n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 23 - 6.0 n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 29 - 2.5 n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 30 - 2.0 n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 31 - 2.8 n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 32 - 2.4 n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 33 - 3.3 n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 38 - 2.2 n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 39 - 2.5 n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 40 - 2.8 n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 41 - 2.9 n258 - 129 13.1 n258 - 131 14.4	
n258 - 129 13.1 n258 - 131 14.4	
n258 - 131 14.4	
n258 - 133 14.4	
n258 - 135 14.2	
n258 - 137 14.5	
n258 - 142 11.4	
n258 - 143 10.7	
n258 - 144 10.6	
n258 - 145 10.4	
n258 - 149 10.7	
n258 - 150 10.0	
n258 - 151 10.5	
n258 - 157 7.2	
n258 - 158 6.8	
n258 - 160 6.7	
n258 - 161 6.0	
n258 - 166 6.6	
n258 - 167 7.4	
n258 - 168 6.8	
n258 - 169 6.3	
n258 1 129 7.5	
n258 3 131 8.1	
n258 5 133 8.7	
n258 7 135 8.6	
n258 9 137 8.1	
 	
n258 15 143 5.0	
n258 16 144 6.4	
n258 17 145 5.1	
n258 21 149 4.6	
n258 22 150 5.3	
n258 23 151 5.1	
n258 29 157 0.2	
n258 30 158 0.7	
n258 31 159 1.3	
n258 32 160 1.1	
n258 33 161 1.2	
n258 38 166 0.5	
n258 39 167 1.4	
n258 40 168 1.2	
n258 41 169 1.3	

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 5 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	3

Table 1-3
5G mmWave NR n261 Antenna M Patch input.power.limit

Band	Beam ID 1	Beam ID 2	input.power.limit
n261	0	-	12.0
n261	2	-	10.1
n261	4	-	11.5
n261	6	-	10.8
n261	8	-	12.5
n261	10	-	8.9
n261	11	-	7.9
n261	12	-	7.9
n261	13	-	8.3
n261	18	-	8.3
n261	19	-	6.9
n261	20	-	8.7
n261	24	-	4.6
n261	25	-	3.8
n261	26	-	2.8
n261	27	-	2.9
n261	28	-	5.8
n261	34	-	4.6
n261	35	-	3.0
n261	36	-	2.8
n261	37	-	4.9
n261	-	128	9.7
n261	-	130	8.6
n261	-	132	8.6
n261	-	134	8.6
n261	-	136	10.1
n261	_	138	7.1
n261	_	139	5.1
n261	_	140	5.3
n261	_	141	6.9
n261	_	146	5.2
n261	_	147	5.1
n261	_	148	5.2
n261	_	152	1.4
n261	_	153	1.6
n261	-	154	1.7
n261	_	155	1.4
n261	_	156	1.6
n261	-	162	1.4
n261	-	163	1.6
n261	-	164	1.6
n261	-	165	1.3
n261	0	128	7.5
n261	2	130	5.8
n261	4	132	6.2
n261	6	134	6.3
n261	8	136	7.9
n261	10	138	4.4
n261	11	139	3.2
n261	12	140	3.0
n261	13	141	4.5
n261	18	141	3.5
n261	19	147	3.3
	20	147	3.3
n261 n261	24	152	-0.8
n261	25	153	-0.6
n261	26	154	-0.6
n261	27	155	-1.2
n261	28	156	-0.6
n261	34	162	-0.7
n261	35	163	-0.8
n261	36	164	-1.0
n261	37	165	-0.9

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 6 of 29
1M2209010098-01.A3L(Rev2)	Portable Handset	1 ago 0 01 20

Table 1-4 5G mmWave NR n261 Antenna N Patch input.power.limit

Band	Beam ID 1	Beam ID 2	input.power.limit
		Dealii ID 2	
n261	1	-	9.0
n261	3	-	9.8
n261	5	-	9.6
n261	7	-	9.2
n261	9	-	9.6
n261	14	-	6.8
n261	15	-	5.7
n261	16	-	6.1
n261	17	-	7.2
n261	21	-	7.1
n261	22	-	6.0
n261	23	-	6.6
n261	29	-	2.0
n261	30	-	3.1
n261	31	-	2.7
n261	32	-	2.0
n261	33		3.2
		-	
n261	38	-	2.7
n261	39	-	2.9
n261	40	-	2.3
n261	41	-	2.3
n261	-	129	13.5
n261	-	131	13.0
n261	-	133	13.3
n261	-	135	12.9
n261		137	
	-		14.3
n261	-	142	10.1
n261	-	143	10.0
n261	-	144	9.9
n261	-	145	10.3
n261	-	149	10.9
n261	-	150	10.2
n261	-	151	10.0
n261	-	157	7.0
n261		158	5.7
	_		
n261	-	159	5.9
n261	-	160	6.2
n261	-	161	5.9
n261	-	166	6.4
n261	-	167	6.0
n261	-	168	5.9
n261	-	169	6.3
n261	1	129	7.3
n261	3	131	7.8
			7.8
n261	5	133	
n261	7	135	7.3
n261	9	137	8.1
n261	14	142	4.9
n261	15	143	3.9
n261	16	144	5.4
n261	17	145	5.1
n261	21	149	5.5
n261	22	150	4.6
	23	151	5.3
n261			
n261	29	157	0.4
n261	30	158	0.8
n261	31	159	1.0
n261	32	160	0.2
n261	33	161	0.4
n261	38	166	0.5
n261	39	167	1.0
n261	40	168	0.3
n261	41	169	0.2

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 7 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	1 490 7 01 20

Table 1-5
5G mmWave NR n260 Antenna M Patch input.power.limit

Band Beam ID 1 Beam ID 2 input.pow n260 0 - 11.5 n260 2 - 11.8 n260 4 - 11.5 n260 6 - 12.2 n260 8 - 12.4 n260 10 - 9.1 n260 11 - 9.5 n260 12 - 9.3 n260 13 - 8.5	5 3 5
n260 2 - 11.8 n260 4 - 11.5 n260 6 - 12.2 n260 8 - 12.4 n260 10 - 9.1 n260 11 - 9.5 n260 12 - 9.3	3 5
n260 4 - 11.5 n260 6 - 12.2 n260 8 - 12.4 n260 10 - 9.1 n260 11 - 9.5 n260 12 - 9.3	2
n260 6 - 12.2 n260 8 - 12.4 n260 10 - 9.1 n260 11 - 9.5 n260 12 - 9.3	2
n260 8 - 12.4 n260 10 - 9.1 n260 11 - 9.5 n260 12 - 9.3	
n260 10 - 9.1 n260 11 - 9.5 n260 12 - 9.3	ı
n260 10 - 9.1 n260 11 - 9.5 n260 12 - 9.3	
n260 11 - 9.5 n260 12 - 9.3	
n260 12 - 9.3	
11200 10 0.0	
n260 19 - 9.7	
n260 20 - 8.7	
n260 24 - 5.0	
n260 25 - 5.8	
n260 26 - 5.7	
n260 27 - 5.0	
n260 28 - 5.1	
n260 35 - 6.7	
n260 36 - 5.5	
n260 37 - 5.1	
n260 - 128 11.8	3
n260 - 130 11.7	7
n260 - 132 11.2	2
n260 - 134 12.2	
n260 - 136 13.1	
n260 - 138 8.8	
n260 - 139 8.6	
n260 - 140 8.7	
n260 - 141 8.9	
n260 - 146 8.5	
n260 - 147 8.9	
n260 - 148 9.1	
n260 - 152 6.3	
n260 - 153 5.0	
n260 - 154 4.7	
n260 - 155 5.5	
n260 - 156 6.0	
n260 - 162 5.6	
n260 - 163 5.3	
n260 - 164 5.2	
n260 - 165 5.4	
n260 0 128 8.5	
n260 2 130 8.6	
n260 4 132 8.0	
n260 6 134 8.9	
n260 8 136 9.2	
n260 10 138 7.0	
n260 11 139 5.9	
n260 12 140 5.7	
n260 13 141 5.4	
n260 18 146 5.5	
n260 19 147 5.8	
n260 20 148 5.6	
n260 24 152 2.2	
n260 25 153 1.8	
n260 26 154 1.8	
n260 27 155 2.1	
n260 28 156 2.0	
n260 34 162 1.9	
 	
n260 35 163 2.5	
n260 36 164 2.1	
n260 37 165 2.0	

FCC ID: A3LSMS918U	: A3LSMS918U NEAR-FIELD POWER DENSITY EVALUATION REPORT	
		Technical Manager
Document S/N:	DUT Type:	Page 8 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	3

Table 1-6 5G mmWave NR n260 Antenna N Patch input.power.limit

Band	Beam ID 1	Beam ID 2	input.power.limit
n260	1	-	9.8
n260	3	-	9.4
n260	5	-	8.8
n260	7	-	8.6
n260	9	-	9.4
n260	14	-	6.2
n260	15	-	6.1
n260	16	-	5.8
n260	17	-	5.9
n260	21	-	6.9
n260	22	-	6.4
n260	23	-	6.4
n260	29	-	3.3
n260	30	_	3.6
n260	31	-	2.7
n260	32	_	1.9
n260	33	_	1.8
n260	38	_	4.0
n260	39	_	3.0
n260	40	_	2.7
n260	41	-	1.8
n260		129	11.1
n260		131	9.6
n260		133	9.0
n260	-		9.5
n260	-	135 137	9.3
n260	-	142	6.4
n260	-	143	5.9
n260	-	144	7.7
	-	145	
n260			6.9
n260	-	149	6.4
n260		150	6.5
n260	-	151	6.6
n260		157	4.1
n260	-	158	3.0
n260		159	3.3
n260	-	160	3.6
n260	-	161	3.7
n260	-	166	3.1
n260	-	167	3.1
n260	-	168	3.4
n260	-	169	3.5
n260	1	129	7.1
n260	3	131	6.1
n260	5	133	5.9
n260	7	135	5.9
n260	9	137	5.9
n260	14	142	2.9
n260	15	143	2.7
n260	16	144	3.6
n260	17	145	3.5
n260	21	149	3.4
n260	22	150	3.3
n260	23	151	3.5
n260	29	157	0.2
n260	30	158	-0.7
n260	31	159	-0.2
n260	32	160	-0.8
n260	33	161	-0.5
n260	38	166	-0.6
n260	39	167	-0.8
-200	••	160	0.1
n260	40	168	-0.1

FCC ID: A3LSMS918U	: ID: A3LSMS918U NEAR-FIELD POWER DENSITY EVALUATION REPORT	
		Technical Manager
Document S/N:	DUT Type:	Page 9 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

1.5 DUT Antenna Locations

Table below indicates the surfaces evaluated for near field power density (part 1) evaluation. Refer to RF Exposure Part 0 Test Report for justification of these worst-surfaces.

Table 1-7
Device Surfaces

Band	Antenna	Antenna Type	Back	Front	Тор	Bottom	Right	Left
n258	М	Patch	Yes	No	No	No	No	Yes
n258	N	Patch	Yes	No	No	No	Yes	No
n261	М	Patch	Yes	No	No	No	No	Yes
n261	N	Patch	Yes	No	No	No	Yes	No
n260	М	Patch	Yes	No	No	No	No	No
n260	N	Patch	Yes	No	No	No	Yes	No

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 10 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	1.32 1.50120

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D04v01, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D04v01 4.3.2 procedures.

Table 1-8
Simultaneous Transmission

No.	Capable Transmit Configuration	Head	Body-worn	Wireless Router	Phablet	Notes
1	LTE + 5G NR FR2	Yes	Yes	N/A	Yes	
2	LTE + 2.4 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
3	LTE + Bluetooth Ant 1 + 5G NR FR2	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
4	LTE + Bluetooth Ant 2 + 5G NR FR2	Yes	Yes	Yes	Yes	
5	LTE + Bluetooth MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
6	LTE +5 GHz WLAN MIMO +5G NR FR2	Yes	Yes	Yes	Yes	
7	LTE + 6 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	N/A	Yes	
8	LTE + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
9	LTE + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	N/A	Yes	
10	LTE + Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5G NR FR2	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
11	LTE + Bluetooth Ant 1 + 5 GHz WLAN MIMO + 5G NR FR2	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
12	LTE + Bluetooth Ant 2 + 5 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
13	LTE + Bluetooth MIMO + 5 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
14	LTE + Bluetooth Ant 1 + 6 GHz WLAN MIMO + 5G NR FR2	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
15	LTE + Bluetooth Ant 2 + 6 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	N/A	Yes	
16	LTE + Bluetooth MIMO + 6 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	N/A	Yes	
17	LTE + Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5 GHz WLAN MIMO + 5G NR FR2	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
18	LTE + Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 6 GHz WLAN MIMO + 5G NR FR2	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
19	5G NR FR1 + 5G NR FR2	Yes	Yes	N/A	Yes	
20	5G NR FR1 + 2.4 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
21	5G NR FR1 + Bluetooth Ant 1 + 5G NR FR2	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
22	5G NR FR1 + Bluetooth Ant 2 + 5G NR FR2	Yes	Yes	Yes	Yes	
23	5G NR FR1 + Bluetooth MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
24	5G NR FR1 + 5 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
25	5G NR FR1 + 6 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	N/A	Yes	
26	5G NR FR1 + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
27	5G NR FR1 + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	N/A	Yes	
28	5G NR FR1 + Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5G NR FR2	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
29	5G NR FR1 + Bluetooth Ant 1 + 5 GHz WLAN MIMO + 5G NR FR2	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
30	5G NR FR1 + Bluetooth Ant 2 + 5 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	<u> </u>
31	5G NR FR1 + Bluetooth MIMO + 5 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	Yes	Yes	
32	5G NR FR1 + Bluetooth Ant 1 + 6 GHz WLAN MIMO + 5G NR FR2	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
33	5G NR FR1 + Bluetooth Ant 2 + 6 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	N/A	Yes	
34	5G NR FR1 + Bluetooth MIMO + 6 GHz WLAN MIMO + 5G NR FR2	Yes	Yes	N/A	Yes	
35	5G NR FR1 + Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5 GHz WLAN MIMO + 5G NR FR2	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
36	5G NR FR1 + Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 6 GHz WLAN MIMO + 5G NR FR2	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered

NOTE:

- 1. NR antenna arrays cannot transmit simultaneously.
- 2. LTE + 5G NR FR2 and 5G NR1 + 5G NR FR2 scenarios are limited to combinations with anchor bands as shown in the NR FR2 checklist.
- 3. This device supports time averaging smart transmit algorithm in WWAN. Smart transmit adds directly the time-averaged RF exposure from 4G/5G NR FR1 and time-averaged RF exposure from 5G mmW NR FR2 to ensure that the normalized RF exposure from both 4G/5G NR FR1 and 5G mmW NR FR2 does not exceed FCC limit.
- 4. NFC can transmit simultaneously with all scenarios above.
- 5. 5 GHz WLAN and 6 GHz WLAN share the same antenna path and cannot transmit simultaneously.
- 6. 2.4 GHz WLAN ant 1 and 2.4 GHz Bluetooth ant 1 share the same antenna path and cannot transmit simultaneously.

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 11 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

1.7 Guidance Applied

- November 2017, October 2018, April 2019, November 2019 TCBC Workshop Notes
- SPEAG DASY6 System Handbook
- IEC/IEEE 63195-1:2022
- FCC KDB 865664 D02 v01r04
- FCC KDB 447498 D04 v01

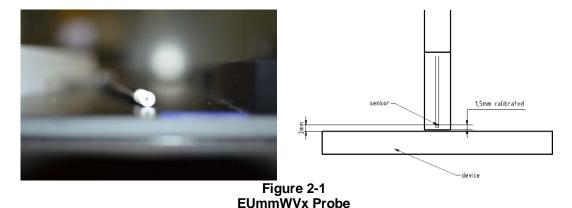
1.8 Bibliography

Table 1-9 Bibliography

Report Serial Number								
1M2209010098-03.A3L								
1M2209010098-04.A3L								
1M2209010098-05.A3L								
1M2209010098-02.A3L								

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 12 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	1

2 MEASUREMENT SYSTEM


2.1 Measurement Setup

Peak spatially averaged power density (psPD) measurements for mmWave frequencies were performed using the DASY6 with cDASY6 5G module. The DASY6 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, nearfield probe, probe alignment sensor, and the 5G phantom. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF).

2.2 SPEAG EUmmWVx Probe / E-Field 5G Probe

The EUmmWVx probe consists of two dipoles optimally arranged to obtain pseudo-vector information.

Frequency Range	750 MHz – 110 GHz
Dynamic Range	< 20 V/m - 10,000 V/m with PRE-10 (min < 50 V/m - 3,000 V/m)
Position Precision	< 0.2 mm (cDASY6)
Dimensions	Probe Overall Length: 320 mm Probe Body Diameter: 8 mm Probe Tip Length: 23 mm Probe Tip Diameter: Encapsulation 8 mm Distance from Probe Tip to Sensor X Calibration Point: 1.5 mm Distance from Probe Tip to Sensor Y Calibration Point: 1.5 mm
Applications	E-field measurements of 5G devices and other mm-wave transmitters operating above 10 GHz in < 2 mm distance from device (free-space) Power density, H-field and far-field analysis using total field reconstruction
Compatibility	cDASY6 + 5G-Module SW

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 13 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

2.3 Peak Spatially Averaged Power Density Assessment Based on E-field Measurements

Within a short distance from the transmitting source, power density was determined based on both electric and magnetic fields. Generally, the magnitude and phase of two components of either the E-field or H-field were needed on a sufficiently large surface to fully characterize the total E-field and H-field distributions. Nevertheless, solutions based on direct measurement of E-field and H-field can be used to compute power density. The general measurement approach used for this device was:

- a) The local E field on the measurement surface was measured at a reference location where the field is well above the noise level. This reference level was used at the end of this procedure to assess output power drift of the DUT during the measurement.
- b) The electric field on the measurement surface was scanned. Measurements are conducted according to the instructions provided by the measurement system manufacturer. Measurement spatial resolution can depend on the measured field characteristic and measurement methodology used by the system. The planar scan step size was configured at $\lambda/4$.
- c) For cDASY6, H-field was calculated from the measured E-field using a reconstruction algorithm. As the power density calculation requires knowledge of both amplitude and phase, reconstruction algorithms can also be used to obtain field information from the measured E-field data (e.g. the phase from the amplitude if only the amplitude is measured). H-field and phase data was reconstructed from repeated measurements (three per measurement point) on two measurement planes separated by λ/4.
- d) The total Peak spatially averaged power density (psPD) distribution on the evaluation surface is determined per the below equation. The spatial averaging area, *A*, is specified by the applicable exposure limits or regulatory requirements. A circular shape was used.

$$psPD = \frac{1}{2A_{av}} \qquad \iint_{A_{av}} ||Re\{E \times H^*\}|| dA$$

- e) The maximum spatial-average on the evaluation surface is the final quantity to determine compliance against applicable limits.
- f) The local E field reference value, at the same location as step 2, was re-measured after the scan was complete to calculate the power drift. If the drift deviated by more than 5%, the power density test and drift measurements were repeated.

2.4 Reconstruction Algorithm

Computation of the power density in general requires measurement information from the both E-field and H-field amplitudes and phases in the plane of incidence. Reconstruction of these quantities from pseudo-vector E-field measurements is feasible according to the manufacturer, as they are determined via Maxwell's equations. As such, the SPEAG reconstruction approach was based on the Gerchberg-Saxton algorithm, which benefits from the availability of the E-field polarization ellipse information obtained with the EUmmWVx probe.

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 14 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

3 RF EXPOSURE LIMITS FOR POWER DENSITY

3.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

3.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 RF Exposure Limits for Frequencies Above 6 GHz

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m² or mW/cm².

Peak Spatially Averaged Power Density was evaluated over a circular area of 4 cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

Table 3-1
Human Exposure Limits Specified in FCC 47 CFR §1.1310

Human Exposure to Radiofrequency (RF) Radiation Limits									
Frequency Range Power Density Average Time [MHz] [mW/cm²] [Minutes]									
(A) Limits	For Occupational / Controlled I	Environments							
1,500 - 100,000	5.0	6							
(B) Limits For General Population / Uncontrolled Environments									
1,500 – 100,000	1.0	30							

Note: 1.0 mW/cm² is 10 W/m²

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 15 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

4 SYSTEM VERIFICATION

4.1 Test System Verification

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.



Figure 4-1
System Verification Setup Photo

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 16 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

Table 4-2 30 GHz Verifications

System Verification

	System vermuation											
System	Frequency	Date	Source	Probe	Normal psPD (W/m² over 4 cm²)		Deviation (dB)	Total psPD (W/r	Total psPD (W/m² over 4 cm²)		Plot#	
			S/N	S/N	Measured	Target		Measured	Target			
Q	30	09/20/2022	1045	9541	35.80	32.70	0.39	36.30	32.70	0.45	B1	
R	30	09/20/2022	1035	9407	29.00	32.40	-0.48	29.40	32.40	-0.42	B2	
Q	30	09/22/2022	1045	9541	35.30	32.70	0.33	35.80	32.70	0.39		
R	30	09/22/2022	1035	9407	29.40	32.40	-0.42	29.80	32.40	-0.36		
R	30	10/11/2022	1035	9622	28.90	32.40	-0.50	29.30	32.40	-0.44	В3	
Q	30	10/13/2022	1045	9541	36.00	32.70	0.42	36.50	32.70	0.48		
Q	30	10/31/2022	1045	9541	36.60	32.70	0.49	37.00	32.70	0.54	В4	
R	30	10/31/2022	1035	9622	30.50	32.40	-0.26	30.60	32.40	-0.25		

Note: A **10 mm distance spacing** was used from the reference horn antenna aperture to the probe element. This includes 4.45 mm from the reference antenna horn aperture to the surface of the verification source plus 5.55 mm from the surface to the probe. The SPEAG software requires a setting of "5.55 mm" for the correct set up.

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
		recimearmanager
Document S/N:	DUT Type:	Page 17 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	-

5 POWER DENSITY DATA @ INPUT.POWER.LIMIT

5.1 Power Density Results

Power density measurements were performed with DUT transmitting at *input.power.limit* for one single beam for each polarization (H & V) and one beam-pair, for each antenna on each worst-surface.

Table 5-1 5G mmWave NR Band n258

	MEASUREMENT RESULTS														
Band	Module	Antenna Type	Frequency	Channel	Beam ID	Beam ID 2	input.power.limit	Signal Type	DUT S/N	Power Drift	Distance	DUT Surface	Normal psPD	Total psPD	Plot #
		71.	MHz		V	Н	dBm	,,,		dB	mm		mW/cm²	mW/cm²	
n258	М	Patch	25200.00	High	35	-	2.6	cw	VHT0152M	-0.05	2	Back	0.276	0.327	
n258	М	Patch	25200.00	High	-	153	1.5	cw	VHT0152M	-0.03	2	Back	0.377	0.464	A1
n258	М	Patch	25200.00	High	25	153	-1.7	cw	VHT0152M	0.02	2	Back	0.199	0.258	
n258	М	Patch	25200.00	High	35	-	2.6	cw	VHT0152M	0.04	10	Back	0.158	0.174	
n258	М	Patch	25200.00	High	35	-	2.6	cw	VHT0152M	-0.01	2	Left	0.137	0.189	
n258	М	Patch	25200.00	High	-	153	1.5	cw	VHT0152M	-0.02	2	Left	0.230	0.310	
n258	М	Patch	25200.00	High	35	163	-1.1	cw	VHT0152M	-0.02	2	Left	0.145	0.158	
n258	N	Patch	24800.04	Mid	41	-	2.9	cw	VHT0167M	-0.05	2	Back	0.202	0.265	
n258	N	Patch	24350.04	Low	-	169	6.3	cw	VHT0167M	-0.19	2	Back	0.366	0.427	A2
n258	N	Patch	24350.04	Low	41	169	1.3	cw	VHT0167M	-0.20	2	Back	0.224	0.251	
n258	N	Patch	24350.04	Low	30	158	0.7	cw	VHT0167M	-0.03	10	Back	0.059	0.067	
n258	N	Patch	25200.00	High	30	-	2.0	cw	VHT0167M	0.01	2	Right	0.194	0.278	
n258	N	Patch	24350.04	Low	-	161	6.0	cw	VHT0167M	-0.01	2	Right	0.305	0.388	
n258	N	Patch	25200.00	High	29	157	0.2	cw	VHT0167M	0.07	2	Right	0.119	0.168	
47 CFR §1.1310 - SAFETY LIMIT Spatial Average Uncontrolled Exposure / General Population							ā.	Power Der 1 mW/cr averaged ove	n² ์						

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 18 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

Table 5-2 5G mmWaye NR Band n261

							5G mm\	wave	NK Bar	nd n2	61				
							ME	ASURE	IENT RESULT	rs					
Band	Module	Antenna Type	Frequency	Channel	Beam ID	Beam ID 2	input.power.limit	Signal Type	DUT S/N	Power Drift	Distance	DUT Surface	Normal psPD	Total psPD	Plot #
			MHz		٧	Н	dBm			dB	mm		mW/cm²	mW/cm²	
n261	М	Patch	27924.96	Mid	25	-	3.8	cw	VHT0167M	-0.03	2	Back	0.338	0.447	
n261	М	Patch	27550.08	Low	-	165	1.3	cw	VHT0152M	-0.01	2	Back	0.336	0.485	A3
n261	М	Patch	27924.96	Mid	27	155	-1.2	cw	VHT0152M	-0.04	2	Back	0.389	0.461	
n261	М	Patch	27550.08	Low	36	164	-1.0	cw	VHT0152M	-0.04	10	Back	0.246	0.275	
n261	М	Patch	27924.96	Mid	25	-	3.8	cw	VHT0167M	0.01	2	Left	0.178	0.244	
n261	М	Patch	27550.08	Low	-	164	1.6	cw	VHT0152M	-0.07	2	Left	0.411	0.418	
n261	М	Patch	27550.08	Low	35	163	-0.8	cw	VHT0152M	-0.12	2	Left	0.221	0.238	
n261	N	Patch	27550.08	Low	31	-	2.7	cw	VHT0152M	-0.06	2	Back	0.203	0.298	
n261	N	Patch	27550.08	Low	-	169	6.3	cw	VHT0152M	-0.02	2	Back	0.196	0.249	
n261	N	Patch	27924.96	Mid	38	166	0.5	cw	VHT0152M	-0.03	2	Back	0.094	0.135	
n261	N	Patch	27550.08	Low	-	160	6.2	cw	VHT0167M	-0.01	10	Back	0.139	0.156	
n261	N	Patch	27550.08	Low	32	-	2.0	cw	VHT0152M	0.20	2	Right	0.238	0.337	
n261	N	Patch	28299.96	High	-	158	5.7	cw	VHT0152M	-0.15	2	Right	0.429	0.504	A4
n261	N	Patch	27550.08	Low	32	160	0.2	cw	VHT0152M	0.06	2	Right	0.195	0.270	
47 CFR §1.1310 - SAFETY LIMIT Spatial Average Uncontrolled Exposure / General Population							ion			, ,	;	Power Der 1 mW/cr averaged ove	n²		

Table 5-3 5G mmWave NR Band n260

							3G IIIIII	vave	INIX Dai	IU IIZ	.00				
							ME	ASURE	MENT RESULT	s					
Band	Module	Antenna Type	Frequency	Channel	Beam ID	Beam ID 2	input.power.limit	Signal Type	DUT S/N	Power Drift	Distance	DUT Surface	Normal psPD	Total psPD	Plot #
		71	MHz		V	Н	dBm	,,,		dB	mm		mW/cm²	mW/cm²	1
n260	М	Patch	39949.92	High	24	-	5.0	cw	VHT0152M	0.14	2	Back	0.371	0.479	
n260	М	Patch	38499.96	Mid	-	154	4.7	cw	VHT0152M	0.06	2	Back	0.457	0.540	A5
n260	М	Patch	39949.92	High	25	153	1.8	cw	VHT0152M	0.09	2	Back	0.368	0.459	
n260	М	Patch	39949.92	High	-	164	5.2	cw	VHT0152M	0.08	10	Back	0.303	0.322	
n260	N	Patch	39949.92	High	31	159	-0.2	cw	VHT0167M	-0.20	10	Back	0.073	0.092	
n260	N	Patch	37050.00	Low	41	-	1.8	cw	VHT0167M	0.20	2	Right	0.338	0.406	A6
n260	N	Patch	38499.96	Mid	-	158	3.0	cw	VHT0167M	0.04	2	Right	0.312	0.373	
n260	N	Patch	38499.96	Mid	39	167	-0.8	cw	VHT0167M	0.20	2	Right	0.272	0.327	
	47 CFR §1.1310 - SAFETY LIMIT Spatial Average Uncontrolled Exposure / General Population								•	a	Power De 1 mW/c	m²	•		

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
		recimicarmanager
Document S/N:	DUT Type:	Page 19 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

5.2 Power Density Test Notes

General Notes:

- 1. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 2. Batteries are fully charged at the beginning of the measurements. The DUT was connected to a wall charger for some measurements due to the test duration. It was confirmed that the charger plugged into this DUT did not impact the near-field PD test results.
- 3. Power density was calculated by repeated E-field measurements on two measurement planes separated by $\lambda/4$.
- 4. DUT was configured to transmit with a manufacturer provided test software to control specific antenna(s), Beam ID(s), and signal type to ensure the test configurations constant for the entire evaluation.
- 5. This device utilizes power reduction for some WLAN/BT wireless modes and technologies for simultaneous transmission compliance. These mechanisms are assessed in the SAR Test Report.
- 6. Input.power.limit parameter for 5G mmW NR radio was calculated in RF Exposure Part 0 test report.
- 7. This device is enabled with Qualcomm® Smart Transmit feature to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from WWAN is in compliance with FCC requirements. Per FCC guidance for devices enabled with Qualcomm® Smart Transmit feature, 4G LTE/5G NR FR1 and 5G mmW NR FR2 simultaneous transmission scenario does not need to be evaluated under Total Exposure Ratio (TER). The validation of the time-averaging algorithm and compliance under the Tx varying transmission scenario for WWAN technologies are reported in Part 2 report.
- 8. Per FCC guidance for devices enabled with Qualcomm® Smart Transmit feature, simultaneous transmission analysis is evaluated by combining the exposure from each WWAN and WLAN antenna. 5G mmW NR and WLAN simultaneous transmission scenario is evaluated under the Total Exposure Ratio (TER) Appendix.
- 9. The Beam IDs with one of the highest initial simulated power density for that surface and distance was selected for Part 1 Power Density measurements.
- 10. The device was configured to transmit CW wave signal for testing. Per FCC guidance for devices enabled with Qualcomm® Smart Transmit feature, additional testing was not required for different modulations (CP-OFDM: QPSK, 16QAM, 64QAM, DFT-s-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM), RB configurations, component carriers, channel configurations (low channel, mid channel, high channel) since the smart transmit algorithm monitors powers on a per symbol basis, which is independent of these signal characteristics.
- 11. The device was configured to MIMO configuration with H and V polarization beams transmitting together.
- 12. When additional sides are tested at a distance further than 2mm, the beam ID with the highest ratio of simulated power density of the tested distance to worst case 2mm was selected for power density measurements for that specific side and distance.

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 20 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

6 COMBINED POWER DENSITY VERIFICATION

This device supports GEN2 Smart Transmit. The following verifications were performed per 80-w2112-4.

Measured psPD results in the below verifications were measured at a reduced power level as per the manufacturer. All psPD values were scaled to reflect the original input.power.limit (before permanent back-off applied) corresponding to the PD_design_target. The permanent back-off values are included in the Part 0 test report.

6.1 Verification Criteria 1 (Power Density per beam):

The measured psPD results from the previous section are confirmed to meet:

Measured $psPD \le (b_i * PD_design_target + total uncertainty) < FCC psPD limit$

Table 6-1
Power Density Per Beam

PD_desi	ign_target (r	mW/cm²)				0.63	1		
Tota	l uncertaint	y (dB)				2.0			
Band	Antenna	Antenna Type	Printed backoff value bj	Beam ID 1	Beam ID 2	Measured psPD	psPD scaled to input.power.limit without permanent backoff	bj * PD_design_target + total uncertainty	FCC psPD Limit
						mW/cm²	mW/cm ²	mW/cm²	mW/cm²
n258	М	Patch	0.955	-	153	0.464	0.521	0.955	1.00
n258	N	Patch	0.8913	-	169	0.427	0.479	0.891	1.00
n261	М	Patch	0.955	-	165	0.485	0.544	0.955	1.00
n261	N	Patch	0.8913	-	158	0.504	0.680	0.891	1.00
n260	М	Patch	0.955	-	154	0.540	0.606	0.955	1.00
n260	N	Patch	0.8913	41	-	0.406	0.456	0.891	1.00

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 21 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

6.2 Verification Criteria 2 (combined Power Density):

Combined Power Density results in the below tables are confirmed to meet:

```
combined psPD = (c(p, j) * measured. psPD. beam_p + c(q, j) * measured. psPD. beam_q)

\leq PD\_design\_target + total uncertainty
```

where,

```
meas.psPD.beam_i = measured\ 4cm^2\ PD\ for\ beam\ i, i = p, q
c(i,j) = \text{contribution\ factor\ from\ beam}_i\ to\ antenna_i, i = p, q\ and\ j = 0,1
```

Beam_p = beam having the highest measured psPD among all beams tested for first antenna Beam_q = beam having the highest measured psPD among all beams tested for second antenna

> Table 6-2 Highest Measured psPD

Band	Antenna	Antenna Type	Beam ID 1	Beam ID 2	Surface	Measured psPD	psPD scaled to input.power.limit without permanent backoff
						mW/cm²	mW/cm²
n258	М	Patch	-	153	Back	0.464	0.521
n258	М	Patch	-	153	Left	0.310	0.348
n258	N	Patch	-	169	Back	0.427	0.479
n258	N	Patch	-	161	Right	0.388	0.435
n261	М	Patch	-	165	Back	0.485	0.544
n261	М	Patch	-	164	Left	0.418	0.469
n261	N	Patch	31	-	Back	0.298	0.402
n261	N	Patch	-	158	Right	0.504	0.680
n260	М	Patch	-	154	Back	0.540	0.606
n260	N	Patch	41	-	Right	0.406	0.456

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 22 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	1.31 == 0.20

Table 6-3 Combined psPD Band n258

n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be	Beam ID 153 169 d psPD cm²) _target + ertainty] cm²)	M Back 1 0.0029 0.522 1 Contribution Factors pe	N Back 0.0031 0.9152 0.440	
n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be	153 169 d psPD cm²) _target + ertainty] cm²) Co	Back 1 0.0029 0.522 1 Contribution Factors pe	Back 0.0031 0.9152 0.440	
Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be	169 d psPD cm²) _target + ertainty] cm²) Co	1 0.0029 0.522 1 Contribution Factors pe	0.0031 0.9152 0.440	
Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be	169 d psPD cm²) _target + ertainty] cm²) Co	0.0029 0.522 1 Contribution Factors pe	0.9152 0.440 1	
Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be	cm²) _target + ertainty] cm²) Co	0.522 1 Contribution Factors pe	0.440	
(mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be	cm²) _target + ertainty] cm²)	1 Contribution Factors pe	1	
[PD_design_ta total uncerta (mW/cm²	_target + ertainty] cm²) Co	1 Contribution Factors pe	1	
[PD_design_ta total uncerta (mW/cm²	_target + ertainty] cm²) Co	Contribution Factors pe		
(mW/cm ² Band Be	cm ²)	Contribution Factors pe		
Band Be	Co		or modulo location	
Band Be	Co		or modulo location	
			er module location	
n258			N	
n258		Back	Right	
ı n/5x	153	1	0.0018	
11230	161	0.0098	1	
Combined p	d psPD	0.505		
(mW/cm ²	cm ²)	0.525	0.436	
[PD_design_ta				
total uncorta			1	
l total uncerta	ertainty]	1	1	
(mW/cm ²	• -	1		
	cm ²)			
(mW/cm ²	cm²)	1 Contribution Factors pe	er module location	
(mW/cm ²	cm ²)		er module location	
(mW/cm²	cm²)	Contribution Factors pe		
(mW/cm ² Band Be	cm²)	Contribution Factors pe	N	
Band Be	Beam ID	Contribution Factors pe M Left	N Back	
Band Be	Beam ID Co	M Left 0.6294 0.0019	N Back 0.0031 0.9152	
Band Be	Beam ID 153 169 d psPD	Contribution Factors pe M Left 0.6294	N Back 0.0031	
Band Bend Bend Bend Bend Bend Bend Bend Be	153 169 d psPD cm²)	M Left 0.6294 0.0019	N Back 0.0031 0.9152	
Band Be n258 Combined p (mW/cm²	153 169 d psPD cm²)target +	M Left 0.6294 0.0019	N Back 0.0031 0.9152	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta	Beam ID 153 169 d psPD cm²) _target + ertainty]	M Left 0.6294 0.0019 0.220	N Back 0.0031 0.9152 0.440	
Band Be n258 Combined p (mW/cm²) [PD_design_ta	153 169 d psPD cm²)target + ertainty] cm²)	M Left 0.6294 0.0019 0.220	N Back 0.0031 0.9152 0.440	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm²	153 169 d psPD cm²)target + ertainty] cm²)	Contribution Factors per M Left 0.6294 0.0019 0.220	N Back 0.0031 0.9152 0.440	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm²	Beam ID 153 169 d psPD cm²) _target + ertainty] cm²) Co	M Left 0.6294 0.0019 0.220 1 Contribution Factors pe	N Back 0.0031 0.9152 0.440	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be	Beam ID 153 169 d psPD cm²) _target + ertainty] cm²) Co	M Left 0.6294 0.0019 0.220 1 Contribution Factors pe	N Back 0.0031 0.9152 0.440 1 er module location N	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm²	Beam ID 153 169 1d psPD cm²) _target + ertainty] cm²) Beam ID Co	M Left 0.6294 0.0019 0.220 1 Contribution Factors pe	N Back 0.0031 0.9152 0.440 1 er module location N Right	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be	Beam ID 153 169 d psPD cm²)target + ertainty] cm²) Beam ID 153 161	M Left 0.6294 0.0019 0.220 1 Contribution Factors pe M Left 0.6294 0.0082	N Back 0.0031 0.9152 0.440 1 er module location N Right 0.0018 1	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be n258 Combined p	Beam ID 153 169 d psPD cm²)target + ertainty] cm²) Beam ID 153 161 d psPD	M Left 0.6294 0.0019 0.220 1 Contribution Factors pe	N Back 0.0031 0.9152 0.440 1 er module location N Right 0.0018	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be n258	Beam ID 153 169 d psPD cm²)target + ertainty] cm²) Beam ID 153 161 d psPD cm²)	M Left 0.6294 0.0019 0.220 1 Contribution Factors pe M Left 0.6294 0.0082	N Back 0.0031 0.9152 0.440 1 er module location N Right 0.0018 1	
Band Be n258 Combined p (mW/cm² [PD_design_ta total uncerta (mW/cm² Band Be n258 Combined p (mW/cm²	Beam ID 153 169 16 ptd psPD 15 ptd psPD 1	M Left 0.6294 0.0019 0.220 1 Contribution Factors pe M Left 0.6294 0.0082	N Back 0.0031 0.9152 0.440 1 er module location N Right 0.0018 1	
(mW/cm² [PD_design_ta	cm ²)	0.525	0.436	

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
1 00 1217102011100100		Technical Manager
Document S/N:	DUT Type:	Page 23 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	9

Table 6-3 Combined psPD Band n261

		Contribution Factors per module location						
Dl	D ID							
Band	Beam ID	M	N					
	_	Back	Back					
n261	165	1	0.0028					
	31	0.0034	0.6381					
	ned psPD	0.546	0.258					
(mW	/cm²)	0.540	0.230					
[PD_desig	gn_target +							
total un	certainty]	1	1					
(mW	/cm²)							
		Contribution Factors	per module location					
Band	Beam ID	M	N					
		Back	Right					
	165	1	0.0038					
n261	158	0.0022	1					
Combir	ned psPD							
	//cm²)	0.546	0.682					
•	gn_target +							
	certainty]	1	1					
	/cm ²)	1	1					
(11100	/СП /							
		Contribution Factors per module location						
Rand	Ream ID	Contribution Factors	per module location					
Band	Beam ID	Contribution Factors M	per module location N					
Band	Beam ID							
	Beam ID	M	N					
Band n261		M Left	N Back					
n261	164	M Left 0.7214 0.0016	N Back 0.0034 0.6381					
n261 Combir	164 31	M Left 0.7214	N Back 0.0034					
n261 Combir (mW	164 31 ned psPD	M Left 0.7214 0.0016	N Back 0.0034 0.6381					
n261 Combir (mW [PD_design	164 31 ned psPD '/cm ²)	M Left 0.7214 0.0016	N Back 0.0034 0.6381					
n261 Combir (mW [PD_design total units)	164 31 ned psPD //cm²) gn_target + certainty]	M Left 0.7214 0.0016 0.339	N Back 0.0034 0.6381 0.258					
n261 Combir (mW [PD_design total units)	164 31 ned psPD //cm²) gn_target +	M Left 0.7214 0.0016 0.339	N Back 0.0034 0.6381 0.258					
n261 Combir (mW [PD_design total units)	164 31 ned psPD //cm²) gn_target + certainty]	M Left 0.7214 0.0016 0.339 1 Contribution Factors	N Back 0.0034 0.6381 0.258					
n261 Combir (mW [PD_design total united (mW)]	164 31 ned psPD //cm²) gn_target + certainty] //cm²)	M Left 0.7214 0.0016 0.339 1 Contribution Factors M	N Back 0.0034 0.6381 0.258 1 per module location N					
n261 Combir (mW [PD_designate total under (mW) Band	164 31 ned psPD //cm²) gn_target + certainty] //cm²) Beam ID	M Left 0.7214 0.0016 0.339 1 Contribution Factors M Left	N Back 0.0034 0.6381 0.258 1 per module location N Right					
n261 Combir (mW [PD_design total united (mW)]	164 31 ned psPD /cm²) gn_target + certainty] /cm²) Beam ID	M Left 0.7214 0.0016 0.339 1 Contribution Factors M Left 0.7214	N Back 0.0034 0.6381 0.258 1 per module location N Right 0.0029					
n261 Combir (mW [PD_design total und (mW) Band n261	164 31 ned psPD //cm²) gn_target + certainty] //cm²) Beam ID 164 158	M Left 0.7214 0.0016 0.339 1 Contribution Factors M Left 0.7214 0.0011	N Back 0.0034 0.6381 0.258 1 per module location N Right 0.0029 1					
n261 Combir (mW [PD_design total unit (mW) Band n261 Combir	164 31 ned psPD //cm²) gn_target + certainty] //cm²) Beam ID 164 158 ned psPD	M Left 0.7214 0.0016 0.339 1 Contribution Factors M Left 0.7214	N Back 0.0034 0.6381 0.258 1 per module location N Right 0.0029					
n261 Combir (mW) [PD_designate total under (mW) Band n261 Combir (mW)	164 31 ned psPD /cm²) gn_target + certainty] /cm²) Beam ID 164 158 ned psPD /cm²)	M Left 0.7214 0.0016 0.339 1 Contribution Factors M Left 0.7214 0.0011	N Back 0.0034 0.6381 0.258 1 per module location N Right 0.0029 1					
n261 Combir (mW) [PD_design total under the combir combir (mW) Combir (mW) [PD_design total under the combir combir (mW) [PD_design total under the combir combir (mW)	164 31 ned psPD //cm²) gn_target + certainty] //cm²) Beam ID 164 158 ned psPD //cm²) gn_target +	M Left 0.7214 0.0016 0.339 1 Contribution Factors M Left 0.7214 0.0011 0.339	N Back 0.0034 0.6381 0.258 1 per module location N Right 0.0029 1 0.681					
n261 Combir (mW) [PD_design total unit (mW) Band n261 Combir (mW) [PD_design total unit (mW)	164 31 ned psPD /cm²) gn_target + certainty] /cm²) Beam ID 164 158 ned psPD /cm²)	M Left 0.7214 0.0016 0.339 1 Contribution Factors M Left 0.7214 0.0011	N Back 0.0034 0.6381 0.258 1 per module location N Right 0.0029 1					

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 24 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	

Table 6-4 Combined psPD Band n260

Combined par D Band 11200				
		Contribution Factors per module location		
Band	Beam ID	M	N	
		Back	Right	
n260	154	1	0.001	
n260	41	0.0007	1	
Combined psPD (mW/cm²)		0.606	0.456	
[PD_design_target + total uncertainty] (mW/cm²)		1	1	

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	
Document S/N:	DUT Type:	Page 25 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	·g- =- 3. = 0

EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	N/A	N/A	N/A	WL25-1
-	WL40-1	Conducted Cable Set (40GHz)	N/A	N/A	N/A	WL40-1
Agilent	N9038A	MXE EMI Receiver	N/A	N/A	N/A	MY51210133
EMCO	3160-09	Small Horn (18 - 26.5GHz)	N/A	N/A	N/A	00135427
Emco	3116	Horn Antenna (18 - 40GHz)	N/A	N/A	N/A	9203-2178
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	N/A	N/A	N/A	102133
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	N/A	N/A	N/A	103200
SPEAG	EUmmWV4	EUmmWV4 Probe	05/19/2022	Annual	05/19/2023	9541
SPEAG	EUmmWV3	EUmmWV3 Probe	12/13/2021	Annual	12/13/2022	9407
SPEAG	EUmmWV4	EUmmWV4 Probe	02/24/2022	Annual	02/24/2023	9622
SPEAG	SM 003 100 AA	30GHz System Verification Ka- Band Source Antenna	12/07/2021	Annual	12/07/2022	1045
SPEAG	SM 003 100 AA	30GHz System Verification Ka- Band Source Antenna	02/22/2022	Annual	02/22/2023	1035
SPEAG	DAE4ip	Dasy Data Acquisition Electronics	11/11/2021	Annual	11/11/2022	1638
SPEAG	DAE4ip	Dasy Data Acquisition Electronics	01/21/2022	Annual	01/21/2023	1639
SPEAG	DAE4ip	Dasy Data Acquisition Electronics	06/15/2022	Annual	06/15/2023	1676
Agilent	N9030A	PXA Signal Analyzer (44GHz)	N/A	N/A	N/A	MY52350166
Emco	3115	Horn Antenna (1-18GHz)	N/A	N/A	N/A	9704-5182
Keysight Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	N/A	N/A	N/A	MY49430494
Rohde & Schwarz	180-442-KF	Horn (Small)	N/A	N/A	N/A	U157403-01
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	N/A	N/A	N/A	100342
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	N/A	N/A	N/A	102134
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	N/A	N/A	N/A	A051107
Virginia Diodes Inc	SAX252	Spectrum Analyzer Extension Module	N/A	N/A	N/A	SAX252
Virginia Diodes Inc	SAX253	Spectrum Analyzer Extension Module	N/A	N/A	N/A	SAX253
Virginia Diodes Inc	SAX254	Spectrum Analyzer Extension Module	N/A	N/A	N/A	SAX254

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 26 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	PENO 0

Note:

1. Each equipment item was used solely within its respective calibration period.

8 **MEASUREMENT UNCERTAINTIES**

a	b	С	d	e	f =	g
					c x f/e	
	Unc.	Prob.			u _i	
Uncertainty Component	(± dB)	Dist.	Div.	c _i	(± dB)	Vi
Measurement System					L	
Calibration	0.49	N	1	1	0.49	∞
Probe Correction	0.00	R	1.73	1	0.00	∞
Frequency Response	0.20	R	1.73	1	0.12	∞
Sensor Cross Coupling	0.00	R	1.73	1	0.00	∞
Isotropy	0.50	R	1.73	1	0.29	∞
Linearity	0.20	R	1.73	1	0.12	∞
Probe Scattering	0.00	R	1.73	1	0.00	∞
Probe Positioning offset	0.30	R	1.73	1	0.17	∞
Probe Positioning Repeatability	0.04	R	1.73	1	0.02	∞
Sensor MechanicalOffset	0.00	R	1.73	1	0.00	∞
Probe Spatial Resolution	0.00	R	1.73	1	0.00	∞
Field Impedence Dependance	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Drift	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Noise	0.04	R	1.73	1	0.02	∞
Measurement Area Truncation	0.00	R	1.73	1	0.00	∞
Data Acquisition	0.03	N	1	1	0.03	∞
Sampling	0.00	R	1.73	1	0.00	∞
Field Reconstruction	0.60	R	1.73	1	0.35	∞
Forward Transformation	0.00	R	1.73	1	0.00	∞
Power Density Scaling	0.00	R	1.73	1	0.00	∞
Spatial Averaging	0.10	R	1.73	1	0.06	∞
System Detection Limit	0.04	R	1.73	1	0.02	∞
Test Sample Related	•					
Probe Coupling with DUT	0.00	R	1.73	1	0.00	∞
Modulation Response	0.40	R	1.73	1	0.23	∞
Integration Time	0.00	R	1.73	1	0.00	∞
Response Time	0.00	R	1.73	1	0.00	∞
Device Holder Influence	0.10	R	1.73	1	0.06	∞
DUT alignment	0.00	R	1.73	1	0.00	∞
RF Ambient Conditions	0.04	R	1.73	1	0.02	∞
Ambient Reflections	0.04	R	1.73	1	0.02	∞
Immunity/Secondary Reception	0.00	R	1.73	1	0.00	∞
Drift of DUT	0.21	R	1.73	1	0.12	∞
Combined Standard Uncertainty (k=1)	,	RSS	•		0.76	∞
Expanded Uncertainty k=2			1.52			
(95% CONFIDENCE LEVEL)						

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager	
Document S/N:	DUT Type:	Page 27 of 29	
1M2209010098-01.A3L (Rev2)	Portable Handset	1 490 27 01 20	

9 CONCLUSION

9.1 Measurement Conclusion

The power density measurements and total exposure ratio analysis indicate that the DUT complies with the RF radiation exposure limits of the FCC, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the RF Exposure and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 28 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	PENO 0

10 REFERENCES

- [1] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [2] IEC TR 63170:2018, Measurement Procedure for the Evaluation of Power Density Related to Human Exposure to Radiofrequency Fields from Wireless Communication Devices Operating between 6 GHz and 100 GHz
- [3] IEC TR 62630: 2010, Guidance for Evaluating Exposure from Multiple Electromagnetic Sources
- [4] K. Pokovic, T. Schmid, J. Frohlich, and N. Kuster. Novel Probes and Evaluation Procedures to Assess Field Magnitude and Polarization. IEEE Transactions on Electromagnetic Compatibility 42(2): 240 -244, 2000
- [5] R. W. Gerchberg and W. O. Saxton. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik 35(2): 237 246, 1972
- [6] A. P. Anderson and S. Sali. New Possibilities for Phaseless Microwave Diagnostics. Part 1: Error Reduction Techniques. IEE Proceedings H – Microwaves, Antennas and Propagation 132(5): 290 – 298, 1985
- [7] FCC KDB 865664 D02 v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz. Federal Communications Commission Office of Engineering and Technology, Laboratory Division.
- [8] FCC KDB 447498 D04 v01: RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices. Federal Communications Commission – Office of Engineering and Technology, Laboratory Division.
- [9] November 2017 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [10] October 2018 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [11] April 2019 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [12] November 2019 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [13] SPEAG DASY6 System Handbook (September 2019)

FCC ID: A3LSMS918U	NEAR-FIELD POWER DENSITY EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 29 of 29
1M2209010098-01.A3L (Rev2)	Portable Handset	. ago 20 0. 20