

Element Suwon

13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954 South Korea Tel. 031.660.7319 / Fax 031.660.7318 http://www.element.com

PART 22 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

9/8/2022 – 11/14/2022 **Test Report Issue Date:** 11/15/2022 **Test Site/Location:** Element Lab. Yongin-Si, Gyeonggi-do, South Korea **Test Report Serial No.:** 1M2209010098-06.A3L

FCC ID:

A3LSMS918U

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Applicant Name:

Certification SM-S918U SM-S918U1 Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 22 ANSI C63.26-2015, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Prepared by

N

Reviewed by

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dega 1 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 1 of 101
© 2022 ELEMENT	·		V3.0 1/4/2022

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	Software and Firmware	5
	2.5	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEAS	SUREMENT UNCERTAINTY	7
5.0	TEST	EQUIPMENT CALIBRATION DATA	8
6.0	SAMF	PLE CALCULATIONS	9
7.0	TEST	RESULTS	10
	7.1	Summary	10
	7.2	Conducted Power Output Data	11
	7.3	Occupied Bandwidth	14
	7.4	Spurious and Harmonic Emissions at Antenna Terminal	28
	7.5	Band Edge Emissions at Antenna Terminal	54
	7.6	Radiated Power (ERP)	67
	7.7	Radiated Spurious Emissions Measurements	71
	7.8	Frequency Stability / Temperature Variation	96
8.0	CONC	CLUSION	101

FCC ID: A3LSMS918U	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Page 2 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Fage 2 01 101	
© 2022 ELEMENT		•	V3.0 1/4/2022	

PART 22 MEASUREMENT REPORT

				EF	RP	EIRP		Emission
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	· · · · Max Power	Max. Power [dBm]	Max. Power [W]	Max. Power [dBm]	Designator
GSM/GPRS	N/A	GMSK	824.2 - 848.8	1.023	30.10	1.679	32.25	246KGXW
EDGE	N/A	8-PSK	824.2 - 848.8	0.324	25.10	0.531	27.25	240KG7W
WCDMA	N/A	Spread Spectrum	826.4 - 846.6	0.129	21.12	0.212	23.27	4M16F9W
	15MHz (Band	QPSK	831.5 - 841.5	0.141	21.51	0.232	23.66	13M5G7D
	26 only)	16QAM	831.5 - 841.5	0.110	20.43	0.181	22.58	13M5W7D
	10 MHz	QPSK	829.0 - 844.0	0.155	21.89	0.254	24.04	9M02G7D
		16QAM	829.0 - 844.0	0.117	20.69	0.192	22.84	9M04W7D
LTE Band 26/5	5 MHz	QPSK	826.5 - 846.5	0.147	21.67	0.241	23.82	4M54G7D
LIE Band 26/5	5 MHZ	16QAM	826.5 - 846.5	0.121	20.84	0.199	22.99	4M55W7D
	0.100	QPSK	825.5 - 847.5	0.149	21.72	0.244	23.87	2M73G7D
	3 MHz	16QAM	825.5 - 847.5	0.116	20.66	0.191	22.81	2M73W7D
	1.4 MHz	QPSK	824.7 - 848.3	0.146	21.65	0.240	23.80	1M11G7D
	1.4 MHZ	16QAM	824.7 - 848.3	0.116	20.63	0.190	22.78	1M11W7D
		π/2 BPSK	834.0 - 839.0	0.128	21.07	0.210	23.22	17M9G7D
	20 MHz	QPSK	834.0 - 839.0	0.118	20.73	0.194	22.88	19M0G7D
		16QAM	834.0 - 839.0	0.099	19.96	0.163	22.11	18M9W7D
		π/2 BPSK	831.5 - 841.5	0.128	21.06	0.209	23.21	13M5G7D
	15 MHz	QPSK	831.5 - 841.5	0.123	20.91	0.202	23.06	14M2G7D
NB Band p2C/E	NB Dand = 00/5	16QAM	831.5 - 841.5	0.100	20.01	0.165	22.16	14M2W7D
NR Band n26/5		π/2 BPSK	829.0 - 844.0	0.125	20.95	0.204	23.10	8M95G7D
	10 MHz	QPSK	829.0 - 844.0	0.117	20.70	0.193	22.85	9M34G7D
		16QAM	829.0 - 844.0	0.102	20.06	0.167	22.21	9M35W7D
		π/2 BPSK	826.5 - 846.5	0.124	20.93	0.203	23.08	4M54G7D
	5 MHz	QPSK	826.5 - 846.5	0.116	20.63	0.190	22.78	4M54G7D
		16QAM	826.5 - 846.5	0.101	20.03	0.165	22.18	4M54W7D

FCC ID: A3LSMS918U	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Daga 2 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 3 of 101
© 2022 ELEMENT	•		V3.0 1/4/2022

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element Suwon Laboratory located at 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954, South Korea. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology Suwon, Ltd. located in Yongin-si, Gyeonggi-do, 16954, South Korea.

- Element Materials Technology Suwon, Ltd. is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation(A2LA) with Certificate number 2041.04 for Specific Absorption Rate (SAR), and Electromagnetic Compatibility (EMC) & Telecommunications testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Materials Technology Suwon, Ltd. facility is accredited, designated, and recognized in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
 - Designation Number / CABID: KR0169
 - Test Firm Registration Number of FCC: 417945
 - Test Firm Registration Number of ISED: 26168

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 4 of 101	
© 2022 ELEMENT			V3.0 1/4/2022	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMS918U**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 22 and RSS-132.

Test Device Serial No.: 0130M, 0187M, 0131M , 0167M, 1616M, 0430M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1 and FR2), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, UWB, Wireless Power Transfer

This device uses a tuner circuit that dynamically updates the antenna impedance parameters to optimize antenna performance for certain bands and modes of operation. The tuner for this device was set to simulate a "free space" condition where the transmit antenna is matched to the medium into which it is transmitting and, thus, the power is at its maximum level.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 Software and Firmware

Testing was performed on device(s) using software/firmware version S918USQU0AVJH installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	Fest Dates: EUT Type:	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 5 of 101
© 2022 ELEMENT	-	·	V3.0 1/4/2022

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI C63.26-2015. For emissions below 1GHz, a half-wave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi];

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to P_{g [dBm]} – cable loss [dB].

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

$$\begin{split} & \mathsf{E}_{[\mathsf{dB}\mu\mathsf{V}/\mathsf{m}]} = \mathsf{Measured} \ \mathsf{amplitude} \ \mathsf{level}_{[\mathsf{dB}\mathsf{m}]} + 107 + \mathsf{Cable} \ \mathsf{Loss}_{[\mathsf{dB}]} + \mathsf{Antenna} \ \mathsf{Factor}_{[\mathsf{dB}/\mathsf{m}]} \\ & \mathsf{And} \\ & \mathsf{EIRP}_{[\mathsf{dB}\mathsf{m}]} = \mathsf{E}_{[\mathsf{dB}\mu\mathsf{V}/\mathsf{m}]} + 20\mathsf{log}\mathsf{D} - 104.8; \ \mathsf{where} \ \mathsf{D} \ \mathsf{is} \ \mathsf{the} \ \mathsf{measurement} \ \mathsf{distance} \ \mathsf{in} \ \mathsf{meters}. \end{split}$$

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: A3LSMS918U	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 6 of 101
© 2022 ELEMENT	·		V3.0 1/4/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 7 of 101
© 2022 ELEMENT	•		V3.0 1/4/2022

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
AAMCS	UDC	Directional Coupler	2022-07-05	Annual	2023-07-04	N/A
Agilent	N9030A	PXA Signal Analyzer	2022-07-04	Annual	2023-07-03	MY49432391
Anritsu	\$820E	Cable and Antenna Analyzer	2022-07-06	Annual	2023-07-05	1839097
Anritsu	MA24106A	USB Power Sensor	2022-07-06	Annual	2023-07-05	1244512
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	2022-10-21	Biennial	2024-10-20	10160045
Com-Power	PAM-118A	Preamplifier	2022-07-06	Annual	2023-07-05	551042
Espec	SH-242	Environmental Chamber	2022-08-26	Annual	2023-08-25	93011064
Fairview Microwave	FM2CP1122-10	Coupler	2022-07-06	Annual	2023-07-05	1946
Keysight Technologies	N9030B	MXA Signal Analyzer	2022-05-10	Annual	2023-05-19	MY57142018
AAMCS	UDC	Directional Coupler	2022-07-05	Annual	2022-07-04	N/A
Mini-Circuits	BW-N10W5+	Attenuator	2022-05-09	Annual	2023-05-08	1607
Mini-Circuits	BW-N10W5+	Attenuator	2022-05-09	Annual	2023-05-08	1607
Rohde & Schwarz	TS-PR18	Preamplifier	2022-07-06	Annual	2023-07-05	102141
Rohde & Schwarz	SMB100A03	Signal Generator	2022-01-18	Annual	2023-01-17	182487
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2022-02-18	Annual	2023-02-17	131453
Rohde & Schwarz	ESW	EMI Test Receiver	2022-07-04	Annual	2023-07-03	101761
Rohde & Schwarz	FSW43	Signal & Spectrum Analyzer	2022-01-18	Annual	2023-01-17	101250
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2022-02-18	Annual	2023-02-17	102131
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	2022-03-28	Annual	2023-03-27	102151
Schwarzbeck	VULB9162	Broadband TRILOG Antenna	2021-07-13	Biennial	2023-07-12	9162-217
Schwarzbeck	UHA9105	Dipole Antenna	2022-07-19	Biennial	2024-07-18	91052522
Sunol	DRH-118	Horn Antenna	2021-07-14	Biennial	2023-07-13	A102416-1
Sunol	DRH-118	Horn Antenna	2021-01-12	Biennial	2023-01-11	A060215

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 8 of 101
© 2022 ELEMENT	•		V3.0 1/4/2022

6.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHzG = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 250KG7W EDGE BW = 250 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W WCDMA BW = 4.16 MHz F = Frequency Modulation

9 = Composite Digital Info W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 8M62G7D LTE BW = 8.62 MHz

G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 9 of 101
© 2022 ELEMENT			V3.0 1/4/2022

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMS918U
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	GSM/GPRS/WCDMA/NR/LTE

Test Condition	Test Description	FCC Part Section(s)	RSS Section(s)	Test Limit	Test Result	Reference
	Transmitter Conducted Output Power	2.1046(a), 2.1046(c)	RSS-Gen(6.12)	N/A	PASS	Section 7.2
ED	Occupied Bandwidth	2.1049(h)	RSS-Gen(6.7)	N/A	PASS	Section 7.3
CONDUCTED	Conducted Band Edge / Spurious Emissions	2.1051, 22.917(a)	RSS-Gen(6.13), RSS-132(5.5)	≥ 43 + 10 log (P[Watts]) dB of attenuation below transmitter power	PASS	Sections 7.4, 7.5
CON	Frequency Stability	2.1055, 22.355	RSS-Gen(6.11), RSS-132(5.3)	The carrier frequency of the transmitter must be maintained within the 2.5ppm	PASS	Section 7.8
	Uplink Carrier Aggregation	22.917(a), 27.53(h)	RSS-199(4.5)	≥ 43 + 10 log (P[Watts]) dB of attenuation below transmitter power	PASS	Section 7.5
RADIATED	Effective Radiated Power / Equivalent Isotropic Radiated Power	22.913(a)(5)	RSS-Gen(6.12), RSS-132(5.4)	< 7 Watts max. ERP	PASS	Section 7.6
RADI	Radiated Spurious Emissions	2.1053, 22.917(a)	RSS-Gen(7.3), RSS-132(5.6)	> 43 + 10 log10 (P[Watts]) for all out-of-band emissions	PASS	Section 7.7

 Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool v1.0.

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 10 of 101
© 2022 ELEMENT	•		V3.0 1/4/2022

7.2 Conducted Power Output Data

Test Overview

All emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2

Test Settings

- 1. Detector = RMS
- 2. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 3. Sweep time = auto couple
- 4. The trace was allowed to stabilize
- 5. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

- 1. Uplink carrier aggregation is only supported in this EUT while operating in Power Class 3.
- 2. Conducted power measurements were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 3. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz.
- 4. All other conducted power measurements are contained in the RF exposure report for this filing.

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 44 af 404
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 11 of 101
© 2022 ELEMENT	•		V3.0 1/4/2022

Power State	Band	Bandwidth (PCC + SCC)	PCC							ULCA TX.																						
			Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Power [dBm]																			
				20450	829.0	1	49		20549	838.9	1	0	24.82																			
		10MHz + 10MHz	QPSK	20475	831.5	1	49	QPSK	20574	841.4	1	0	24.69																			
				20600	844.0	1	0		20501	834.1	1	49	24.62																			
Max	LTE B5		35 10MHz + 10MHz	QPSK	20450	829	50	0	QPSK	20549	838.9	50	0	22.73																		
																							16-QAM	20450	829	50	0	16-QAM	20549	838.9	50	0
			64-QAM	20450	829	50	0	64-QAM	20549	838.9	50	0	21.73																			
			256-QAM	20450	829	50	0	256-QAM	20549	838.9	50	0	19.68																			

Table 7-2. Conducted Power Output Data (ULCA LTE Band 5)

	NR (SCS 15kHz)								LTE			NR	LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Conducted Power [dBm]	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	100/0					QPSK	100/0	19.56	22.55	24.32
				QPSK	100/0					QPSK	1/50	18.64	22.84	24.24
n5	20	Mid	836.5	QPSK	1/53	B2	20	Mid	1880	QPSK	100/0	19.24	22.53	24.20
				QPSK	1/53					QPSK	1/50	18.56	22.83	24.21
				16Q	1/53					16Q	1/50	19.82	22.80	24.57

Table 7-3. Conducted Max Powers (EN-DC Combo NR n5 – LTE B2 [ANT A])

NR Band (MHz) Bandwidth (MHz) NR Channel NR (MHz) NR BBH/Offset LTE Bandwidth (MHz) Frequency Channel Mod. LTE BBH/Offset Power (BBm) Power (dBm) Power (d			NR (S	CS 15kHz)						LTE			NR	LTE	EN-DC
n5 20 Mid 836.5 QPSK 100/0 QPSK 1/53 B30 10 Mid 210 QPSK 1/25 19.71 22.35 24.24 QPSK 50/0 20.51 21.34 23.96 QPSK 1/25 19.31 22.42 24.15		Bandwidth		Frequency	Mod.			Bandwidth		Frequency	Mod.	LTE	Power	Power	
n5 20 Mid 836.5 QPSK 1/53 B30 10 Mid 2310 QPSK 50/0 20.51 21.34 23.96 QPSK 1/53 P30 P50 QPSK 1/25 19.31 22.42 24.15					QPSK	100/0					QPSK	50/0	21.01	21.34	24.19
QPSK 1/53 QPSK 1/25 19.31 22.42 24.15					QPSK	100/0					QPSK	1/25	19.71	22.35	24.24
	n5	20	Mid	836.5	QPSK	1/53	B30	10	Mid	2310	QPSK	50/0	20.51	21.34	23.96
					QPSK	1/53					QPSK	1/25	19.31	22.42	24.15
16Q 1/53 16Q 1/25 21.15 21.89 24.55					16Q	1/53					16Q	1/25	21.15	21.89	24.55

Table 7-4. Conducted Max Powers (EN-DC Combo NR n5 – LTE B30 [ANT A])

		NR (S	CS 15kHz)						LTE			NR	LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Power	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	100/0					QPSK	100/0	21.32	20.92	24.13
				QPSK	100/0					QPSK	1/50	21.89	21.32	24.62
n5	20	Mid	836.5	QPSK	1/53	B48	20	Mid	3625	QPSK	100/0	24.63	20.93	26.17
				QPSK	1/53					QPSK	1/50	24.48	21.78	26.35
				16Q	1/53					16Q	1/50	23.55	21.13	25.52

Table 7-5. Conducted Max Powers (EN-DC Combo NR n5 - LTE B48 [ANT G])

	· · · · · · · · · · · · · · · · · · ·	NR (S	CS 15kHz)							NR	LTE	EN-DC		
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Conducted Power [dBm]	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	100/0					QPSK	100/0	20.48	22.30	24.49
				QPSK	100/0					QPSK	1/50	19.50	22.75	24.43
n5	20	Mid	836.5	QPSK	1/53	B66	20	Mid	1745	QPSK	100/0	20.28	22.34	24.44
			00010	QPSK	1/53					QPSK	1/50	19.29	22.90	24.47
				16Q	1/53	1				16Q	1/50	19.04	22.77	24.30

Table 7-6. Conducted Max Powers (EN-DC Combo NR n5 - LTE B66 [ANT F])

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 12 of 101
© 2022 ELEMENT			V3.0 1/4/2022

		NR (S	CS 15kHz)				•		LTE			NR	LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Conducted Power [dBm]	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	100/0					QPSK	50/0	21.35	21.16	24.27
	n5 20 Mi		836.5	QPSK	100/0]	10	Mid	2310	QPSK	1/25	20.07	22.19	24.27
n5		Mid		QPSK	1/53	B30				QPSK	50/0	21.09	21.13	24.12
				QPSK	1/53					QPSK	1/25	19.85	22.38	24.31
				16Q	1/53	1				16Q	1/25	21.71	21.53	24.63

Table 7-7. Conducted Max Powers (EN-DC Combo NR 5 – LTE B30 [ANT F])

FCC ID: A3LSMS918U	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Fage 13 01 101
© 2022 ELEMENT	V3.0 1/4/2022		

7.3 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 14 of 101		
© 2022 ELEMENT					

LTE Band 26/5

Keysight Spectrum Ar	nalyzer - Occu	ipied BW											
KALT RF	50 Ω	AC	CORRE	C		NSE:INT req: 836.500	000 MHz	1	ALIGN AUTO	01:43:05 P	M Sep 08, 2022	Trac	e/Detector
				••	. Trig: Fre	e Run		ld:	100/100				
,			#IFGai	n:Low	#Atten: 3	36 dB				Radio Dev	ice: BTS		
_													
10 dB/div R	ef 40.00	dBm											
30.0													
20.0						1 100 m m 4 0 mm m							Clear Write
10.0			(and a start of the start						
0.00			[l					
-10.0			1					١	L				Average
-20.0	and the second	harden	JM						Multuran	W HALLAND			-
-30.0											and the second second		
-40.0													Max Hold
-50.0													Max Hold
Center 836.50											7.50 MHz		
ResBW 360 k	HZ				#V	3W 1.2 Ⅳ	IHZ			SWe	ep 1ms		Min Hold
Occupied	Bandy	width				Total P	ower		32.8	dBm			
Cocupica	Barra			9 MI	1								Detector
		15.	IJΖ	9 IVIT	12								Detector Peak►
Transmit F	req Erro	or	-2	1.673 k	(Hz	% of O	BW Pov	ve	er 99	.00 %		Auto	Man
x dB Bandv	vidth		1	5.09 M	IHz	x dB			-26.	00 dB			
									201				
MSG								_	STATUS				
				D				_		'			

Plot 7-1. Occupied Bandwidth Plot (LTE Band 26 - 15MHz QPSK - Full RB)

Plot 7-2. Occupied Bandwidth Plot (LTE Band 26 - 15MHz 16-QAM - Full RB)

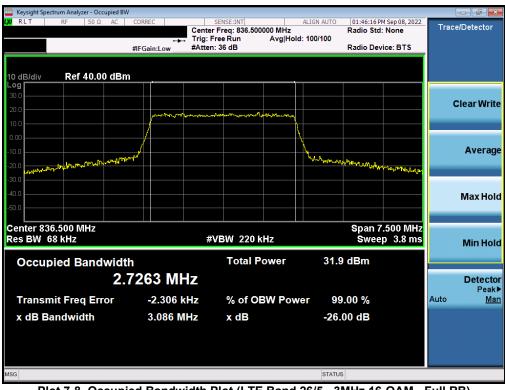
FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 15 of 101		
© 2022 ELEMENT V3.0.1/4/20					

Plot 7-3. Occupied Bandwidth Plot (LTE Band 26/5 - 10MHz QPSK - Full RB)

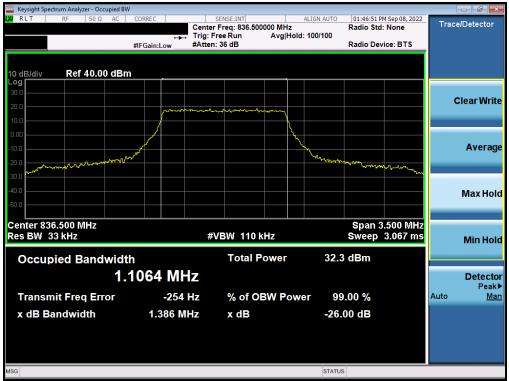
Plot 7-4. Occupied Bandwidth Plot (LTE Band 26/5 - 10MHz 16-QAM - Full RB)

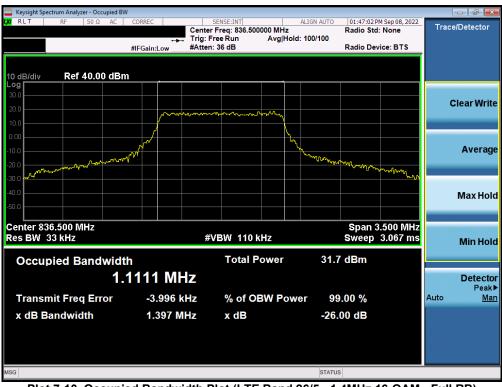
FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 16 of 101
© 2022 ELEMENT	V3.0 1/4/2022		

Plot 7-5. Occupied Bandwidth Plot (LTE Band 26/5 - 5MHz QPSK - Full RB)


Plot 7-6. Occupied Bandwidth Plot (LTE Band 26/5 - 5MHz 16-QAM - Full RB)

FCC ID: A3LSMS918U		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 17 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 17 of 101	
© 2022 ELEMENT				


Plot 7-7. Occupied Bandwidth Plot (LTE Band 26/5 - 3MHz QPSK - Full RB)


Plot 7-8. Occupied Bandwidth Plot (LTE Band 26/5 - 3MHz 16-QAM - Full RB)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 19 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 18 of 101		
2022 ELEMENT V3.0 1/4/2022					

Plot 7-9. Occupied Bandwidth Plot (LTE Band 26/5 - 1.4MHz QPSK - Full RB)

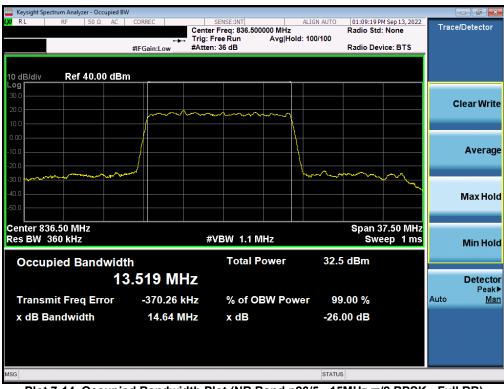
Plot 7-10. Occupied Bandwidth Plot (LTE Band 26/5 - 1.4MHz 16-QAM - Full RB)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 19 of 101		
© 2022 ELEMENT	V3.0 1/4/2022				

NR Band n26/5

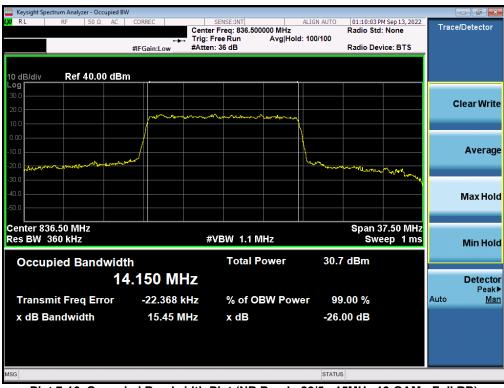
Keysight Spectrum Analyzer - Occupied					
LXIRL RF 50Ω AC		SENSE:INT A nter Freq: 836.500000 MHz		0 PM Sep 13, 2022	Trace/Detector
	🛶 Trig	: Free Run Avg Hold:>	>100/100		
	#IFGain:Low #At	ten: 36 dB	Radio I	Device: BTS	
10 dB/div Ref 40.00 dE	3m				
30.0					
20.0					Clear Wri
10.0	· · · · · · · · · · · · · · · · ·	and the second			
0.00					
-10.0					Avera
-20.0	/				
-30.0 January Community	کمسریها	¥	have been and the		
-40.0				harrowsen	Max Ho
-50.0					Muxino
Center 836.50 MHz Res BW 470 kHz		#VBW 1.5 MHz		n 50.00 MHz weep 1 ms	
				noop into	Min Ho
Occupied Bandwi	dth	Total Power	32.7 dBm		
1	7.936 MHz				Detect
			00 00 M		Peal
Transmit Freq Error	-537.82 kHz	% of OBW Powe	r 99.00 %		Auto <u>M</u>
x dB Bandwidth	19.13 MHz	x dB	-26.00 dB		
MSG			STATUS		
	1. I.B I. 1.141	Dist (ND Band n2)	0.000		

Plot 7-11. Occupied Bandwidth Plot (NR Band n26/5 - 20MHz π/2 BPSK - Full RB)


Plot 7-12. Occupied Bandwidth Plot (NR Band n26/5 - 20MHz QPSK - Full RB)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 20 of 101		
© 2022 FLEMENT V3					

Plot 7-13. Occupied Bandwidth Plot (NR Band n26/5 - 20MHz 16-QAM - Full RB)


Plot 7-14. Occupied Bandwidth Plot (NR Band n26/5 - 15MHz π/2 BPSK - Full RB)

FCC ID: A3LSMS918U		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 21 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 21 of 101	
© 2022 ELEMENT				

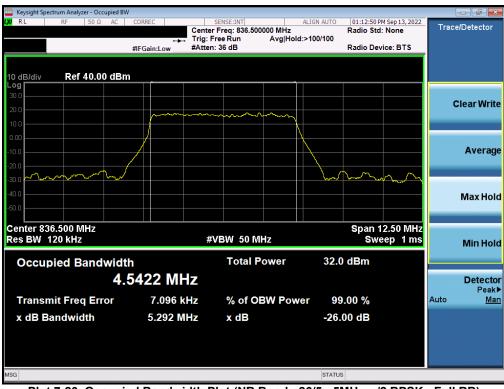
Plot 7-15. Occupied Bandwidth Plot (NR Band n26/5 - 15MHz QPSK - Full RB)


Plot 7-16. Occupied Bandwidth Plot (NR Band n26/5 - 15MHz 16-QAM - Full RB)

FCC ID: A3LSMS918U		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 22 of 101	
© 2022 ELEMENT				

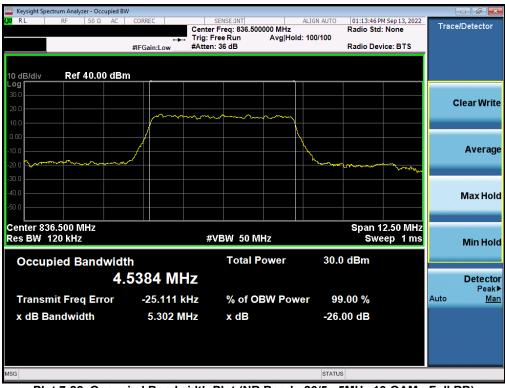
🚾 Keysight Spectrum Analyzer - Occupied B\							
LXI RE 50 Ω AC	CORREC	SENSE:INT ter Freq: 836.500000 MH	ALIGN AUTO	01:10:50 PM S Radio Std: N		Trace/D	etector
	Trig		Hold:>100/100	Radio Device			
10 dB/div Ref 40.00 dBr	n		_				
20.0						Cle	ar Write
10.0							
-10.0							Average
-30.0					~~~~		
-50.0						N	lax Hold
Center 836.50 MHz Res BW 240 kHz		#VBW 750 kHz		Span 25. Swee	.00 MHz p 1 ms	P	Ain Hole
Occupied Bandwidt	h	Total Power	32.7	/ dBm			_
8.	9527 MHz					I	Detecto Peak
Transmit Freq Error	-170.36 kHz	% of OBW P	ower 99	0.00 %		Auto	Mai
x dB Bandwidth	9.752 MHz	x dB	-26.	00 dB			
MSG			STATU	0			

Plot 7-17. Occupied Bandwidth Plot (NR Band n26/5 - 10MHz π/2 BPSK - Full RB)


Plot 7-18. Occupied Bandwidth Plot (NR Band n26/5 - 10MHz QPSK - Full RB)

FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 23 of 101
© 2022 ELEMENT	•		V3.0 1/4/2022

Plot 7-19. Occupied Bandwidth Plot (NR Band n26/5 - 10MHz 16-QAM - Full RB)


Plot 7-20. Occupied Bandwidth Plot (NR Band n26/5 - 5MHz π/2 BPSK - Full RB)

FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 24 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 24 of 101
© 2022 ELEMENT			V3.0 1/4/2022

Keysight Spectrum Analyzer - Occupied B	W				
KL RF 50Ω AC	CORREC	SENSE:INT r Freq: 836.500000 MHz	ALIGN AUTO 01:13:22 F Radio Sto	M Sep 13, 2022	Trace/Detector
	Trig: F	Free Run Avg Hold	: 100/100		
	#IFGain:Low #Atter	n: 36 dB	Radio De	vice: BTS	
10 dB/div Ref 40.00 dB	n				
30.0					
20.0					Clear Write
		······			
10.0					
0.00					
-10.0	<i>f</i>				Average
-20.0			mannen	mann	
-30.0					
-40.0					Max Hold
-50.0					
Center 836.500 MHz Res BW 120 kHz	#	VBW 50 MHz		12.50 MHz eep 1 ms	
Res BW 120 KH2	"		500	eep mis	Min Hold
Occupied Bandwid	th	Total Power	30.0 dBm		
	.5397 MHz				Detector
4.	5597 WINZ				Detector Peak►
Transmit Freq Error	740 Hz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	5.396 MHz	x dB	-26.00 dB		
	3.390 MITZ	A UD	-20.00 uB		
MSG			STATUS		

Plot 7-21. Occupied Bandwidth Plot (NR Band n26/5 - 5MHz QPSK - Full RB)

Plot 7-22. Occupied Bandwidth Plot (NR Band n26/5 - 5MHz 16-QAM - Full RB)

FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 05 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 25 of 101
© 2022 ELEMENT	•	·	V3.0 1/4/2022

GPRS Cell



Plot 7-24. Occupied Bandwidth Plot (EDGE, Ch. 190)

FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dego 26 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 26 of 101
© 2022 ELEMENT	•	•	V3.0 1/4/2022

WCDMA Cell

Plot 7-25. Occupied Bandwidth Plot (WCDMA, Ch. 4183)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 27 of 101		
© 2022 ELEMENT	•		V3.0 1/4/2022		

7.4 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.4

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

- 1. Per Part 22 and RSS-132, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

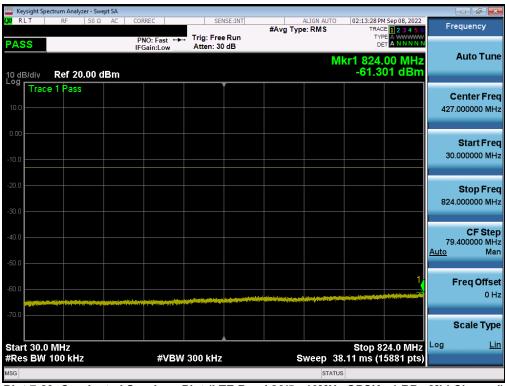
FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 28 of 101
© 2022 ELEMENT	•	·	V3.0 1/4/2022

LTE Band 26/5

	ectrum Analyz												
RLT	RF	50Ω A	C CO	RREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Sep 08, 2022	Frequ	ency
PASS			P	'NO: Fast Gain:Low	••••	Trig: Fre Atten: 3				TY D		_	
0 dB/div	Ref 20	.00 dBr	n						M	kr1 819 -61.1	.40 MHz 64 dBm	Au	to Tun
.og Trac	e 1 Pass						Ĭ					Cent	ter Fre
10.0												426.500	000 MH
0.00													
													art Fre 000 M⊦
10.0					=							00.000	000 111
20.0												St	op Fre
30.0												823.000	000 MH
40.0												79.300	
50.0												<u>Auto</u>	Ma
~~~~											1	Free	qOffs
60.0													0 H
70.0												- Eog	
													le Typ
tart 30.0 Res BW	MHz 100 kHz			#V	BW :	300 kHz		8	weep 38	Stop 8 06 ms (*	23.0 MHz 5861 pts)	Log	L
SG									STATUS	· · · ·			


Plot 7-26. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - Low Channel)

	RF 50 Ω AC	PNO: Fast ↔	- Trig: Free Run Atten: 30 dB	ALIGN AUTO #Avg Type: RMS	02:12:39 PM Sep 08, 2022 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	Frequency
0 dB/div R	ef 20.00 dBm			М	kr1 876.65 MHz -62.18 dBm	Auto Tune
10.0	Pass					Center Free 924.500000 MH
10.0						Start Free 849.000000 MH
30.0						<b>Stop Fre</b> 1.000000000 GH
40.0						CF Step 15.100000 MH <u>Auto</u> Ma
60.0	and - and (a)	۹۳۹, Laine (1) - 144 / 162, 193, 197, 197, 198, 197, 197, 197, 197, 197, 197, 197, 197	n fan de twee gester fan de ster gester fan gester fan gester	typeriors generation given also all many samples and	รู้สร้างและสามารถสามารถ เป็นสร้างและสามารถเลือกเหตุกระบบเลือกเหตุกระบบเลือกเหตุกระบบเลือกเหตุกระบบเลือกเหตุกระบบเลือกเหตุกระบบเลือกเหตุ	Freq Offse 0 H
70.0						Scale Type
Start 0.84900 #Res BW 100		#VBW	/ 300 kHz	Sweep 7	Stop 1.00000 GHz .248 ms (3021 pts)	Log <u>Lir</u>
	Conducted	Spurious	Plot (LTE Ban	d 26/5 - 10MHz		Low Channe


FCC ID: A3LSMS918U		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 29 of 101	
© 2022 ELEMENT			1/2 0 1/4/2022	

Г





Plot 7-28. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - Low Channel)




Plot 7-29. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - Mid Channel)

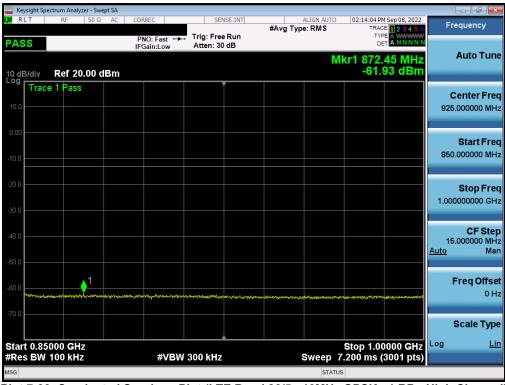
FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 30 of 101
© 2022 ELEMENT	-		V3.0 1/4/2022



	Seysight Spectrum Analyzer - Swept SA													
<b>l,XI</b> R	LT	RF	50 Ω	AC	CORREC		SEI	NSE:INT	#Avg Typ	ALIGN AUTO		4 Sep 08, 2022	Fr	equency
PAS	SS				PNO: Fa	ast ↔ .ow	Trig: Free Atten: 30				TYP			
10 dl Log	B/div	Ref 2	0.00 d	Bm						М	kr1 849. -62.	15 MHz 12 dBm		Auto Tune
208	Trace	e 1 Pase	;										c	enter Freq
10.0	<u> </u>												924	.500000 MHz
0.00														
													840	Start Freq .000000 MHz
-10.0													849	.000000 14112
-20.0	<u> </u>													Stop Freq
-30.0													1.000	0000000 GHz
-30.0														
-40.0	<u> </u>												15	CF Step .100000 MHz
-50.0													<u>Auto</u>	Man
	1													req Offset
-60.0	-	وتدونو ماهما مطيعات	aling a faith of the	u		*****	estate distantia	9-10-10-14-14-14	and the state of the		*****	-		0 Hz
-70.0														
														Scale Type
		900 GH									Stop 1.00	0000 GHz	Log	<u>Lin</u>
#Re	SBW	100 kH	Z		7	FABM	300 kHz			Sweep 7	7.248 ms (	3021 pts)		
MSG										STATU	3			

Plot 7-30. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - Mid Channel)




Plot 7-31. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - Mid Channel)

FCC ID: A3LSMS918U		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 21 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 31 of 101	
© 2022 ELEMENT	•		V3.0 1/4/2022	



	pectrum Analyz											_	
X RLT	RF	50 Ω	AC	CORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Sep 08, 2022	Freq	uency
PASS				PNO: F IFGain:l	ast ⊶⊶ ∟ow	Trig: Fre Atten: 3		"a)P		TY			
10 dB/div	Ref 20	.00 dl	Bm						Μ	kr1 795 -61.1	.85 MHz 28 dBm	A	uto Tune
- ^{og} Tra	ce 1 Pass						Ĭ					Ce	nter Fred
10.0												427.00	00000 MH;
0.00												s	start Free
10.0												30.00	00000 MH:
20.0												S	Stop Free
-30.0												824.00	00000 MH
40.0													CF Step
-50.0												79.40 <u>Auto</u>	00000 MH: Mar
											▲1	Fr	eq Offse
-60.0						a di su di stata da serie A (na facetta da facilita d							0 Hz
70.0												Sc	ale Type
Start 30.										Stop 8	24.0 MHz	Log	Lir
	100 kHz				#VBW	300 kHz		s			5881 pts)		
ISG									STATUS	6			

Plot 7-32. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - High Channel)



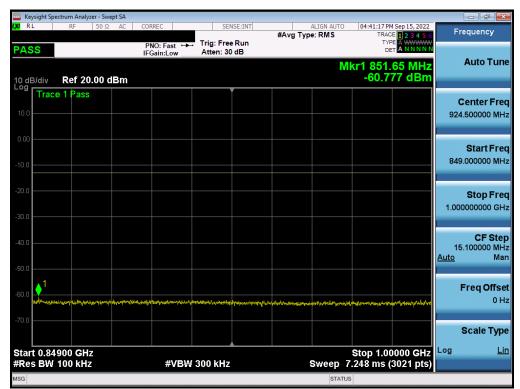
Plot 7-33. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - High Channel)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 101			
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 32 of 101			
© 2022 ELEMENT	<u>.</u>	·	V3.0 1/4/2022			



			lyzer - Swe											
<b>lxi</b> Ri	T	RF	50 Ω	AC	CORREC			SENSE:INT	#Avg Typ	ALIGN AUTO		M Sep 08, 2022	Fr	equency
PAS	S				PNO: IFGair	Fast ↔		Free Run n: 30 dB			TYP			
					IFGall	I:LOW	#Atte	1. 00 0.0		MI	r1 3 66	0 0 GHz		Auto Tune
10 dE Log I	3/div	Ref (	).00 dE	sm							-43.3	67 dBm		
L08	Trace	e 1 Pas	s					Ĭ						Center Freq
-10.0														0000000 GHz
-20.0														Start Freq
													1.00	0000000 GHz
-30.0													1.00	
-40.0					1									
-40.0					<b>X</b> .			A STREET, STRE					10.00	Stop Freq 0000000 GHz
-50.0			and the second second	an the second	<u>~</u> <u>~</u>	$\sim$							10.00	0000000 GHZ
-60.0													900	CF Step 0.000000 MHz
													<u>Auto</u>	Man
-70.0														
-80.0														Freq Offset
-00.0														0 Hz
-90.0														
														Scale Type
<b>0</b> 4											01 40		Log	Lin
		0 GHz 1.0 MH				#VBW	3.0 M	H7	5	weep 1	5top 10 i.60 ms (1	.000 GHz 8001 pts)	_	<u></u>
MSG										STATU		ooor pto)		
										0				

Plot 7-34. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - High Channel)


FCC ID: A3LSMS918U		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Fage 55 OF TOT	
© 2022 ELEMENT	•	·	V3.0 1/4/2022	



# ULCA LTE Band 5

	ctrum Analyz												
LXI RL	RF	50 Ω	AC	CORREC		SEI	SE:INT	#Avg Typ	ALIGN AUTO		4 Sep 15, 2022	Fr	equency
PASS				PNO: Fa IFGain:L	ast ↔ .ow	Trig: Free Atten: 30				TYF DE			
10 dB/div Log	Ref 20	.00 di	Зm						M	kr1 822. -60.0	70 MHz 84 dBm		Auto Tune
10.0 Trac	e 1 Pass												Center Freq 5.500000 MHz
-10.0												30	Start Freq 0.000000 MHz
-20.0												823	Stop Freq 3.000000 MHz
-40.0												79 <u>Auto</u>	CF Step 9.300000 MHz Man
-60.0					and a second second					and provide a state of the second	1		Freq Offset 0 Hz
-70.0													Scale Type
Start 30.0 #Res BW				#	¢VB₩	300 kHz		s	weep <u>38</u>	8 Stop 06 ms (1	23.0 MHz 5861 pts)	Log	Lin
MSG									STATUS	6			

Plot 7-35. Conducted Spurious Plot (ULCA LTE Band 5 – 10+10MHz QPSK – PCC 1/49 SCC 1/0 - Low Channel)



Plot 7-36. Conducted Spurious Plot (ULCA LTE Band 5 – 10+10MHz QPSK – PCC 1/49 SCC 1/0 - Low Channel)

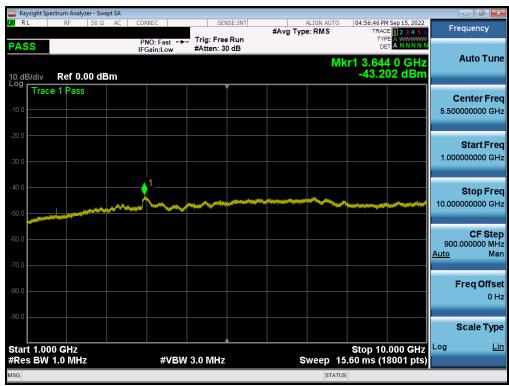
FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dama 24 of 101				
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 34 of 101				
2022 FLEMENT							





Plot 7-37. Conducted Spurious Plot (ULCA LTE Band 5 – 10+10MHz QPSK – PCC 1/49 SCC 1/0 - Low Channel)




Plot 7-38. Conducted Spurious Plot (ULCA LTE Band 5 - 10+10MHz QPSK - PCC 1/49 SCC 1/0 - Mid Channel)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	Dago 25 of 101					
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 35 of 101					
© 2022 ELEMENT								



🗳 Keysight Spectrum Analyzer - Swept SA 💦 🔂 🔂								
LXI RL RF 50Ω AC	CORREC S	ENSE:INT #Avg Typ		M Sep 15, 2022 CE 1 2 3 4 5 6	Frequency			
PASS	PNO: Fast +++ Trig: Fr	ee Run	TY					
FA35	IFGain:Low Atten:	30 dB			Auto Tune			
			Mkr1 849	.30 MHZ 311 dBm	riato rano			
10 dB/div Ref 20.00 dBm		•	-01.3					
Trace 1 Pass					Center Freq			
10.0					924.500000 MHz			
0.00					Otort From			
					Start Freq 849.00000 MHz			
-10.0					849.000000 101-12			
-20.0					Stop Freq			
-30.0					1.00000000 GHz			
-30.0								
-40.0					CF Step			
					15.100000 MHz uto Man			
-50.0					uto mari			
. 1					Ener offer at			
-60.0					Freq Offset 0 Hz			
a finite service and a stronger strong to a first a service of the service of the service of the service of the	and had the state of the state	والمراجع والمحاصية المحاطية المحاطية المحاطية المحاطية والمحاطية والمحاطية المحاطية والمحاطية والمحاطية والمحاط	and the second requires to the second se	Louise to hair the	UHZ			
-70.0								
					Scale Type			
Start 0.84900 GHz			Stop 1.0	0000 GHz L	og <u>Lin</u>			
#Res BW 100 kHz	#VBW 300 kH	z	Sweep 7.248 ms	(3021 pts)				
MSG			STATUS					

Plot 7-39. Conducted Spurious Plot (ULCA LTE Band 5 - 10+10MHz QPSK - PCC 1/49 SCC 1/0 - Mid Channel)



Plot 7-40. Conducted Spurious Plot (ULCA LTE Band 5 – 10+10MHz QPSK – PCC 1/49 SCC 1/0 - Mid Channel)

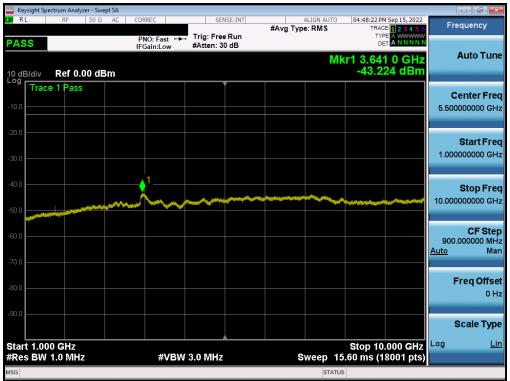
FCC ID: A3LSMS918U		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Fage 30 01 101	
© 2022 ELEMENT	•		V3.0 1/4/2022	

Valo 1/4/2022 Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.



RREC	SENSE:INT					Frequency
NO. Fast		•		TYP	A WWWWW	
Gain:Low_Aller	1. 00 00		MI	cr1 820	10 MHz	Auto Tune
				-60.87	1 dBm	
	Ĭ					Center Freq
						427.000000 MHz
						Start Freq
						30.000000 MHz
						Stop Freq
						824.000000 MHz
						CF Step 79.400000 MHz
						<u>Auto</u> Man
					- 1	
						Freq Offset 0 Hz
				de la competition de	intellection (see a siddler)	0 H2
						Scale Type
#VBW 300 k	Hz	s	weep 38	Stop 82 11 ms (1)	24.0 MHz 5881 pts)	Log <u>Lin</u>
	Atter	NO: Fast 🛶 Trig: Free Run	NO: Fast	NO: Fast	NO: Fast Trig: Free Run Atten: 30 dB Mkr1 820. -60.87 Mkr1 820. -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87 -60.87	NO: Fast       Trig: Free Run       #Avg Type: RMS       TRACE       2.8.4.5.6         Gain:Low       Atten: 30 dB       Mkr1 820.10 MHz       -60.8711 dBm         Mkr1 820.10 MHz       -60.8711 dBm       -60.8711 dBm         Image: Stop 824.0 MHz       Sweep 38.11 ms (15881 pts)

Plot 7-41. Conducted Spurious Plot (ULCA LTE Band 5 - 10+10MHz QPSK - PCC 1/0 SCC 1/49 - High Channel)




Plot 7-42. Conducted Spurious Plot (ULCA LTE Band 5 – 10+10MHz QPSK – PCC 1/0 SCC 1/49 - High Channel)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 101				
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset					
© 2022 ELEMENT	•	•	V3.0 1/4/2022				

Valo 1/4/2022 Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.





Plot 7-43. Conducted Spurious Plot (ULCA LTE Band 5 – 10+10MHz QPSK – PCC 1/0 SCC 1/49 - High Channel)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 101				
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset					
© 2022 ELEMENT	•		V3.0 1/4/2022				



## NR Band n26/5

🔤 Keysi	ight Spectru							0.00	105 TUT					_	
PASS	S	RF	50 Ω	AC		:C :Fast ← in:Low		g: Free ten: 30		#Avg Ty	ALIGN AUTO	TR/	PM Sep 13, 2022 ACE 1 2 3 4 5 6 APE A WWWW DET A N N N N N	Fr	equency
10 dB/		Ref 20.	00 dE	3m	IFGa	III.LOW	7.1	ien. oe			N	lkr1 823 -59	.50 MHz .86 dBm		Auto Tur
10.0	Trace 1	l Pass													Center Fre 2.000000 MF
0.00														30	<b>Start Fre</b> 0.000000 MH
20.0 -														824	<b>Stop Fre</b> 1.000000 Mi
40.0 -														79 <u>Auto</u>	CF Ste 0.400000 MI M
50.0 <u>-</u>						d _{en ministriken p} ri		in the second					1		Freq Offs 01
70.0															Scale Typ
	30.0 M BW 10					#VB	W 300	) kHz			Sweep 3	Stop 3 8.11 ms (	824.0 MHz 15881 pts)	-	Ŀ
SG											STATU	JS			


Plot 7-44. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - Low Channel)

RL	ectrum Analy: RF	zer - Swept 50 Ω		CORREC		SE	NSE:INT		ALIGN AUTO	03:14:19 P	M Sep 13, 2022		
ASS				PNO: F IFGain:	ast ↔→	Trig: Fre Atten: 3		#Avg Typ	e: RMS	TRAC	E 1 2 3 4 5 6 PE A WWWW A NNNNN	Fred	quency
0 dB/div	Ref 20	.00 dB	m	II Guillin					M	kr1 849. -61.	45 MHz 80 dBm	4	uto Tun
og Trac	e 1 Pass												e <b>nter Fre</b> 00000 M⊦
10.0													Start Fre 00000 M⊦
10.0													<b>Stop Fre</b> 100000 GI
0.0												15.1 <u>Auto</u>	CF Ste 00000 MI Mi
0.0 <b>1</b>	utoment planets	-Wytersonignyneu	el page and and be	*****	l-anather spattings	<del>مىلىلىرىنى كەنبىرىكە ب</del> ىرى	n ingen ffydag fan fan fan fan ingen	*********	ar-classica-sets	gittered a stability of	ala tanàna amin'ny fisiana dia mampikana dia mampikana dia mampikana dia mampikana dia mampikana dia mampikana Interna dia mangina dia mang	Fr	r <b>eq Offs</b> 0 H
10.0	900 GH	z								Stop 1.0	0000 GHz		cale Typ ∟
Res BW	100 kHz	2			#VBW	300 kHz	2		Sweep 7	.248 ms (	(3021 pts)		

Plot 7-45. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - Low Channel)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 101			
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 39 of 101			
© 2022 ELEMENT		•	V3.0 1/4/2022			





Plot 7-46. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - Low Channel)



Plot 7-47. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - Mid Channel)

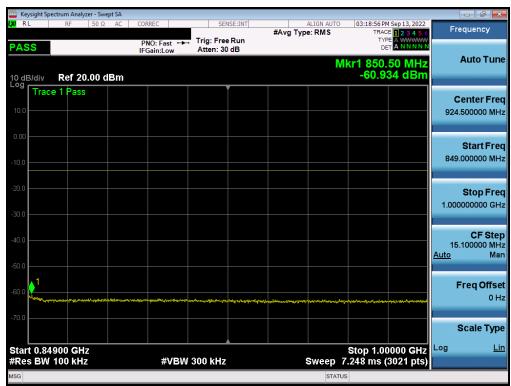
FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 101				
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset					
© 2022 ELEMENT		·	V3.0 1/4/2022				



www.weight Spectrum Analyzer - S								
🗶 RL RF 50	Ω AC	CORREC	SENSE:IN	#Avg Type	ERMS	03:15:28 PM TRACE	123456	Frequency
PASS		PNO: Fast ++-	Trig: Free Rur Atten: 30 dB	n			A WWWWW A N N N N N	
10 dB/div Ref 20.00	dBm				Mk	r1 850.0 -61.4	05 MHz 6 dBm	Auto Tune
Log Trace 1 Pass								
10.0								Center Freq 924.500000 MHz
								324.300000 Wil 12
0.00								Start Freq
10.0								Start Freq 849.000000 MHz
-10.0								
-20.0								Stop Freq
								1.000000000 GHz
-30.0								
-40.0								CF Step
								15.100000 MHz <u>Auto</u> Man
-50.0								
-60.0								Freq Offset
-20.0	alanghal _{an a} n ang ang ang ang ang ang ang ang ang an	an and the second second second	**************************************			·~~.		0 Hz
-70.0								
								Scale Type
Start 0.84900 GHz					ę	Stop 1.00	000 0112	Log <u>Lin</u>
#Res BW 100 kHz		#VBW	300 kHz	8	Sweep 7.3	248 ms (3	021 pts)	
MSG					STATUS			

Plot 7-48. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - Mid Channel)




Plot 7-49. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - Mid Channel)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 41 of 101				
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 41 of 101				
© 2022 ELEMENT			V3.0 1/4/2022				



	ctrum Analyzer -										
LXI RL	RF 50	Ω AC	CORREC		E:INT	#Avg Type	ALIGN AUTO e: RMS	TRAC	Sep 13, 2022	Freq	uency
PASS			PNO: Fast ++ IFGain:Low	Atten: 30 o				DE			
10 dB/div Log	Ref 20.00	dBm					MI	kr1 823. -60.7	70 MHz 42 dBm	A	uto Tune
Trace	e 1 Pass			Í						Ce	nter Freq
10.0										427.00	00000 MHz
0.00										-	tart Freq
-10.0											00000 MHz
-20.0											Stop Freq
-30.0										024.00	
-40.0										79 40	CF Step
-50.0										Auto	Man
-50.0									1,	Fr	eq Offset
-60.0			a preference a subsecutive a level for a bit operation								0 Hz
-70.0			ale and the second s								
											ale Type
Start 30.0 #Res BW			#VBW	300 kHz		S	weep <u>38</u>	Stop 8: .11 ms (1	24.0 MHz 5881 pts)	Log	Lin
MSG							STATUS				

Plot 7-50. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - High Channel)



Plot 7-51. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - High Channel)

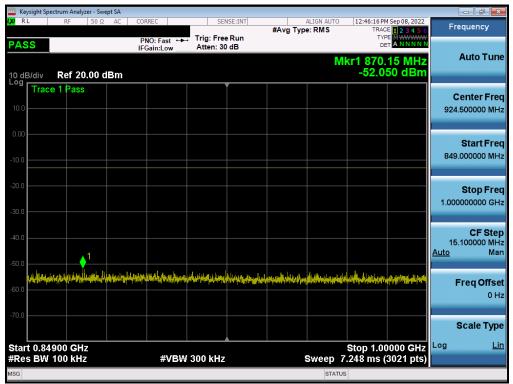
FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 101			
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 42 of 101			
© 2022 ELEMENT			V3.0 1/4/2022			





Plot 7-52. Conducted Spurious Plot (NR Band n26/5 - 20.0MHz - 1 RB - High Channel)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 101			
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset				
© 2022 ELEMENT	·	•	V3.0 1/4/2022			


V3.0 1/4/2022 Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

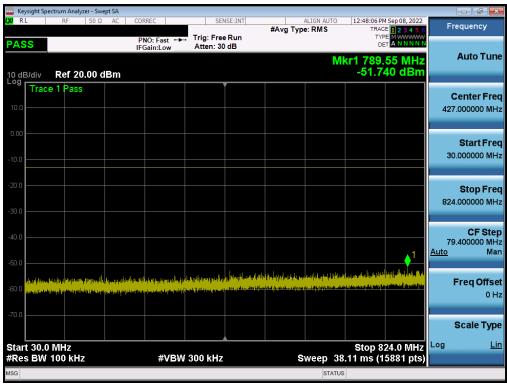


# **GSM/GPRS** Cell

		trum Analyz	er - Swe	pt SA									
<b>lxi</b> R	L	RF	50 Ω	AC C	ORREC	SEI	ISE:INT	#Avg Typ	ALIGN AUTO		M Sep 08, 2022	Fr	equency
PAS	SS				PNO: Fast FGain:Low					TYF			
10 dI	3/div	Ref 20	.00 d	Bm					ľ	/1 822. 28.4-	.90 MHz 93 dBm		Auto Tune
Log	Trace	1 Pass											Center Freq
10.0												426	5.500000 MHz
0.00													Start Freq
-10.0												30	0.000000 MHz
-20.0											1	823	Stop Freq
-30.0											<del>`</del>	020	
-40.0												79 <u>Auto</u>	CF Step 0.300000 MHz Man
-50.0								1			المحافرة بالمحافرة	Auto	Main
-60.0	yatest post watest post	na series estantes Angeles estantes	n Californi Mariana	(Yerselen)(HA) Waterstation	n de Herdelander en de Konstanten Referense en de Konstanten en de Konstanten Referense en de Konstanten	an in the state of	nellen productionen de la factorie d La factorie de la facto	م مادو التحريرة (ميز) عالي بارين بنا ( مرز با باليس ( مر	a dana ka manga k Tangga ka manga ka	rara in gebrugensen Adh Ensid Adh, n Hidi	e and the second	I	Freq Offset 0 Hz
-70.0													
													Scale Type
	t 30.0   s BW 1	MHz 100 kHz			#VI	BW 300 kHz		s	weep (	8 Stop 38.06 ms (1	23.0 MHz 5861 pts)	Log	Lin
MSG									STAT	rus			

Plot 7-53. Conducted Spurious Plot (GPRS Ch. 128)




#### Plot 7-54. Conducted Spurious Plot (GPRS Ch. 128)

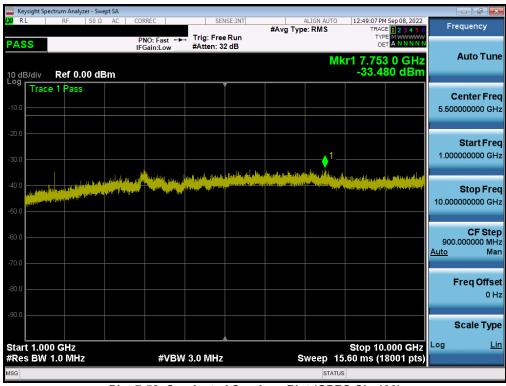
FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 101				
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 44 of 101				
© 2022 ELEMENT V3.0 1/4/2022							



	ectrum Analy		t SA									
LXI RL	RF	50 Ω	AC	CORREC		SEI	ISE:INT	#Avg Typ	ALIGN AUT		7 PM Sep 08, 2022 RACE 1 2 3 4 5 6	Frequency
PASS				PNO: Fa	ast ↔ .ow	Trig: Free #Atten: 3						
10 dB/div Log	Ref 0.	00 dB	m						Ν	/lkr1 3.6 -33	84 0 GHz .269 dBm	Auto Tun
Trac	e 1 Pass											Center Fre
-10.0												5.500000000 GH
-20.0												Start Fre
-30.0				- <b>(</b> ]-				dig Dig frond a formation		u de la constanción d	المتعادية الم	1.000000000 GH
-40.0	n an	jure Yerren S ^{ala} nski					الله ومعادلين	and a state of the	ti atila, jim.			<b>Stop Fre</b> 10.000000000 GH
-60.0												<b>CF Ste</b> 900.000000 MH <u>Auto</u> Ma
-70.0												Freq Offse 0 H
-90.0												Scale Typ
Start 1.00 #Res BW		2		#	¢VB₩	3.0 MHz		s	weep	Stop ⁻ 15.60 ms	10.000 GHz (18001 pts)	Log <u>Li</u>
MSG									STA			

Plot 7-55. Conducted Spurious Plot (GPRS Ch. 128)




Plot 7-56. Conducted Spurious Plot (GPRS Ch. 190)

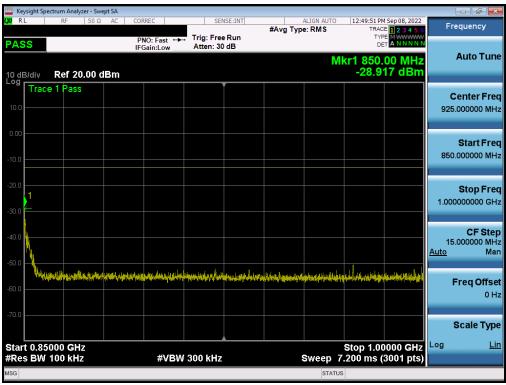
FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 101				
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 45 of 101				
© 2022 ELEMENT							



		trum Analy:												
LXI RI	L	RF	50 Ω	AC	CORREC		SEN	ISE:INT	#Avg Typ	ALIGN AUTO		M Sep 08, 2022	Fr	equency
PAS	S				PNO: Fas IFGain:Lo		Trig: Free Atten: 30				TY	PE MWWWWW ET A N N N N N		
					IFGaln:L0	w	Atten. 00	ub		M		.30 MHz		Auto Tune
10 dE	3/div	Ref 20	.00 d	Bm							-52.9	63 dBm		
Log	Trace	1 Pass						Í						
10.0														Center Freq
10.0													924	.500000 MHz
0.00														
														Start Freq
-10.0													849	.000000 MHz
-20.0														Stop Freq
													1.000	0000000 GHz
-30.0														
-40.0														CF Step
-40.0													15 <u>Auto</u>	.100000 MHz Man
-50.0		1											Auto	Iviari
		الاربة الغربا	and being		في المسالم على المسال	lune and	فياسا والاقابان	فالفيني بتدرادت		ما والاندر والأنبا ا	ARLIA DATE NO.	ور الافارار الأر والمغايلة (		
-60.0	tan dina la na sak	10 A A	-1.14-544		ne e la sere l			Allowed Internet	an part an fail an tha an that an that an that a	and a state of the				Freq Offset 0 Hz
														0 112
-70.0														October Trans
														Scale Type
		000 GH									Stop 1.0	0000 GHz	Log	Lin
#Res	s BW 1	100 kHz	-		#	VBW :	300 kHz			Sweep 7	7.248 ms (	(3021 pts)		
MSG										STATU	s			

Plot 7-57. Conducted Spurious Plot (GPRS Ch. 190)




Plot 7-58. Conducted Spurious Plot (GPRS Ch. 190)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dega 46 of 101			
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 46 of 101			
© 2022 ELEMENT	-		V3.0 1/4/2022			



	ectrum Analyze											_	
LXI RL	RF	50 Ω	AC (	ORREC		SEN	ISE:INT	#Avg Typ	ALIGN AUTO		4 Sep 08, 2022	F	requency
PASS				PNO: Fast IFGain:Lov		rig: Free Atten: 30				TYF De			
10 dB/div	Ref 20.	00 dE	3m						Μ	kr1 819. -47.5	55 MHz 41 dBm		Auto Tune
Log Trac	e 1 Pass												Center Freq 7.000000 MHz
-10.0												30	Start Freq
-20.0												824	Stop Freq 4.000000 MHz
-40.0											1	79 <u>Auto</u>	<b>CF Step</b> 9.400000 MHz Man
-60.0 <b></b>		altyk (solo	u gerefet met aner en fan ste gerefe		an din an	i Managinang Mini Ngalang Sang Sang Sang Sang Sang Sang Sang S	ga <mark>h y</mark> adipagalasis aga kasa ina shush	ng palahan ng balaysi Malakan na ang balaysi Malakan na ang balaysi	ntephyn (Marting far ffa 17 maethau far anfar 1	a yayiyaanya <mark>kananananananananananananananananananan</mark>	(and the fails of the set		Freq Offset 0 Hz
-70.0													Scale Type
Start 30.0										Stop 8	24.0 191112	Log	<u>Lin</u>
#Res BW	100 kHz			#V	/BW 30	JO KHZ		s			5881 pts)		
MSG									STATUS	5			

Plot 7-59. Conducted Spurious Plot (GPRS Ch. 251)



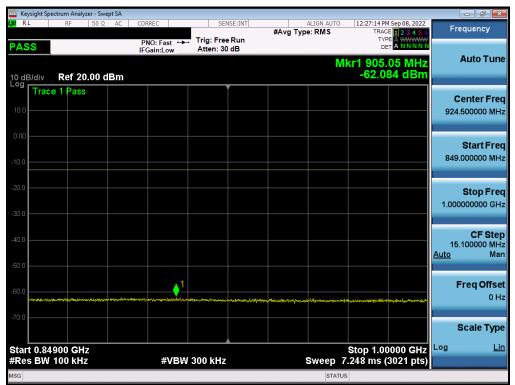
Plot 7-60. Conducted Spurious Plot (GPRS Ch. 251)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dega 47 of 101			
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 47 of 101			
© 2022 ELEMENT	-		V3.0 1/4/2022			



🔤 Keysight Spectrum A									
LXIRL RF	50 Ω AC	CORREC	SENS		#Avg Type	ERMS	TRAC	E 1 2 3 4 5 6	Frequency
PASS		PNO: Fast IFGain:Low	Trig: Free F #Atten: 32			Mk	DE	B 0 GHz 71 dBm	Auto Tune
Log	0.00 dBm						-33.5	/1 aBm	
-10.0									Center Freq 5.500000000 GHz
-20.0		1	ي وليس وا	anda sitis Jaike ak	natural theorem (theorem	Allow and the second		المراب المراب	Start Freq 1.000000000 GHz
-40.0				a and a line of different			n 14 julio en anti-angle angle a Angle angle ang	syyt server bereiten staan Militarie, Michief	<b>Stop Freq</b> 10.000000000 GHz
-60.0									CF Step 900.000000 MHz <u>Auto</u> Mar
-80.0									Freq Offse 0 H:
-90.0									Scale Type
Start 1.000 GH #Res BW 1.0 N		#VBW	3.0 MHz		SI	weep 15.	Stop 10. 60 ms (1	.000 GHz 8001 pts)	Log <u>Lin</u>
MSG						STATUS			

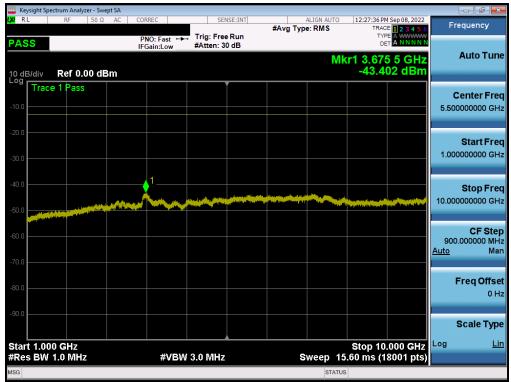
Plot 7-61. Conducted Spurious Plot (GPRS Ch. 251)


FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 49 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 48 of 101
© 2022 ELEMENT	•	·	V3.0 1/4/2022

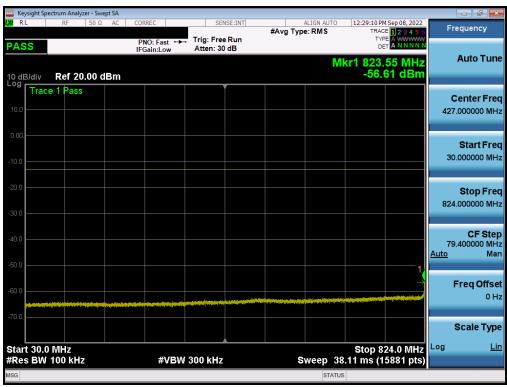


# WCDMA Cell

	ectrum Analyzer												
L <mark>XI</mark> RL	RF	50 Ω A	C COF	RREC		SI	ENSE:INT	#Avg Typ	ALIGN AUTO		M Sep 08, 2022	F	requency
PASS				NO: Fast Gain:Lov		Trig: Fre Atten: 3		" <b>8</b> )P		TYI Di			
10 dB/div	Ref 20.0	00 dBn	n						M	kr1 822. -33.3	.85 MHz 71 dBm		Auto Tune
10.0	e 1 Pass												Center Freq 5.500000 MHz
-10.0												30	Start Freq 0.000000 MHz
-20.0											1	823	Stop Freq 3.000000 MHz
-40.0												79 <u>Auto</u>	CF Step 9.300000 MHz Mar
-60.0													Freq Offset 0 Hz
-70.0													Scale Type
Start 30.0 #Res BW				#V	BW :	300 kH:	2	s	weep 38	Stop 8 .06 ms (1	23.0 MHz 5861 pts)	Log	<u>Lin</u>
MSG									STATUS				


Plot 7-62. Conducted Spurious Plot (WCDMA Ch. 4132)




Plot 7-63. Conducted Spurious Plot (WCDMA Ch. 4132)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 101				
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	9/8/2022 – 11/14/2022 Portable Handset					
© 2022 ELEMENT							





Plot 7-64. Conducted Spurious Plot (WCDMA Ch. 4132)



Plot 7-65. Conducted Spurious Plot (WCDMA Ch. 4183)

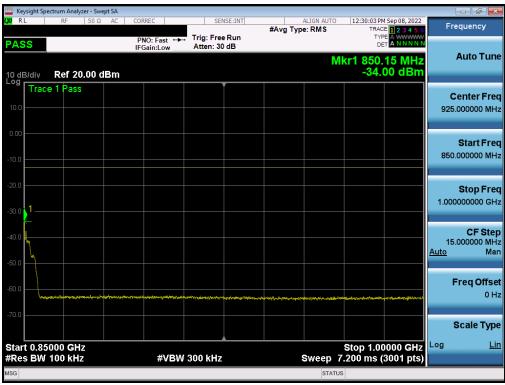
FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 50 of 101		
© 2022 ELEMENT	•		V3.0 1/4/2022		



	ctrum Analyz	er - Swep	t SA										d X
L <mark>XI</mark> RL	RF	50 Ω	AC	CORREC		SEI	NSE:INT	#Avg Typ	ALIGN AUTO		E 1 2 3 4 5 6	Frequer	ncy
PASS				PNO: Fa IFGain:L	ast ↔ .ow	Trig: Free Atten: 30				TYF De			_
10 dB/div Log	Ref 20.	.00 dE	3m						Μ	lkr1 849. -56.	80 MHz 74 dBm	Auto	o Tune
10.0 Trace	e 1 Pass											Cente 924.5000	e <b>r Freq</b> 00 MHz
-10.0												<b>Sta</b> ı 849.0000	r <b>t Freq</b> 00 MHz
-20.0												<b>Sto</b> 1.0000000	<b>p Freq</b> 00 GHz
-40.0												CI 15.1000 <u>Auto</u>	F Step 00 MH: Mar
-60.0	the second second	http://deixian	to page of the	ahan ying alkahasad	<b></b>	an frank af a	14178,1717,1719,1718,1718,	ara mining a sugger	e deservation of the	where the market was the	hepara-jerritelaylaytada	Freq	Offsel 0 Hz
-70.0													е Туре
Start 0.84 #Res BW	900 GHz 100 kHz			\$	¢νΒ₩	300 kHz			Sweep	Stop 1.00 7.248 ms (	000 9112	Log	Lin
MSG									STATU	IS			

Plot 7-66. Conducted Spurious Plot (WCDMA Ch. 4183)




Plot 7-67. Conducted Spurious Plot (WCDMA Ch. 4183)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 51 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 51 of 101		
© 2022 ELEMENT			V3.0 1/4/2022		



sight Spectrum Analyzer - Swept SA			
RF 50 Ω AC CORREC	SENSE:INT AI #Avg Type:	LIGN AUTO 12:29:57 PM Sep 08, 2022 <b>: RMS</b> TRACE 1 2 3 4 5 6	Frequency
	ig: Free Run itten: 30 dB	TYPE A WWWW DET A NNNN	
/div Ref 20.00 dBm		Mkr1 822.60 MHz -60.84 dBm	Auto Tune
Trace 1 Pass	The second se		Center Freq
			427.000000 MHz
			Start Freq 30.000000 MHz
			Stop Freq
			824.000000 MHz
			CF Step
			79.400000 MHz <u>Auto</u> Man
			Freq Offset 0 Hz
			Scale Type
30.0 MHz BW 100 kHz #VBW 300	) kHz Sw	Stop 824.0 MHz veep 38.11 ms (15881 pts)	Log <u>Lin</u>
		status	

Plot 7-68. Conducted Spurious Plot (WCDMA Ch. 4233)



Plot 7-69. Conducted Spurious Plot (WCDMA Ch. 4233)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 52 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 52 of 101		
© 2022 ELEMENT			V3.0 1/4/2022		



	um Analyzer - Sw									
LXI RL	RF 50 Ω	AC	CORREC		NSE:INT	#Avg Typ	ALIGN AUTO	TRAC	M Sep 08, 2022	Frequency
PASS			PNO: Fast + IFGain:Low	Trig: Fre #Atten: 3			M	DI		Auto Tune
Log	Ref 0.00 dl	Bm			•			-43.2	0 0 GHz 34 dBm	
Trace	1 Pass									Center Free
-10.0										5.500000000 GH
-20.0										Start Free
-30.0										1.000000000 GH
-40.0			<b></b> 1							Stop Free
-50.0										10.00000000 GH
-60.0										CF Step 900.000000 MH
-70.0										<u>Auto</u> Mar
-80.0										Freq Offse
										0 H:
-90.0										Scale Type
Start 1.000 #Res BW 1.			#\/R	W 3.0 MHz			ween 1	Stop 10	.000 GHz 8001 pts)	Log <u>Lir</u>
MSG	<b>0</b> 1911/2		#VD				STATU		ooor pis)	

Plot 7-70. Conducted Spurious Plot (WCDMA Ch. 4233)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 52 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 53 of 101		
© 2022 ELEMENT					



## 7.5 Band Edge Emissions at Antenna Terminal

#### **Test Overview**

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

# The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$ , where P is the transmitter power in Watts.

#### Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

#### **Test Settings**

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW  $\geq$  1% of the emission bandwidth
- 4. VBW  $\geq$  3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points  $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

#### Test Setup

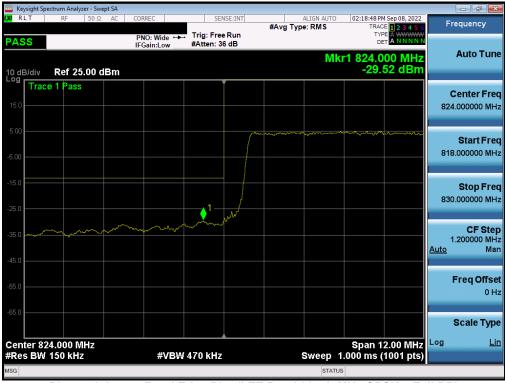
The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Test Instrument & Measurement Setup

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage E4 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 54 of 101		
© 2022 ELEMENT	•		V3.0 1/4/2022		




### Test Notes

- 1. Per 22.917(b) and RSS-132(5.5), in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege EE of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 55 of 101
© 2022 ELEMENT	•	•	V3.0 1/4/2022



## LTE Band 26/5




Plot 7-71. Lower Band Edge Plot (LTE Band 26 - 15MHz QPSK - Full RB)



#### Plot 7-72. Upper Band Edge Plot (LTE Band 26 - 15MHz QPSK – Full RB)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 56 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 56 of 101		
© 2022 ELEMENT V3.0.1/4/2					






Plot 7-73. Lower Band Edge Plot (LTE Band 26/5 - 10MHz QPSK - Full RB)



Plot 7-74. Upper Band Edge Plot (LTE Band 26/5 - 10MHz QPSK – Full RB)

FCC ID: A3LSMS918U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 57 of 101
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 57 of 101
© 2022 ELEMENT	•		V3.0 1/4/2022





Plot 7-75. Lower Band Edge Plot (LTE Band 26/5 - 5MHz QPSK - Full RB)



Plot 7-76. Upper Band Edge Plot (LTE Band 26/5 - 5MHz QPSK - Full RB)

FCC ID: A3LSMS918U		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 59 of 101		
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset	Page 58 of 101		
© 2022 ELEMENT	•		V3.0 1/4/2022		



🔤 Keysight Spectrum Analyzer - Swept SA					
<mark>IX/</mark> RLT RF 50Ω AC	CORREC S	SENSE:INT #Avg Typ		M Sep 08, 2022	Frequency
PASS	PNO: Wide ↔ Trig: Fr IFGain:Low #Atten:	ree Run	TYI Di		
10 dB/div Ref 25.00 dBm	1		Mkr1 824.0 -17.9	00 MHz 20 dBm	Auto Tune
Trace 1 Pass					Center Freq
15.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	824.000000 MHz
5.00					Start Freq
-5.00					822.000000 MHz
-15.0		• <u>1</u>			Stop Freq
-25.0		<u>у</u>			826.000000 MHz
-35.0 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	www.www.w.s.				CF Step
				<u>Au</u>	400.000 kHz uto Man
-45.0					Freq Offset
-55.0					0 Hz
-65.0					Scale Type
Center 824.000 MHz #Res BW 100 kHz	#VBW 300 kH	z	Span 4 Sweep 2.000 ms (	.000 MHz 40 (1001 pts)	
MSG			STATUS		

Plot 7-77. Lower Band Edge Plot (LTE Band 26/5 - 3MHz QPSK - Full RB)



Plot 7-78. Upper Band Edge Plot (LTE Band 26/5 - 3MHz QPSK – Full RB)

FCC ID: A3LSMS918U	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 101	
1M2209010098-06.A3L	9/8/2022 - 11/14/2022	Portable Handset		
© 2022 ELEMENT	•	•	V3.0 1/4/2022	