

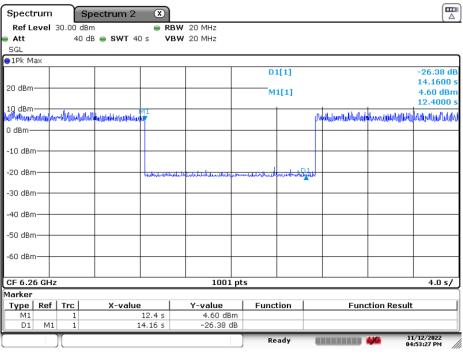
CBP Timing Plots

Spectrum	Spectrum 2	×						
Ref Level 20.0		e RBW 2	0 MHz					
	40 dB 👄 SWT 40	s VBW 2	0 MHz					
SGL 1Pk Max								
	endrend and and			D	1[1]	A contract for some	unumaaaaaaaaaaa	36.63.d
10 dBm	M:	L						15.3200
TO UBIII				M	1[1]			5.49 dBı
0 dBm							1 1	10.8400
-10 dBm								
-20 dBm								
-20 uBIII	yona	t-open and a second second	ngangaangan kanganaka	an a	and the second	2		
-30 dBm								
-40 dBm								
-50 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 6.215 GHz			1001 p	ts				4.0 s/
Marker	1	1 .						
Type Ref Tro		0.84 s	Y-value 15.49 dBm	Func	tion	Fun	iction Result	
		5.32 s	-36.63 dB					
				Bo	ady		11/3	2/2022

Date: 12.NOV.2022 16:03:25

Date: 12.NOV.2022 16:49:44

Plot 7-672. Contention Based Protocol Timing Plot – UNII 5 – 160MHz Ch47 – Low


FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 270 of 412		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 379 of 413		
© 2022 ELEMENT	÷		V 9.0 02/01/2019		

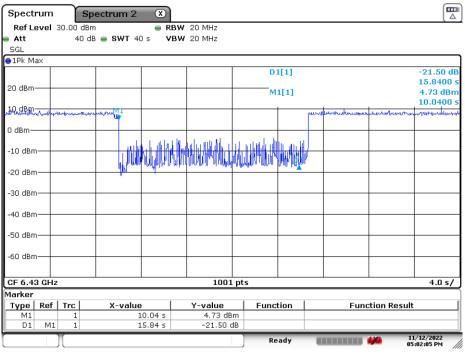
Spectrum	🔆 Sp	ectrum 2	×								
Ref Level 3	10.00 dBm		e RBW	20 MHz							
👄 Att	40 dB	😑 SWT 40	s VBW	20 MHz							
SGL											
⊖1Pk Max											
						D1	[1]				-33.62 dB
20 dBm											15.7200 s
20 uBm	M	1				M1	l[1]				12.53 dBm
J.D. J.B.B. market	الم ال	7					لعمد	Umblow	dial market	hombrohen	. July
Offer Officer Market States in 2014	aleanes Beenes						×.				
0 dBm											
o ubili											
-10 dBm											
-10 0.011											
-20 dBm						D					
-20 0011		الروسية معرفة مرياني الراسين	and a start of the	anter and the second states and the second states and the second states and the second states and the second st	ulmsh	en hallong	-terlin				
-30 dBm											
00 00.0											
-40 dBm											
io abiii											
-50 dBm											
-60 dBm					<u> </u>						
				100							
CF 6.185 GH	z			100	1 pts						4.0 s/
Marker							_				
Type Ref		X-value		Y-value	_	Funct	ion		Fur	nction Re	sult
M1	1		8.12 s	12.53 di							
D1 M1	1	1	.5.72 s	-33.62	ав						
						Re	ady			444	11/12/2022 04:46:09 PM

Date: 12.NOV.2022 16:46:08

Plot 7-673. Contention Based Protocol Timing Plot – UNII 5 – 160MHz Ch47 – Mid

Date: 12.NOV.2022 16:53:27

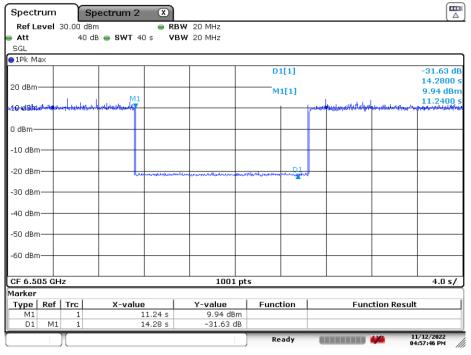
Plot 7-674. Contention Based Protocol Timing Plot – UNII 5 – 160MHz Ch47 - High


FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 380 of 413
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Fage 300 01 4 13
© 2022 ELEMENT		·	V 9.0 02/01/2019

Spectrum	S	pectrum 2	×							
Ref Level			RBW							
👄 Att	40 d	B 画 SWT 40 s	VBW	20 MHz						
SGL										
😑 1Pk Max										
						D	1[1]			-35.53 dB
20 dBm <mark>M1</mark>										13.2000 s
				the second second		М	1[1]	 		13.47 dBm
10 dBm								 (Fall water of the		3.1200 \$
10 0011										
0 dBm										
o ubiii										
-10 dBm										
10 0.0111										
-20 dBm										
20 abit which	nanddaraan)	un and a second state of the second state of t	and the second second	č –						
-30 dBm										
00 00										
-40 dBm										
-40 0011										
-50 dBm										
00 00111										
-60 dBm										
-00 0011										
CF 6.455 GH	lz			1001	. pts	5				4.0 s/
Marker										
	Trc	X-value		Y-value		Func	tion	Fun	ction Resu	ılt
M1	1	3.12		13.47 dB						
D1 M1	1	13.2	s	-35.53 (;IB					
)[]					Re	ady		444	11/12/2022 05:59:07 PM

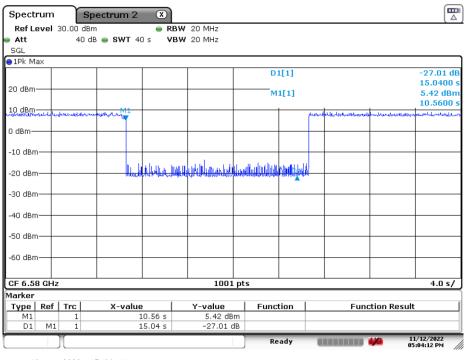
Date: 12.NOV.2022 17:59:06

Plot 7-675. Contention Based Protocol Timing Plot – UNII 6 – 20MHz Ch101



Date: 12.NOV.2022 17:02:04

Plot 7-676. Contention Based Protocol Timing Plot – UNII 6 – 160MHz Ch111 – Low

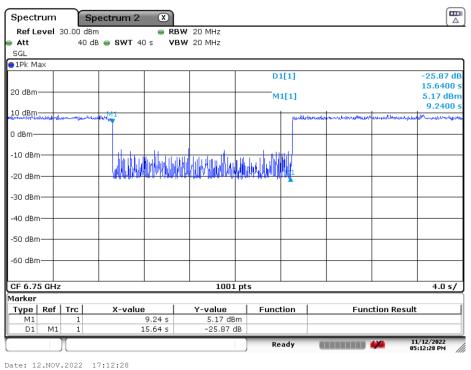

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 201 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 381 of 413
© 2022 ELEMENT	*	• • • • • • • • • • • • • • • • • • • •	V 9.0 02/01/2019

Date: 12.NOV.2022 16:57:45

Plot 7-677. Contention Based Protocol Timing Plot – UNII 6 – 160MHz Ch111 – Mid

Date: 12.NOV.2022 17:04:11

Plot 7-678. Contention Based Protocol Timing Plot – UNII 6 – 160MHz Ch111 - High


FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 292 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 382 of 413
© 2022 ELEMENT		·	V 9.0 02/01/2019

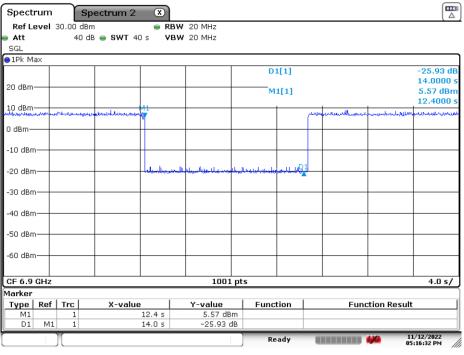
Spect	rum	s	pectrum 2	×								
Ref Le	evel	20.00 de	m	e R	BW 20 MHz							
👄 Att		40 0	dB 👄 SWT 41	Js V	BW 20 MHz							
SGL												
⊖1Pk Ma	ax]
an horas	serves and	Jan Martin	erees when the second	M1			D	1[1]		ad a star	ومعجد المستري المركز مكان	~~~37 ~69~ dB
10 dBm-												17.0800 s
10 000							M	1[1]				16.67 dBm
0 dBm—						_						13.1600 s
-10 dBm	∩											
-20 dBm	ν 			alware -	en and the second second	minin	monthe	wenture	unter alershind and	-		
-30 dBm	-+-י					+				-		
-40 dBm	דרי											
EQ dD-												
-50 dBm	'											
-60 dBm												
-00 0011	'											
-70 dBm	<u> </u>					<u> </u>						
CF 6.69					100							10-1
	90 GF	12			100:	i prs	<u> </u>					4.0 s/
Marker	D -f	Tunl		. 1	V	- 1	F					
Type M1	Ref	Trc 1	X-value	9 L3.16 s	Y-value 16.67 dB	im l	Func	cion	F	unct	ion Resul	<u>د</u>
D1	M1	1		17.08 s	-37.69							
) <u>-</u>			0.101	-					1	1/12/2022
L		Л					Re	ady				4:27:10 PM

Date: 12.NOV.2022 16:27:09

Plot 7-679. Contention Based Protocol Timing Plot – UNII 7 – 20MHz Ch149

Date: 12.NOV.2022 17:12:28

Plot 7-680. Contention Based Protocol Timing Plot – UNII 7 – 160MHz Ch175 – Low


FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 292 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 383 of 413
© 2022 ELEMENT		•	V 9.0 02/01/2019

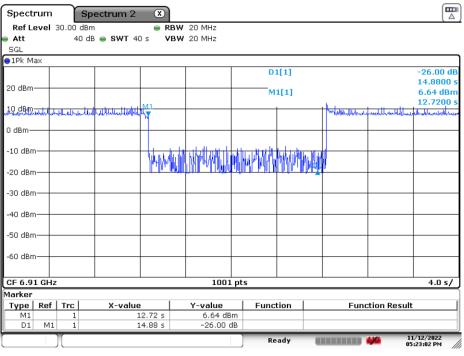
Spectrum	\star S	pectrum 2	X								
Ref Level	30.00 dBi	n	e RB	W 20 MHz							
👄 Att	40 d	B 👄 SWT 40	s VB	W 20 MHz							
SGL											
😑 1Pk Max											
						D	1[1]				-32.48 dB
20 dBm											13.4000 s
20 0011		М1					1[1]				12.03 dBm
1.10katertertertertertertertertertertertertert	بالبدير إطلامها كالد					the state of	فاكليها وملاء	للميوالوليها	ويتبناون ويسمه أوينان	al	8.4400 s ԱԺԱԺած
•								•			
0 dBm											
-10 dBm											
					D,						
-20 dBm		- United and the second	and the second second second	and the second	-	<u> </u>					
-30 dBm											
-40 dBm											
-40 ubiii											
-50 dBm											
00 0011											
-60 dBm										L	
CF 6.825 GH	17			1001	Inte						4.0 s/
Marker	12			1001	r pro						
Type Ref	Trc	X-value	, 1	Y-value	1	Func	tion		Euro	ction Res	ult
M1	1	v-vdiue	8.44 s	12.03 dE	\m	Punt	cion		Fun	COULTERS	
D1 M1	1		13.4 s	-32.48							
					_	De	ady			4444	11/12/2022
						R	auy			1	05:09:52 PM

Date: 12.NOV.2022 17:09:52

Plot 7-681. Contention Based Protocol Timing Plot – UNII 7 – 160MHz Ch175 – Mid

Date: 12.NOV.2022 17:16:32

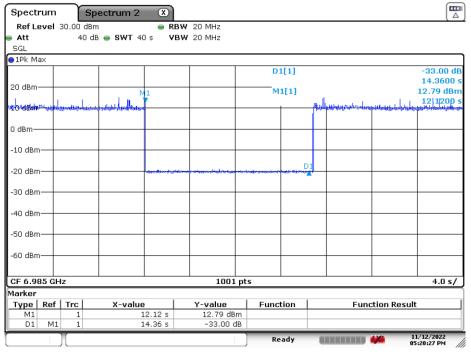
Plot 7-682. Contention Based Protocol Timing Plot – UNII 7 – 160MHz Ch175 - High


FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 204 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 384 of 413
© 2022 ELEMENT		·	V 9.0 02/01/2019

Spectrum	Sp	ectrum 2	×							
Ref Level	30.00 dBr	n	● RBV	V 20 MHz						
👄 Att	40 di	8 🔵 SWT 4	0s VBV	V 20 MHz						
SGL										
⊖1Pk Max										
						D1[[1]			-32.32 dB
20 dBm										14.4400 s
human	والمعالية المعالم	M1				M1	[1]	A. 6. 6		11.90 dBm
10 dBm	- 4						_			***********************
10 0.0										
0 dBm					<u> </u>					
-10 dBm							_		_	
						L				
-20 dBm		وسيخيبا ا	alinear teres			talanda orteo o	1,			
-30 dBm					+				-	
-40 dBm					+					
-50 dBm					+					
-60 dBm					+					
CF 6.935 GH	lz			100	i pts					4.0 s/
Marker										
Type Ref	Trc	X-valu	е	Y-value		Functi	on	Fui	nction Re	esult
M1	1		10.04 s	11.90 di						
D1 M1	1		14.44 s	-32.32	dB					
)[]					Rea	dy		444	11/12/2022 05:53:24 PM

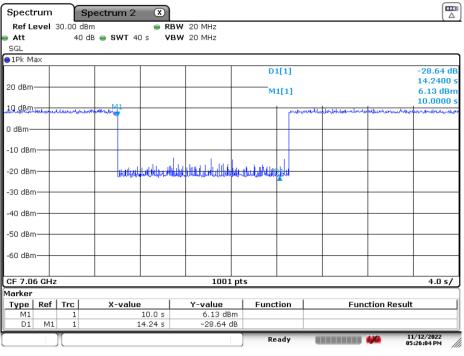
Date: 12.NOV.2022 17:53:24

Plot 7-683. Contention Based Protocol Timing Plot – UNII 8 – 20MHz Ch197



Date: 12.NOV.2022 17:23:02

Plot 7-684. Contention Based Protocol Timing Plot – UNII 8 – 160MHz Ch207 – Low


FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 295 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 385 of 413
© 2022 ELEMENT		·	V 9.0 02/01/2019

Date: 12.NOV.2022 17:20:26

Plot 7-685. Contention Based Protocol Timing Plot – UNII 8 – 160MHz Ch207 – Mid

Date: 12.NOV.2022 17:26:04

Plot 7-686. Contention Based Protocol Timing Plot – UNII 8 – 160MHz Ch207 - High

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 386 of 413
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Fage 300 01 413
© 2022 ELEMENT		·	V 9.0 02/01/2019

7.7 Radiated Spurious Emission Measurements – Above 1GHz §15.205, §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11ax (20/40/80/160MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of -27 dBm/MHz

Emissions found in a restricted band are subject to the limits of 15.209 as shown in the table below.

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-61. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 207 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 387 of 413
© 2022 ELEMENT	•	·	V 9 0 02/01/2019

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

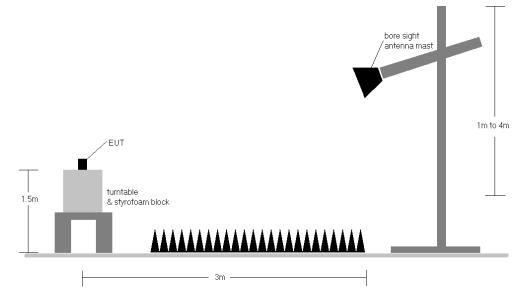


Figure 7-6. Test Instrument & Measurement Setup

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 280 of 412		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 388 of 413		
© 2022 ELEMENT			V 9.0 02/01/2019		

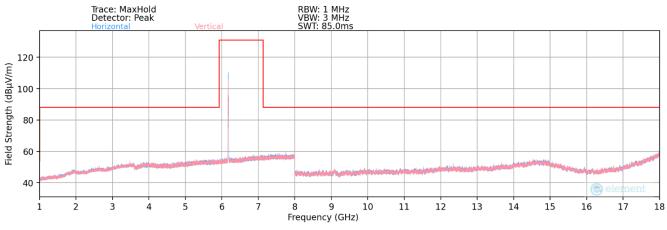
Test Notes

- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 are below the limit shown in Table 7-61.
- 2. All spurious emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-34. All spurious emissions that do not lie in a restricted band are subject to an average limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- All spurious emissions that do not lie in a restricted band are subject to a peak limit not to exceed 20dB of the average limit [68.2dBµV/m]. If a peak measurement passes the average limit it was determined no further investigation is necessary.
- 4. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 5. This unit was tested with its standard battery.
- 6. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 8. Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.
- 9. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 10. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

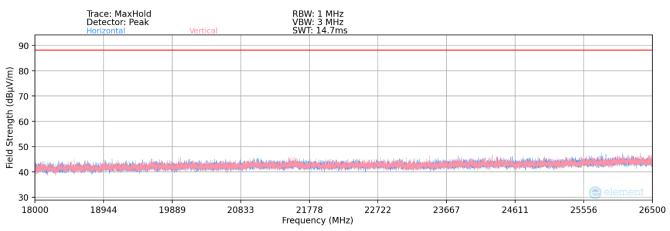
Sample Calculations

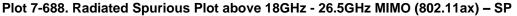
Determining Spurious Emissions Levels

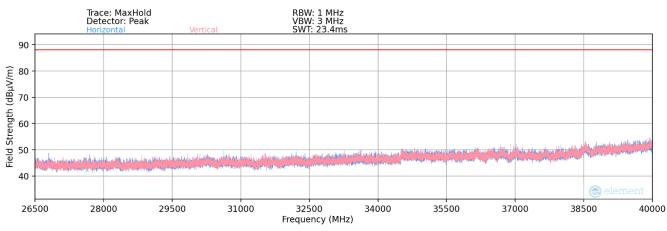
- \circ Field Strength Level [dB_µV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- $\circ \quad \text{Margin}_{[dB]} = \text{Field Strength Level}_{[dB\mu V/m]} \text{Limit}_{[dB\mu V/m]}$


Radiated Band Edge Measurement Offset

The amplitude offset shown in the radiated restricted band edge plots was calculated using the formula:
Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 389 of 413	
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Fage 309 01 413	
© 2022 ELEMENT		-	V 9 0 02/01/2019	




7.7.1 MIMO Radiated Spurious Emission Measurements (26 Tones)

Plot 7-687. Radiated Spurious Plot above 1GHz MIMO (802.11ax - UNII Band 5 - 20MHz - Ch.45) - SP

Plot 7-689. Radiated Spurious Plot 26.5GHz - 40GHz MIMO (802.11ax) - SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dega 200 of 442		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 390 of 413		
© 2022 ELEMENT			V 9.0 02/01/2019		

802.11ax
MCS0
4
1 & 3 Meters
5935MHz
2

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Average	н	-	-	-78.39	9.82	0.00	38.43	53.98	-15.55
*	11870.00	Peak	Н	-	-	-66.42	9.82	0.00	50.40	73.98	-23.58
*	17805.00	Average	Н	-	-	-77.07	15.94	0.00	45.87	53.98	-8.11
*	17805.00	Peak	н	-	-	-64.80	15.94	0.00	58.14	73.98	-15.84
*	23740.00	Average	Н	-	-	-67.59	3.89	-9.54	33.76	53.98	-20.22
*	23740.00	Peak	Н	-	-	-56.59	3.89	-9.54	44.76	73.98	-29.22
	29675.00	Peak	Н	-	-	-57.35	6.04	-9.54	46.15	68.20	-22.05

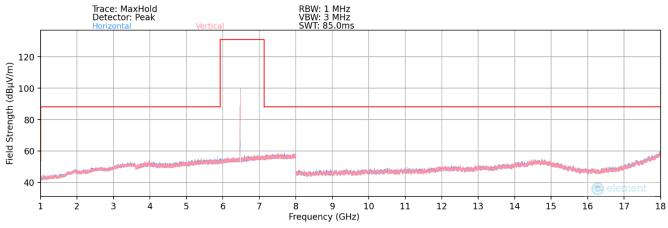
Table 7-62. Radiated Measurements MIMO (26 Tones) - SP

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Average	Н	-	-	-78.22	9.88	0.00	38.66	53.98	-15.32
*	12350.00	Peak	Н	-	-	-65.72	9.88	0.00	51.16	73.98	-22.82
*	18525.00	Average	Н	-	-	-66.89	1.68	-9.54	32.25	53.98	-21.73
*	18525.00	Peak	Н	-	-	-56.19	1.68	-9.54	42.95	73.98	-31.03
	24700.00	Peak	н	-	-	-57.48	4.25	-9.54	44.23	68.20	-23.97
	30875.00	Peak	Н	-	-	-58.55	6.73	-9.54	45.64	68.20	-22.56

Table 7-63. Radiated Measurements MIMO (26 Tones) - SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 201 of 412		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 391 of 413		
© 2022 ELEMENT			V 9.0 02/01/2019		


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6415MHz
Channel:	93

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	12830.00	Peak	Н	-	-	-66.69	10.00	0.00	50.31	68.20	-17.89
*	19245.00	Average	н	-	-	-67.05	2.45	-9.54	32.86	53.98	-21.12
*	19245.00	Peak	н	-	-	-57.40	2.45	-9.54	42.51	73.98	-31.47
	25660.00	Peak	Н	-	-	-56.81	4.57	-9.54	45.22	68.20	-22.98
	32075.00	Peak	н	-	-	-57.92	6.88	-9.54	46.42	68.20	-21.78

Table 7-64. Radiated Measurements MIMO (26 Tones) - SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 202 of 412		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 392 of 413		
© 2022 ELEMENT	•	·	V 9.0 02/01/2019		

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6435MHz
Channel:	97

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	12870.00	Peak	Н	-	-	-66.21	12.51	0.00	53.30	68.20	-14.90
*	19305.00	Average	Н	-	-	-65.83	2.29	-9.54	33.92	53.98	-20.06
*	19305.00	Peak	Н	-	-	-55.01	2.29	-9.54	44.74	73.98	-29.24
	25740.00	Peak	Н	-	-	-55.40	4.49	-9.54	46.55	68.20	-21.65
	32175.00	Peak	Н	-	-	-55.16	7.04	-9.54	49.34	68.20	-18.86

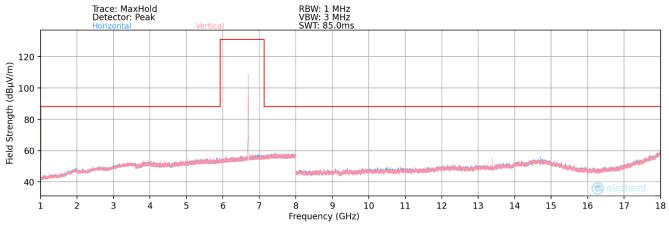
Table 7-65. Radiated Measurements MIMO (26 Tones) - LPI

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 202 of 442		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 393 of 413		
© 2022 ELEMENT	-		V 9.0 02/01/2019		

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6475MHz
Channel:	105

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	12950.00	Peak	н	-	-	-66.15	12.67	0.00	53.52	68.20	-14.68
*	19425.00	Average	н	-	-	-65.87	2.36	-9.54	33.95	53.98	-20.03
*	19425.00	Peak	н	-	-	-54.75	2.36	-9.54	45.07	73.98	-28.91
	25900.00	Peak	Н	-	-	-55.06	4.84	-9.54	47.24	68.20	-20.96
	32375.00	Peak	н	-	-	-55.67	6.78	-9.54	48.57	68.20	-19.63

Table 7-66. Radiated Measurements MIMO (26 Tones) - LPI


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6515MHz
Channel:	113

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13030.00	Peak	Н	-	-	-64.62	12.83	0.00	55.21	68.20	-12.99
*	19545.00	Average	Н	-	-	-65.60	2.31	-9.54	34.17	53.98	-19.81
*	19545.00	Peak	Н	-	-	-54.56	2.31	-9.54	45.21	73.98	-28.77
	26060.00	Peak	Н	-	-	-55.45	4.92	-9.54	46.93	68.20	-21.27
	32575.00	Peak	Н	-	-	-55.20	6.55	-9.54	48.81	68.20	-19.39

Table 7-67. Radiated Measurements MIMO (26 Tones) - LPI

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 204 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 394 of 413
© 2022 ELEMENT			V 9.0 02/01/2019

Plot 7-691. Radiated Spurious Plot above 1GHz MIMO (802.11ax- UNII Band 7 - 20MHz - Ch.149) - SP

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6535MHz
Channel:	117

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13070.00	Peak	Н	127	70	-65.36	10.44	0.00	52.08	68.20	-16.12
*	19605.00	Average	Н	-	-	-67.05	2.79	-9.54	33.20	53.98	-20.78
*	19605.00	Peak	Н	-	-	-56.28	2.79	-9.54	43.97	73.98	-30.01
	26140.00	Peak	Н	-	-	-58.19	4.83	-9.54	44.11	68.20	-24.09
	32675.00	Peak	Н	-	-	-57.57	6.85	-9.54	46.74	68.20	-21.46

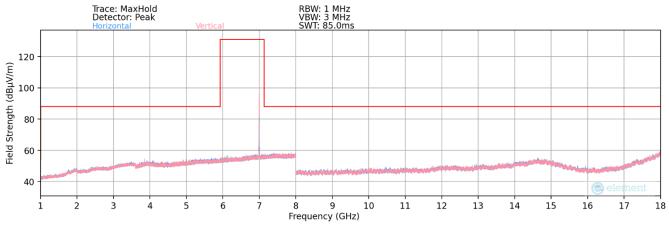
Table 7-68. Radiated Measurements MIMO (26 Tones) - SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 205 of 412	
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 395 of 413	
© 2022 ELEMENT	•		V 9.0 02/01/2019	

802.11ax
MCS0
4
1 & 3 Meters
6695MHz
149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Average	Н	107	59	-76.61	10.71	0.00	41.10	53.98	-12.88
*	13390.00	Peak	н	107	59	-63.59	10.71	0.00	54.12	73.98	-19.86
*	20085.00	Average	Н	-	-	-67.03	3.04	-9.54	33.47	53.98	-20.51
*	20085.00	Peak	Н	-	-	-56.63	3.04	-9.54	43.87	73.98	-30.11
	26780.00	Peak	Н	-	-	-58.08	5.16	-9.54	44.55	68.20	-23.65
	33475.00	Peak	Н	-	-	-57.87	7.26	-9.54	46.85	68.20	-21.35

Table 7-69. Radiated Measurements MIMO (26 Tones) - SP


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6875MHz
Channel:	185

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13750.00	Peak	Н	-	-	-66.10	11.50	0.00	52.40	68.20	-15.80
*	20625.00	Average	Н	-	-	-68.29	3.28	-9.54	32.45	53.98	-21.53
*	20625.00	Peak	Н	-	-	-57.62	3.28	-9.54	43.12	73.98	-30.86
	27500.00	Peak	Н	-	-	-57.54	4.79	-9.54	44.71	68.20	-23.49
	34375.00	Peak	Н	-	-	-57.34	7.69	-9.54	47.81	68.20	-20.39

Table 7-70. Radiated Measurements MIMO (26 Tones) - SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 206 of 412	
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 396 of 413	
© 2022 ELEMENT	V 9.0 02/01/2019			

Plot 7-692. Radiated Spurious Plot above 1GHz MIMO (802.11ax- UNII Band 8 - 20MHz - Ch.209) - LPI

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6895MHz
Channel:	189

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13790.00	Peak	Н	-	-	-65.87	13.66	0.00	54.79	68.20	-13.41
*	20685.00	Average	Н	-	-	-66.42	3.27	-9.54	34.31	53.98	-19.67
*	20685.00	Peak	Н	-	-	-55.98	3.27	-9.54	44.75	73.98	-29.23
	27580.00	Peak	Н	-	-	-55.16	5.23	-9.54	47.53	68.20	-20.67
	34475.00	Peak	Н	-	-	-53.87	7.64	-9.54	51.23	68.20	-16.97

Table 7-71. Radiated Measurements MIMO (26 Tones) - LPI

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 207 of 412	
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 397 of 413	
© 2022 ELEMENT	•		V 9.0 02/01/2019	

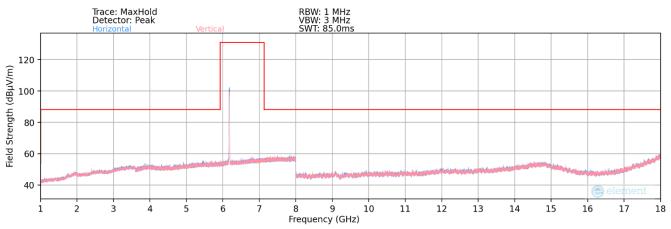
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6995MHz
Channel:	209

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13990.00	Peak	н	-	-	-65.72	13.89	0.00	55.17	68.20	-13.03
*	20985.00	Average	н	-	-	-66.44	3.46	-9.54	34.48	53.98	-19.50
*	20985.00	Peak	н	-	-	-56.58	3.46	-9.54	44.34	73.98	-29.64
	27980.00	Peak	н	-	-	-56.02	5.02	-9.54	46.46	68.20	-21.74
	34975.00	Peak	н	-	-	-54.56	7.91	-9.54	50.81	68.20	-17.39

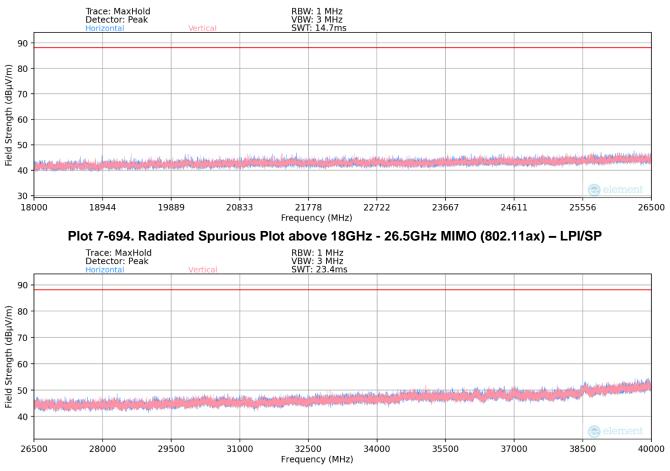
Table 7-72. Radiated Measurements MIMO (26 Tones) - LPI

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	7115MHz
Channel:	233

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	14230.00	Peak	Н	-	-	-66.38	14.92	0.00	55.54	68.20	-12.66
*	21345.00	Average	Н	-	-	-66.31	3.78	-9.54	34.93	53.98	-19.05
*	21345.00	Peak	Н	-	-	-55.42	3.78	-9.54	45.82	73.98	-28.16
	28460.00	Peak	Н	-	-	-55.84	5.45	-9.54	47.07	68.20	-21.13
	35575.00	Peak	Н	-	-	-54.36	7.65	-9.54	50.75	68.20	-17.45


Table 7-73. Radiated Measurements MIMO (26 Tones) - LPI

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Page 398 of 413		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 398 01 413		
© 2022 ELEMENT	•	•	V 9.0 02/01/2019		



7.7.2

MIMO Radiated Spurious Emission Measurements (242 Tones)

Plot 7-693. Radiated Spurious Plot above 1GHz MIMO (802.11ax - UNII Band 5 - 20MHz - Ch.45) - LPI/SP

Plot 7-695. Radiated Spurious Plot 26.5GHz - 40GHz MIMO (802.11ax) - LPI/SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)						
Test Report S/N:	Test Dates:	EUT Type:	Dogo 200 of 112					
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 399 of 413					
2022 ELEMENT V 9.0 02/01/2019								

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5935MHz
Channel:	2

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Average	Н	-	-	-81.68	9.82	0.00	35.14	53.98	-18.84
*	11870.00	Peak	н	-	-	-69.65	9.82	0.00	47.17	73.98	-26.81
*	17805.00	Average	Н	-	-	-77.38	15.94	0.00	45.56	53.98	-8.42
*	17805.00	Peak	Н	-	-	-66.52	15.94	0.00	56.42	73.98	-17.56
*	23740.00	Average	Н	-	-	-66.61	3.89	-9.54	34.74	53.98	-19.24
*	23740.00	Peak	н	-	-	-55.37	3.89	-9.54	45.98	73.98	-28.00
	29675.00	Peak	н	-	-	-55.51	6.04	-9.54	47.99	68.20	-20.21

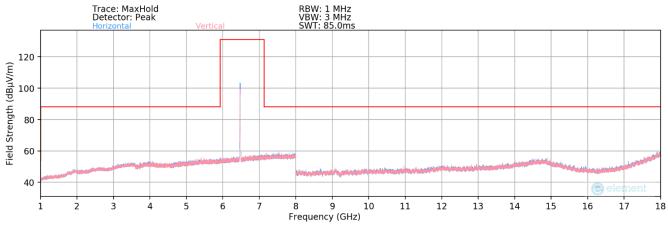
Table 7-74. Radiated Measurements MIMO (242 Tones) – LPI/SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	/N: Test Dates: EUT Type:		Page 400 of 413		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Fage 400 01 413		
© 2022 ELEMENT			V 9 0 02/01/2019		

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Average	Н	-	-	-81.44	9.88	0.00	35.44	53.98	-18.54
*	12350.00	Peak	н	-	-	-69.37	9.88	0.00	47.51	73.98	-26.47
*	18525.00	Average	Н	-	-	-66.16	1.68	-9.54	32.98	53.98	-21.00
*	18525.00	Peak	Н	-	-	-56.09	1.68	-9.54	43.05	73.98	-30.93
	24700.00	Peak	Н	-	-	-54.60	4.25	-9.54	47.11	68.20	-21.09
	30875.00	Peak	Н	-	-	-56.49	6.73	-9.54	47.70	68.20	-20.50

Table 7-75. Radiated Measurements MIMO (242 Tones) - LPI/SP


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6415MHz
Channel:	93

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	12830.00	Peak	Н	-	-	-69.72	10.00	0.00	47.28	68.20	-20.92
*	19245.00	Average	Н	-	-	-66.28	2.45	-9.54	33.63	53.98	-20.35
*	19245.00	Peak	Н	-	-	-56.14	2.45	-9.54	43.77	73.98	-30.21
	25660.00	Peak	Н	-	-	-55.08	4.57	-9.54	46.95	68.20	-21.25
	32075.00	Peak	Н	-	-	-55.49	6.88	-9.54	48.85	68.20	-19.35

Table 7-76. Radiated Measurements MIMO (242 Tones) – LPI/SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Page 401 of 413		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Fage 401 01 413		
© 2022 ELEMENT	•		V 9.0 02/01/2019		

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6435MHz
Channel:	97

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	12870.00	Peak	Н	-	-	-68.28	12.51	0.00	51.23	68.20	-16.97
*	19305.00	Average	Н	-	-	-65.48	2.29	-9.54	34.27	53.98	-19.71
*	19305.00	Peak	Н	-	-	-54.94	2.29	-9.54	44.81	73.98	-29.17
	25740.00	Peak	Н	-	-	-55.66	4.49	-9.54	46.29	68.20	-21.91
	32175.00	Peak	Н	-	-	-55.04	7.04	-9.54	49.46	68.20	-18.74

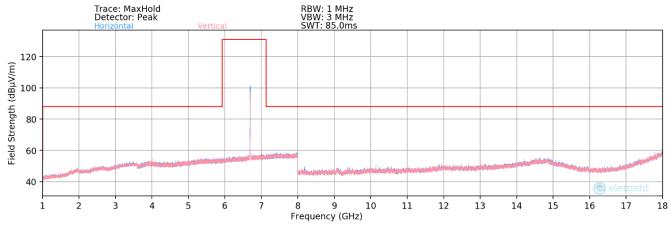
Table 7-77. Radiated Measurements MIMO (242 Tones) – LPI

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 402 of 442
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 402 of 413
© 2022 ELEMENT	•		V 9.0 02/01/2019

Worst Case Mode:	802.11ax		
Worst Case Transfer Rate:	MCS0		
RU Index:	61		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	6475MHz		
Channel:	105		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	12950.00	Peak	н	-	-	-69.67	12.67	0.00	50.00	68.20	-18.20
*	19425.00	Average	н	-	-	-65.61	2.36	-9.54	34.21	53.98	-19.77
*	19425.00	Peak	н	-	-	-55.42	2.36	-9.54	44.40	73.98	-29.58
	25900.00	Peak	Н	-	-	-55.12	4.84	-9.54	47.18	68.20	-21.02
	32375.00	Peak	н	-	-	-55.02	6.78	-9.54	49.22	68.20	-18.98

Table 7-78. Radiated Measurements MIMO (242 Tones) – LPI


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6515MHz
Channel:	113

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13030.00	Peak	Н	-	-	-69.25	12.83	0.00	50.58	68.20	-17.62
*	19545.00	Average	Н	-	-	-65.55	2.31	-9.54	34.22	53.98	-19.76
*	19545.00	Peak	Н	-	-	-54.91	2.31	-9.54	44.86	73.98	-29.12
	26060.00	Peak	Н	-	-	-55.42	4.92	-9.54	46.96	68.20	-21.24
ĺ	32575.00	Peak	Н	-	-	-55.10	6.55	-9.54	48.91	68.20	-19.29

Table 7-79. Radiated Measurements MIMO (242 Tones) – LPI

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 402 of 412		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 403 of 413		
© 2022 ELEMENT	-		V 9.0 02/01/2019		

Plot 7 314. Radiated Spurious Plot above 1GHz MIMO (802.11ax- UNII Band 7 - 20MHz - Ch.149) - LPI/SP

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6535MHz
Channel:	117

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	19605.00	Average	Н	-	-	-65.77	2.79	-9.54	34.48	53.98	-19.50
*	19605.00	Peak	Н	-	-	-54.20	2.79	-9.54	46.05	73.98	-27.93
	26140.00	Peak	Н	-	-	-55.10	4.83	-9.54	47.19	68.20	-21.01
	32675.00	Peak	Н	-	-	-54.47	6.85	-9.54	49.84	68.20	-18.36

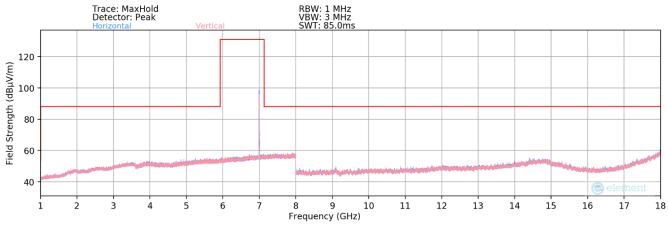
Table 7-80. Radiated Measurements MIMO (242 Tones) – LPI/SP

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 404 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 404 of 413
© 2022 ELEMENT	•		V 9.0 02/01/2019

802.11ax		
MCS0		
61		
1 & 3 Meters		
6695MHz		
149		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13070.00	Peak	н	-	-	-70.04	10.44	0.00	47.40	68.20	-20.80
*	19605.00	Average	н	-	-	-65.77	2.79	-9.54	34.48	53.98	-19.50
*	19605.00	Peak	н	-	-	-54.20	2.79	-9.54	46.05	73.98	-27.93
	26140.00	Peak	Н	-	-	-55.10	4.83	-9.54	47.19	68.20	-21.01
	32675.00	Peak	н	-	-	-54.47	6.85	-9.54	49.84	68.20	-18.36

Table 7-81. Radiated Measurements MIMO (242 Tones) – LPI/SP


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6875MHz
Channel:	185

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13750.00	Peak	Н	-	-	-69.36	11.50	0.00	49.14	68.20	-19.06
*	20625.00	Average	Н	-	-	-66.80	3.28	-9.54	33.94	53.98	-20.04
*	20625.00	Peak	н	-	-	-56.25	3.28	-9.54	44.49	73.98	-29.49
	27500.00	Peak	Н	-	-	-54.82	4.79	-9.54	47.43	68.20	-20.77
	34375.00	Peak	Н	-	-	-55.21	7.69	-9.54	49.94	68.20	-18.26

Table 7-82. Radiated Measurements MIMO (242 Tones) – LPI/SP

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 105 of 112		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 405 of 413		
© 2022 ELEMENT	•	•	V 9.0 02/01/2019		

Plot 7 314. Radiated Spurious Plot above 1GHz MIMO (802.11ax- UNII Band 8 - 20MHz - Ch.209) - LPI

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6895MHz
Channel:	189

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13790.00	Peak	Н	-	-	-69.20	13.66	0.00	51.46	68.20	-16.74
*	20685.00	Average	Н	-	-	-66.64	3.27	-9.54	34.09	53.98	-19.89
*	20685.00	Peak	Н	-	-	-56.50	3.27	-9.54	44.23	73.98	-29.75
	27580.00	Peak	Н	-	-	-55.56	5.23	-9.54	47.13	68.20	-21.07
	34475.00	Peak	Н	-	-	-55.45	7.64	-9.54	49.65	68.20	-18.55

Table 7-83. Radiated Measurements MIMO (242 Tones) – LPI

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 406 of 412		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 406 of 413		
© 2022 ELEMENT	V 9.0 02/01/2019				

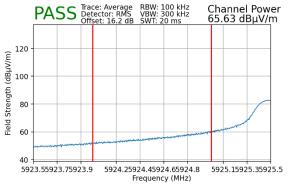
Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6995MHz
Channel:	209

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13990.00	Peak	Н	-	-	-68.78	13.89	0.00	52.11	68.20	-16.09
*	20985.00	Average	Н	-	-	-66.74	3.46	-9.54	34.18	53.98	-19.80
*	20985.00	Peak	Н	-	-	-56.38	3.46	-9.54	44.54	73.98	-29.44
	27980.00	Peak	Н	-	-	-55.82	5.02	-9.54	46.65	68.20	-21.55
	34975.00	Peak	Н	-	-	-54.49	7.91	-9.54	50.87	68.20	-17.33

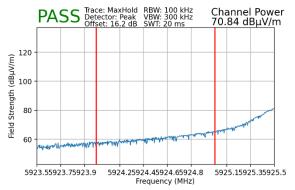
Table 7-84. Radiated Measurements MIMO (242 Tones) - LPI

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	7115MHz
Channel:	233

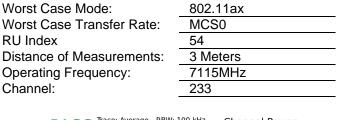
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	14230.00	Peak	Н	-	-	-69.18	14.92	0.00	52.74	68.20	-15.46
*	21345.00	Average	Н	-	-	-66.45	3.78	-9.54	34.79	53.98	-19.19
*	21345.00	Peak	Н	-	-	-55.43	3.78	-9.54	45.81	73.98	-28.17
	28460.00	Peak	Н	-	-	-55.02	5.45	-9.54	47.89	68.20	-20.31
	35575.00	Peak	Н	-	-	-54.36	7.65	-9.54	50.75	68.20	-17.45

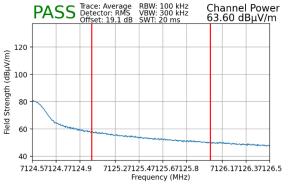

Table 7-85. Radiated Measurements MIMO (242 Tones) – LPI

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 407 of 412		
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 407 of 413		
© 2022 ELEMENT	•	·	V 9.0 02/01/2019		

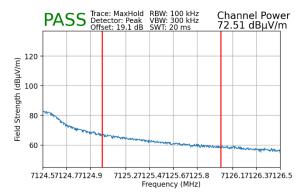


7.7.3 MIMO Radiated Band Edge Measurements (20MHz BW – Partial Tone) §15.407(b.6) §15.205 §15.209

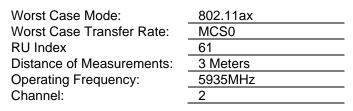

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index	53
Distance of Measurements:	3 Meters
Operating Frequency:	5935MHz
Channel:	2

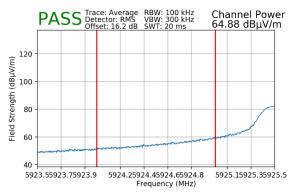


Plot 7-697. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 5) SP

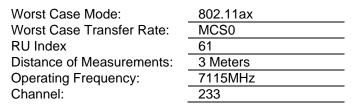


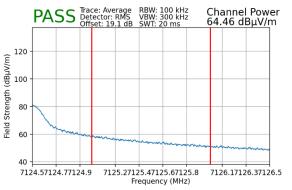
Plot 7-698. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 5) SP

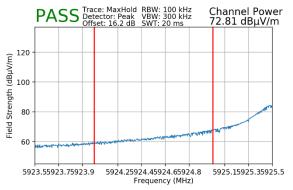



Plot 7-700. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 8) LPI

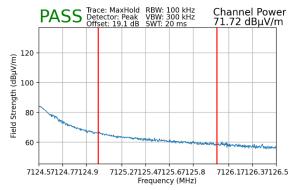
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 409 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 408 of 413
© 2022 ELEMENT	•		V 9.0 02/01/2019



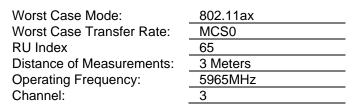

7.7.4 MIMO Radiated Band Edge Measurements (20MHz BW – Full Tone) §15.407(b.6) §15.205 §15.209

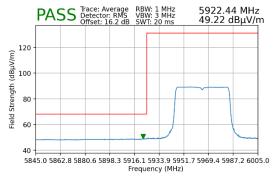


Plot 7-701. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 5) SP

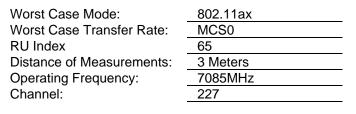


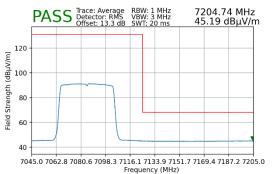
Plot 7-702. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 5) SP

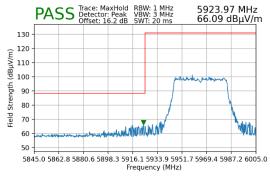



Plot 7-704. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 8) LPI

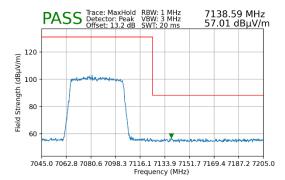
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 409 of 413
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Fage 409 01 413
© 2022 ELEMENT	*		V 9.0 02/01/2019




7.7.5 MIMO Radiated Band Edge Measurements (40MHz BW – Full Tone) §15.407(b.5) §15.205 §15.209

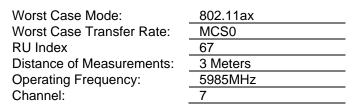


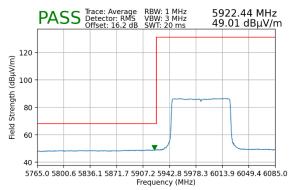
Plot 7-705. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 5) LPI/SP



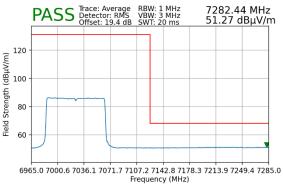
Plot 7-707. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 8) LPI

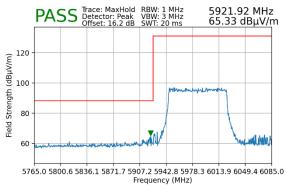
Plot 7-706. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 5) LPI/SP



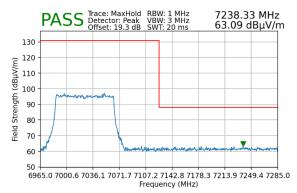

Plot 7-708. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 8) LPI

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 110 of 112
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 410 of 413
© 2022 ELEMENT	•	•	V 9 0 02/01/2019

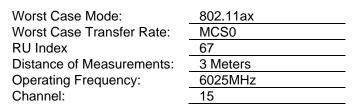

7.7.6 MIMO Radiated Band Edge Measurements (80MHz BW Full Tone) §15.407(b.5) §15.205 §15.209

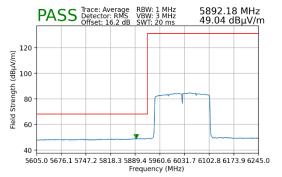


Plot 7-709. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 5) LPI/SP

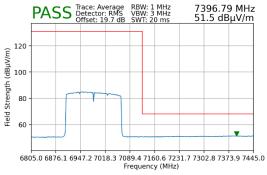

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index	67
Distance of Measurements:	3 Meters
Operating Frequency:	7025MHz
Channel:	215

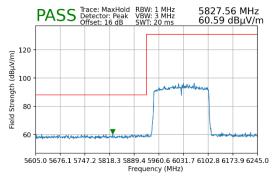
Plot 7-710. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 5) LPI/SP



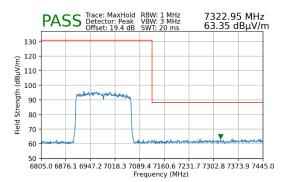


FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 411 of 412
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Page 411 of 413
© 2022 ELEMENT	•		V 9.0 02/01/2019


7.7.7 MIMO Radiated Band Edge Measurements (160MHz BW Full Tone) §15.407(b.5) §15.205 §15.209



Plot 7-713. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 5) LPI/SP


Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
RU Index	67
Distance of Measurements:	3 Meters
Operating Frequency:	6985MHz
Channel:	207

Plot 7-715. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 8) LPI

Plot 7-714. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 5) LPI/SP

Plot 7-716. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 8) LPI

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 412 of 413
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Fage 412 01 413
© 2022 ELEMENT	•		V 9.0 02/01/2019

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMS916U** is in compliance with Part 15 Subpart E (15.407) of the FCC Rules for operation as a client device.

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 413 of 413
1M2209010097-16.A3L	9/03/2022 - 11/18/2022	Portable Handset	Fage 413 01 413
© 2022 ELEMENT	-		V 9.0 02/01/2019