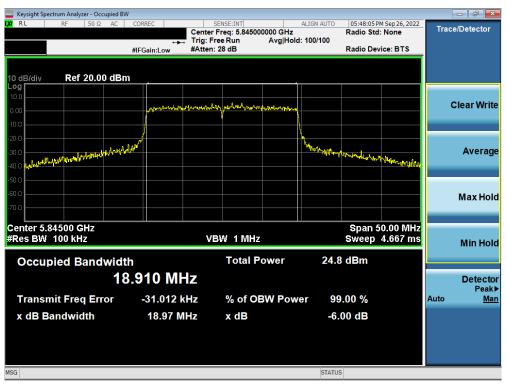
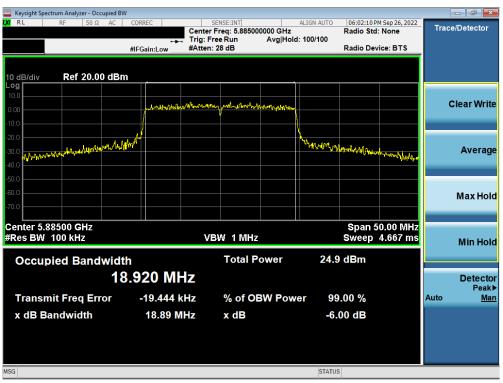


Plot 7-129. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 3/4) - Ch. 169)


Plot 7-130. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 4) - Ch. 173)

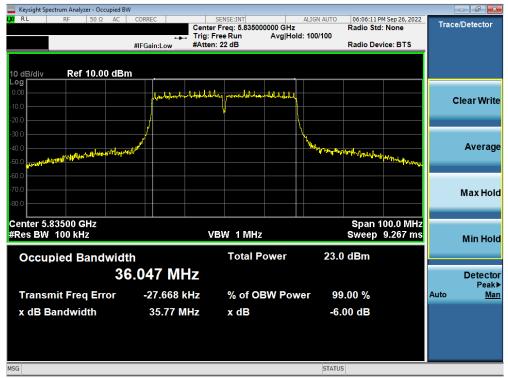
FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 25 of 254		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 85 of 254		
		· · · · · · · · · · · · · · · · · · ·	V9 0 02/01/2019		

Plot 7-131. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 4) - Ch. 177)


Plot 7-132. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 3/4) - Ch. 169)

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 at 054		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 86 of 254		
	•		V9.0.02/01/2019		

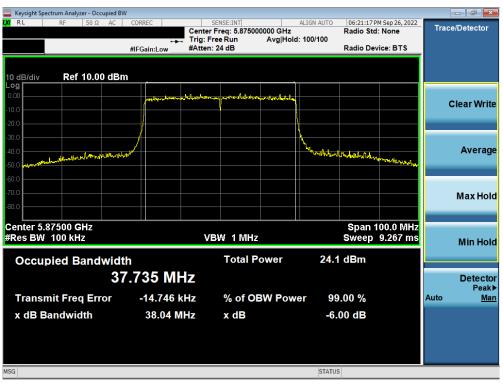
Keysight Spectrum Analyzer - Occupie	ed BW				
LXIRL RF 50ΩA	C CORREC	SENSE:INT r Freq: 5.865000000 GHz	ALIGN AUTO 05:52:14 P Radio Std	M Sep 26, 2022	Trace/Detector
			d: 100/100	: None	
		n: 30 dB	Radio De	vice: BTS	
10 dB/div Ref 20.00 c	IBm				
Log					
10.0					
0.00	millioniphontalitais	my partition of manuscription			Clear Write
-10.0					
-20.0	/				
	n. Mahar		With a shall as a		Average
-30.0 -40.0 pt/plantonia//managed	N		"When when have a straight with the straight we want the straight with the straight	hanna .	Average
				a second	
-50.0					
-60.0					Max Hold
-70.0					
Center 5.86500 GHz				50.00 MHz	
#Res BW 100 kHz	V	BW 1 MHz	Sweep	4.667 ms	Min Hold
		Total Power	24.5 dBm		
Occupied Bandw		Total Power	24.5 aBm		
	18.891 MHz				Detector
					Peak▶
Transmit Freq Error	-8.513 kHz	% of OBW Pow	ver 99.00 %		Auto <u>Man</u>
x dB Bandwidth	18.87 MHz	x dB	-6.00 dB		
MSG			STATUS		


Plot 7-133. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 4) - Ch. 173)

Plot 7-134. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 4) - Ch. 177)

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dawa 07 at 054		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 87 of 254		
			V9.0.02/01/2019		

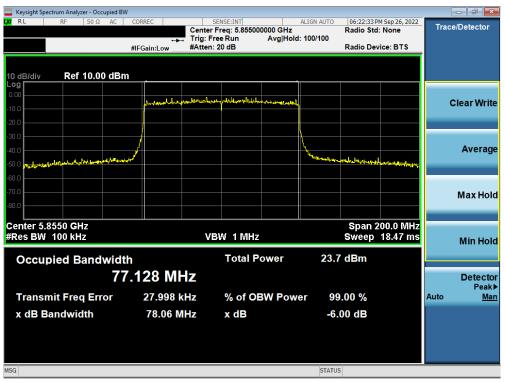
Plot 7-135. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 3/4) - Ch. 167)


Plot 7-136. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 4) - Ch. 175)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 at 05 4
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 88 of 254
	•	•	V9.0.02/01/2019

🔤 Keysight Spectrum Analyzer - Occupi	ied BW				
LXI RL RF 50Ω/	AC CORREC	SENSE:INT		2 PM Sep 26, 2022 td: None	Trace/Detector
		er Freq: 5.835000000 GHz Free Run Avg Ho	did: 100/100	ta: None	
		n: 24 dB		evice: BTS	
10 dB/div Ref 10.00 d	dBm				
Log					
0.00	mounterenter	show reactive sector to all the	4		Clear Write
-10.0					orear mile
-20.0	/				
-30.0				_	
-40.0	/		han a second		Average
-40.0	un ala a a a a a a a a a a a a a a a a a		hayon be alway and they will	herel whether young	Ū
-60.0					
-70.0					Max Hold
-80.0					
Center 5.83500 GHz			Span	100.0 MHz	
#Res BW 100 kHz	١	/BW 1 MHz		00.0 MHZ 9.267 ms	
			Unce	5 5.201 1115	Min Hold
Occupied Bandw	idth	Total Power	23.5 dBm		
	37.765 MHz				Detector Peak▶
Transmit Freq Error	-30.042 kHz	% of OBW Po	wer 99.00 %		Auto <u>Man</u>
x dB Bandwidth	38.05 MHz	x dB	-6.00 dB		
MSG			STATUS		

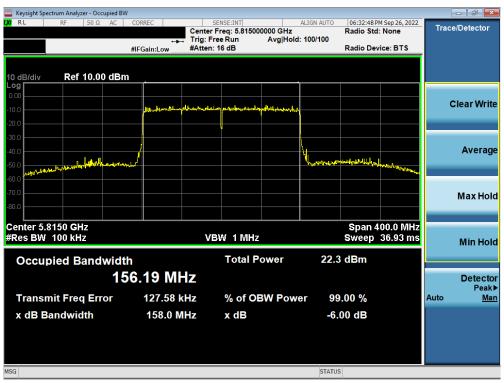
Plot 7-137. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 3/4) - Ch. 167)


Plot 7-138. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 4) - Ch. 175)

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dawa 00 at 054		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 89 of 254		
			V9.0.02/01/2019		

Keysight Spectrum Analyzer - Occ	upied BW									
<mark>(X)</mark> RL RF 50 Ω	AC COR	REC		NSE:INT req: 5.85500	0000 GH7	ALIGN AUTO	06:24:43 P Radio Std	M Sep 26, 2022	Trac	e/Detector
			, Trig: Free	e Run		d: 100/100				
	#IFC	Gain:Low	#Atten: 2	0 dB			Radio Dev	vice: BTS		
10 dB/div Ref 5.00	dBm									
-5.00		utut that	at in takin.	بالمار ماللا						
		Mululunia	and Vigoria's Constraints							Clear Write
-15.0										
-25.0						Į.				
-35.0	/					Ν.				
-45.0	Holen March					TV-lot-sichtly	with MANNAN	markenste		Average
-55.0									_	
-65.0										
-75.0										Max Hold
-85.0										muxmonu
Center 5.8550 GHz			VD					200.0 MHz		
#Res BW 100 kHz			VBI	N/1MHz			Sweep	18.47 ms		Min Hold
Occupied Band	width			Total P	ower	22.9	dBm			
Cocupica Balla										
	15.3	98 MI	ΠZ							Detector Peak▶
Transmit Freq Err	or	19.175 k	(Hz	% of OE	3W Pow	ver 99	.00 %		Auto	Man
x dB Bandwidth		75.57 N	IHz	x dB		-6-	00 dB			
				A		01				
MSG						STATUS	5			

Plot 7-139. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 3/4) - Ch. 171)

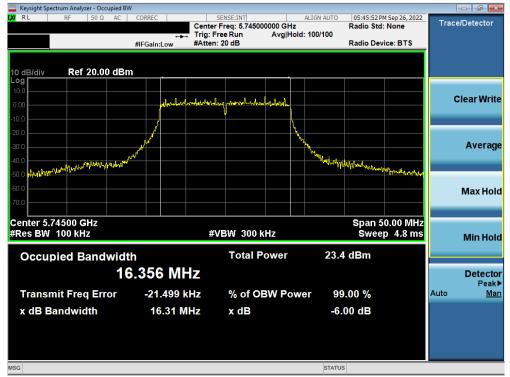

Plot 7-140. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax (UNII Band 3/4) - Ch. 171)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 90 of 254
	•	•	V9.0 02/01/2019

🔤 Keysight Spectrum Analyzer - Occupi	ied BW								
LX/RL RF 50Ω	AC CORREC		NSE:INT	0000 CH-	ALIGN AUTO	06:28:44 P Radio Std	M Sep 26, 2022	Trac	e/Detector
	-	Trig: Fre	req: 5.81500 e Run		I: 100/100	Radio Sta	: None		
	#IFGain:Low	#Atten: 2		0.		Radio Dev	rice: BTS		
10 dB/div Ref 10.00 (dBm								
Log									
0.00									Clear Write
-10.0	hutter and the second	a Manada Mana	phanilda, bhinhili	hur yuu	1				
-20.0									
-30.0									
-40.0	/				կ				Average
hall have	mentioned				Man La dia series	an work the	n Ala		
along Will a second							and here and the second		
-60.0									
-70.0									Max Hold
-80.0									
Center 5.8150 GHz #Res BW 100 kHz		VD	N/1MHz				00.0 MHz 36.93 ms		
#Res BW 100 KHZ		VDV				Sweep	30.93 ms		Min Hold
Occupied Bandw	vidth		Total P	ower	22.5	dBm			
Occupied Ballow			i otari i		22.0				
	154.93 M	HZ							Detector
Transmit Freq Erro	r 58.685	kHz	% of OE	BW Pow	er 99	.00 %		Auto	Peak► <u>Man</u>
x dB Bandwidth	156.0	MHz	x dB		-6	00 dB			
	100.0		A GD		0.				
MSG					STATUS	; 			

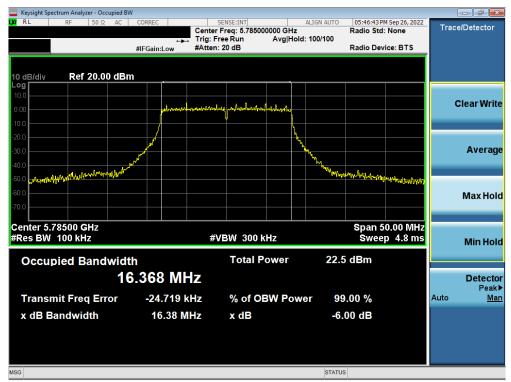
Plot 7-141. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 3/4) - Ch. 163)

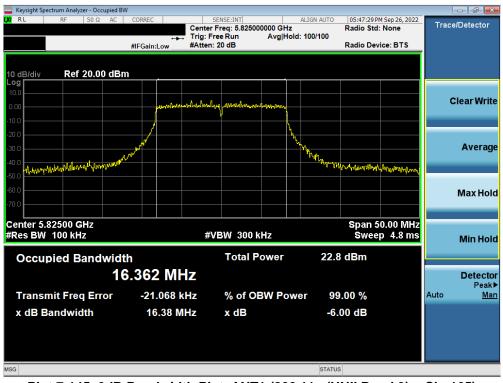
Plot 7-142. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax (UNII Band 3/4) - Ch. 163)


FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dawa 04 at 054		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 91 of 254		
			V9.0.02/01/2019		

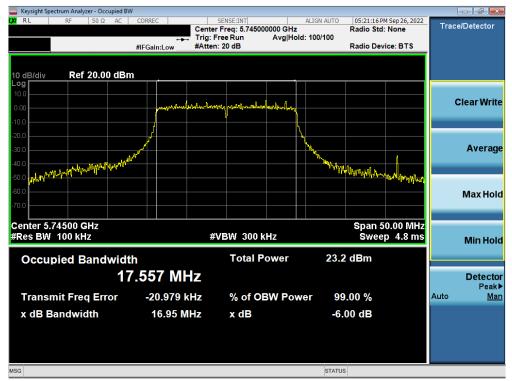
MIMO Antenna-2 6dB Bandwidth Measurements

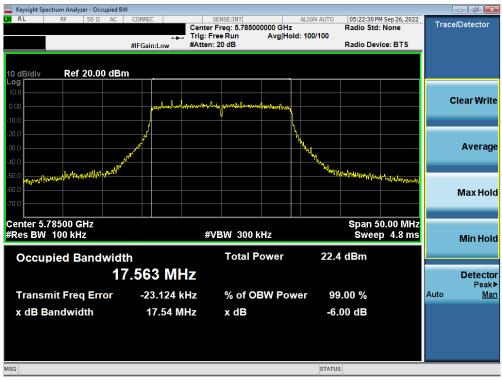
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	16.31
	5785	157	а	6	16.38
	5825	165	а	6	16.38
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	16.95
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.54
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.24
<u>.</u>	5745	149	ax (20MHz)	6.5/7.2 (MCS0)	18.77
Band	5785	157	ax (20MHz)	6.5/7.2 (MCS0)	19.02
ä	5825	165	ax (20MHz)	6.5/7.2 (MCS0)	18.84
	5755	151	n (40MHz)	13.5/15 (MCS0)	34.47
	5795	159	n (40MHz)	13.5/15 (MCS0)	36.26
	5755	151	ax (40MHz)	13.5/15 (MCS0)	37.89
	5795	159	ax (40MHz)	13.5/15 (MCS0)	38.07
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.99
	5775	155	ax (80MHz)	29.3/32.5 (MCS0)	78.02


Table 7-6. Conducted Bandwidth Measurements MIMO ANT2

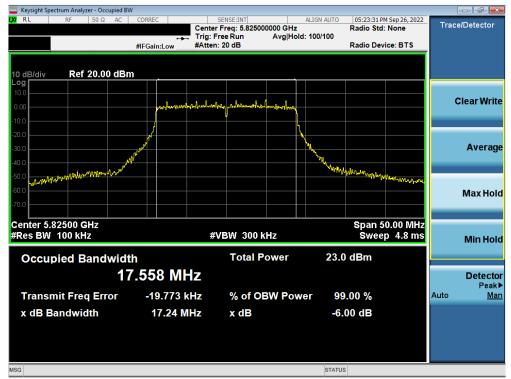

Plot 7-143. 6dB Bandwidth Plot ANT2 (802.11a (UNII Band 3) – Ch. 149)

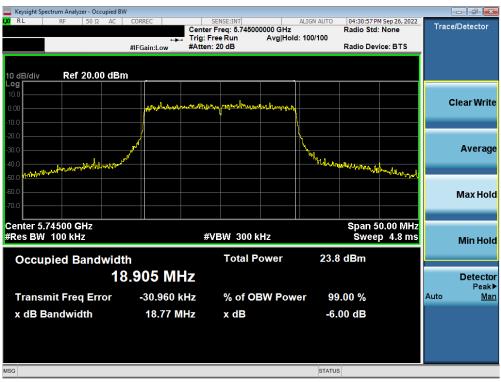
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 02 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 92 of 254
		·	V9.0 02/01/2019




Plot 7-145. 6dB Bandwidth Plot ANT1 (802.11a (UNII Band 3) - Ch. 165)

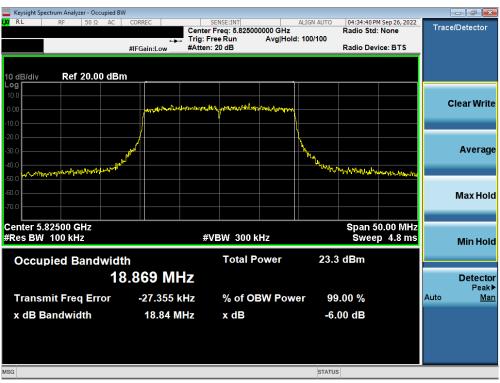
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 02 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 93 of 254
	•		V9.0 02/01/2019


Plot 7-146. 6dB Bandwidth Plot ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-147. 6dB Bandwidth Plot ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

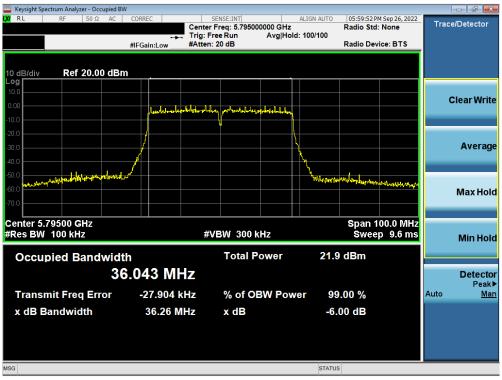
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 04 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 94 of 254
•	·		V9.0 02/01/2019


Plot 7-148. 6dB Bandwidth Plot ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-149. 6dB Bandwidth Plot ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 149)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 05 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 95 of 254
•	•	÷	V9.0.02/01/2019


Plot 7-150. 6dB Bandwidth Plot ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 157)


Plot 7-151. 6dB Bandwidth Plot ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 165)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 96 of 254
	•		V9.0.02/01/2019

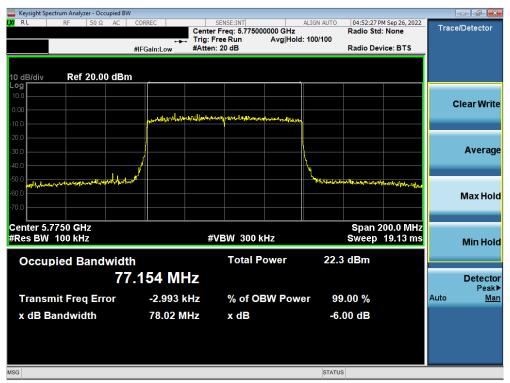
Plot 7-152. 6dB Bandwidth Plot ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

Plot 7-153. 6dB Bandwidth Plot ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Da a a 07 at 05 1
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 97 of 254
•			V9.0 02/01/2019

Keysight Spectrum Analyzer - Occupied					- 6 -
🗶 RL RF 50Ω AC	CORREC	SENSE:INT er Freg: 5.755000000 GHz	ALIGN AUTO 04:44:08 P Radio Std	M Sep 26, 2022 : None	Trace/Detector
		Free Run Avg Hold en: 20 dB	: 100/100 Radio Dev	des: BTS	
	#IFGain:Low #Atte	en: 20 dB	Radio De	lice: BTS	
10 dB/div Ref 20.00 dE	sm				
10.0					Clear Writ
0.00	www.lawson	way and the way and a state			Clear Writ
-10.0					
-20.0					
-30.0					Averag
-40.0			<u>ч</u>		
-50.0			monumberstung	Whendyhand	
-60.0					Max Hol
-70.0					
Center 5.75500 GHz			Snap 1	00.0 MHz	
#Res BW 100 kHz	#	#VBW 300 kHz		p 9.6 ms	Min Hol
				<u> </u>	WIITHO
Occupied Bandwic	lth	Total Power	23.3 dBm		
3	7.715 MHz				Detecto
Tranomit Frag Error	25 020 kU-	% of OBW Pow	er 99.00 %		Peak Auto Ma
Transmit Freq Error	-35.820 kHz				Auto <u>Ma</u>
x dB Bandwidth	37.89 MHz	x dB	-6.00 dB		
ISG			STATUS		


Plot 7-154. 6dB Bandwidth Plot ANT2 (40MHz BW 802.11ax (UNII Band 3) - Ch. 151)


Plot 7-155. 6dB Bandwidth Plot ANT2 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 00 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 98 of 254
	•		V9.0.02/01/2019

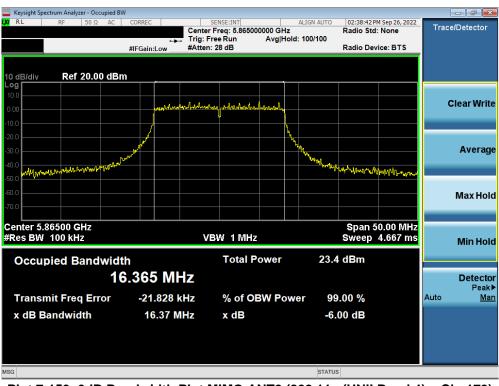
Plot 7-156. 6dB Bandwidth Plot ANT2 (80MHz BW 802.11n (UNII Band 3) - Ch. 155)

Plot 7-157. 6dB Bandwidth Plot ANT2 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 00 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 99 of 254
	-		V9.0.02/01/2019

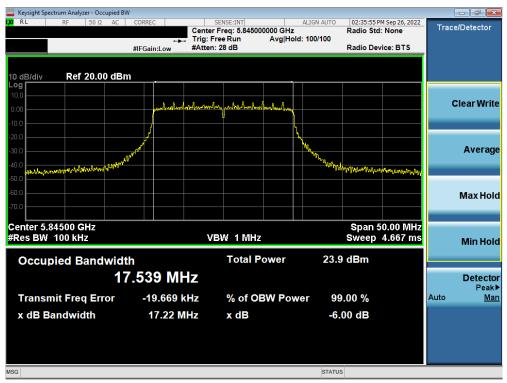


	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
Band 3/4	5845	169	а	6	16.37
Band 4	5865	173	а	6	16.37
Danu 4	5885	177	а	6	16.35
Band 3/4	5845	169	n (20MHz)	6.5/7.2 (MCS0)	17.22
Band 4	5865	173	n (20MHz)	6.5/7.2 (MCS0)	17.57
Dallu 4	5885	177	n (20MHz)	6.5/7.2 (MCS0)	17.57
Band 3/4	5845	169	ax (20MHz)	6.5/7.2 (MCS0)	18.92
Band 4	5865	173	ax (20MHz)	6.5/7.2 (MCS0)	18.87
Dallu 4	5885	177	ax (20MHz)	6.5/7.2 (MCS0)	18.86
Band 3/4	5835	167	n (40MHz)	13.5/15 (MCS0)	35.42
Band 4	5875	175	n (40MHz)	13.5/15 (MCS0)	36.30
Band 3/4	5835	167	ax (40MHz)	13.5/15 (MCS0)	38.10
Band 4	5875	175	ax (40MHz)	13.5/15 (MCS0)	38.17
	5855	171	ac (80MHz)	29.3/32.5 (MCS0)	75.30
Rand 2/4	5855	171	ax (80MHz)	29.3/32.5 (MCS0)	78.01
Band 3/4	5815	163	ac (160MHz)	58.5/65 (MCS0)	156.00
	5815	163	ax (160MHz)	58.5/65 (MCS0)	157.30

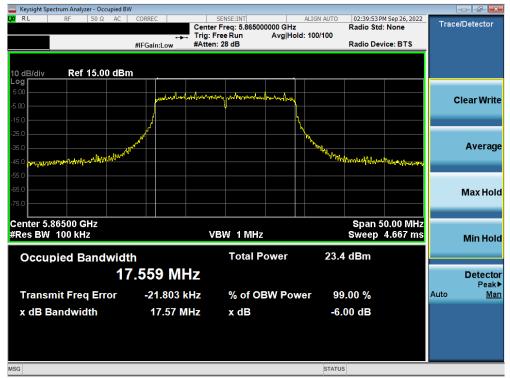

 Table 7-7. Conducted Bandwidth Measurements Band 4 MIMO ANT2

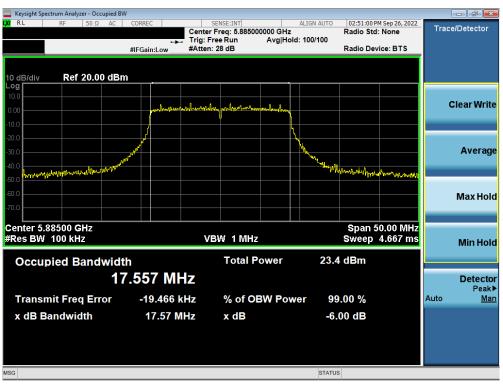
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 100 of 254
			\/0.0.02/01/2010


Plot 7-158. 6dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 3/4) - Ch. 169)


Plot 7-159. 6dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 4) - Ch. 173)

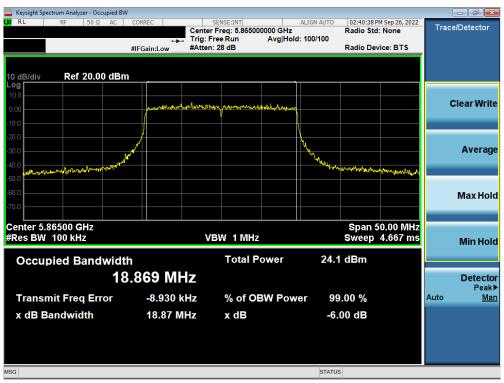
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 404 af 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 101 of 254
	-		V9.0.02/01/2019


Plot 7-160. 6dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 4) - Ch. 177)

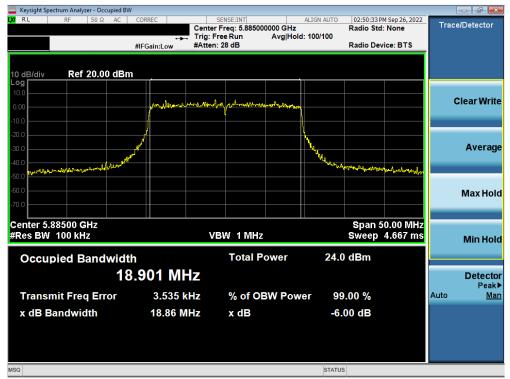

Plot 7-161. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 3/4) - Ch. 169)

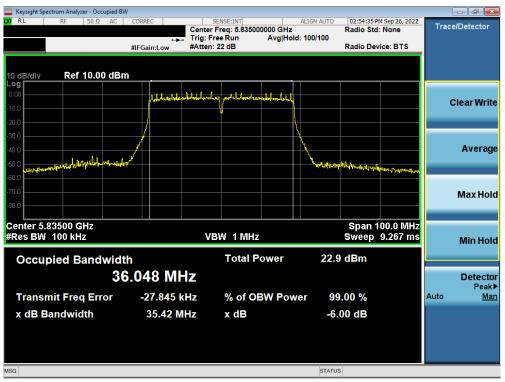
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 102 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 102 of 254
			\/9.0.02/01/2019

Plot 7-162. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 4) - Ch. 173)

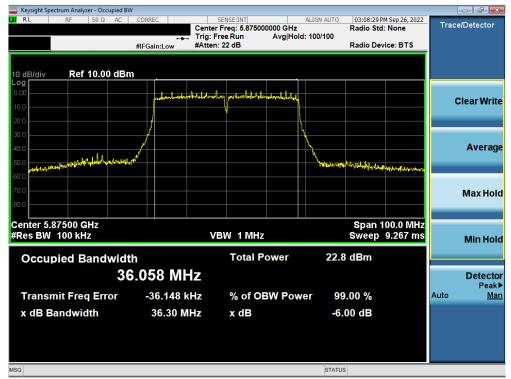

Plot 7-163. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 4) - Ch. 177)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 103 of 254
	•		V9.0.02/01/2019


Plot 7-164. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax (UNII Band 3/4) - Ch. 169)


Plot 7-165. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax (UNII Band 4) - Ch. 173)

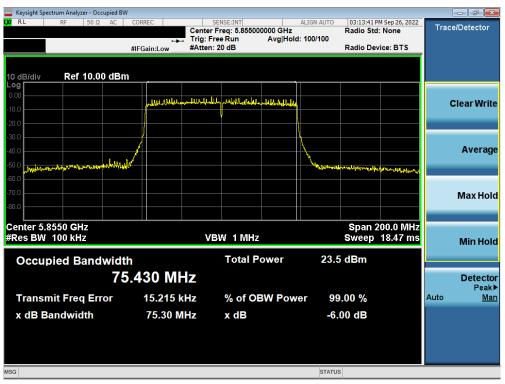
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 404 af 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 104 of 254
	•	•	V9.0 02/01/2019


Plot 7-166. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax (UNII Band 4) - Ch. 177)

Plot 7-167. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 3/4) - Ch. 167)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 105 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 105 of 254
	-		V9.0 02/01/2019

Plot 7-168. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 4) - Ch. 175)


Plot 7-169. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax (UNII Band 3/4) - Ch. 167)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 106 of 254
		· · · · · · · · · · · · · · · · · · ·	V9.0 02/01/2019

Keysight Spectrum Analyzer - (_	
XIRL RF 50	Ω AC	CORREC	С		SE:INT eq: 5.8750	00000 GHz	ALIGN AUTO	03:09:12 P Radio Std	M Sep 26, 2022 : None	Trac	e/Detector
		#IFGain:L		rig: Free Atten: 24		Avg Hold	d: 100/100	Radio Dev	vice: BTS		
		#IFGaIII:L	<u>w</u>	444011. 24				Rudio Dei	100.010		
10 dB/div Ref 10.	.00 dBm										
Log											
0.00		veren	والمحادث فيستعلموا والا	and the party of	withmenter	moneyhyladytes					Clear Write
10.0											
-20.0		1					l I				
30.0		7					λ.				Average
40.0	الحد معمد ألدر	J.C.					· ·				Average
Algent Low All Young Contraction								^{┲╏╏} ╍╄╌╋┛┠╍╉╱╘┫╱╄ _┱ ╋	a frank after a start after a		
-60.0											
-70.0											Max Hold
-00.0											
Center 5.87500 GHz									00.0 MHz		
#Res BW 100 kHz				VBM	V 1 MHz			Sweep	9.267 ms		Min Hold
Occupied Ban	dwidt	h			Total F	ower	23.	3 dBm			
			MHz								Detector
											Peak
Transmit Freq E	rror	-16.	514 kHz	2	% of O	BW Pow	er 99	9.00 %		Auto	Mar
x dB Bandwidth		38.	17 MHz		x dB		-6.	.00 dB			
ISG							STATU	s			

Plot 7-170. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax (UNII Band 4) - Ch. 175)

Plot 7-171. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 3/4) - Ch. 171)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 407 of 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 107 of 254
	•	-	V9.0.02/01/2019

Keysight Spectrum Analyzer - Occupied B\	N					1	- 6 ×
LXI RE 50Ω AC	CORREC	SENSE:INT			M Sep 26, 2022	Trace	Detector
	- -	Center Freq: 5.85500 Trig: Free Run	Avg Hold: 100/	Radio Std	None		, Doctoorton
	#IFGain:Low	#Atten: 22 dB	Avginoid. 100	Radio Dev	ice: BTS		
10 dB/div Ref 10.00 dBr	n						
Log 0.00							
	where the an	maladore white war	American I			c	lear Write
-10.0							iour mileo
-20.0							
-30.0			\				
			h,				Average
-40.0							Average
-50.0	All and a second s		«~	whole whole we have a pre-	Whenterster		
-60.0							
-70.0							
							Max Hold
-80.0							
Center 5.8550 GHz				Enon 2	00.0 MHz		
#Res BW 100 kHz		VBW 1 MHz			18.47 ms		
#Res BW TOURHZ				Sweep	16.47 1115		Min Hold
Occurried Denducid		Total P	ower	23.1 dBm			
Occupied Bandwidt			0000	23.1 0011			
7	7.284 MH	Z					Detector
							Peak▶
Transmit Freq Error	-36.961 k	Hz % of O	3W Power	99.00 %		Auto	<u>Man</u>
x dB Bandwidth	78.01 M	Hz xdB		-6.00 dB			
	70.01 WI			-0.00 UB			
MSG				STATUS			

Plot 7-172. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax (UNII Band 3/4) - Ch. 171)

Plot 7-173. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ac (UNII Band 3/4) - Ch. 163)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 108 of 254
	•	-	V9.0 02/01/2019

www.www.www.www.www.www.www.www.www.ww	1				
LX/ RL RF 50 Ω AC	CORREC	SENSE:INT ter Freg: 5.815000000 GH	ALIGN AUTO	03:18:39 PM Sep 26 Radio Std: None	
	+++ Trig:	:Free Run Avg H	lold: 100/100		
	#IFGain:Low #Atte	en: 14 dB		Radio Device: B	TS
10 dB/div Ref 10.00 dBm Log	•				
0.00					
-10.0	the Halland to be good among	much phenton property and	wall		Clear Write
-20.0					
-30.0					
-40.0					Average
-50.0	/		- Vi		-
-60.0 malanta Manda Martin Contraction	**			the transferration of the second seco	-Welen
-70.0					Maythal
-80.0					Max Hold
Center 5.8150 GHz				Span 400.0	
#Res BW 100 kHz		VBW 1 MHz		Sweep 36.93	s ms Min Hold
Occupied Bandwidt	h	Total Power	21.8	3 dBm	
					Detecto
19	6.05 MHz				Detecto Peak
Transmit Freq Error	10.752 kHz	% of OBW Po	ower 99	9.00 %	Auto <u>Mar</u>
x dB Bandwidth	157.3 MHz	x dB	-6	00 dB	
	101.0 11112		0.		
MSG			OTATI		
Mou			STATU	5	

Plot 7-174. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax (UNII Band 3/4) – Ch. 163)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 100 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 109 of 254
			\/0.0.02/01/2010

7.4 UNII Output Power Measurement – 802.11a/n/ac/ax §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm). The maximum e.i.r.p. shall not exceed the lesser of 200 mW or 10 + 10 log10B, dBm.

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(18.88) = 23.76dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(19.01) = 23.79dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm). The maximum e.i.r.p. is 36 dBm.

In the 5.850 – 5.895 GHz band, the maximum permissible e.i.r.p is 30dBm.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 110 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 110 of 254
			\/0.0.02/01/2010

MIMO Maximum Conducted Output Power Measurements

	Freq [MHz] Channel	Detector	Cond	lucted Power [dBm]	Conducted Power Limit [dBm]	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]	
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	[]		
	5180	36	AVG	16.87	16.93	19.91	23.98	-4.07	-1.03	18.88	30.00	-11.12
_	5200	40	AVG	16.74	16.99	19.88	23.98	-4.10	-1.03	18.85	30.00	-11.15
Ē	5220	44	AVG	16.46	16.47	19.48	23.98	-4.50	-1.03	18.45	30.00	-11.55
b	5240	48	AVG	16.87	16.53	19.71	23.98	-4.27	-1.03	18.68	30.00	-11.32
ž	5260	52	AVG	16.69	16.66	19.69	23.98	-4.29	-0.28	19.41	30.00	-10.59
andwidth	5280	56	AVG	16.47	16.73	19.61	23.98	-4.37	-0.28	19.33	30.00	-10.67
ar	5300	60	AVG	16.90	16.82	19.87	23.98	-4.11	-0.28	19.59	30.00	-10.41
Δ	5320	64	AVG	16.71	16.68	19.71	23.98	-4.27	-0.28	19.43	30.00	-10.57
F	5500	100	AVG	16.77	16.93	19.86	23.98	-4.12	0.56	20.42	30.00	-9.58
5	5600	120	AVG	16.94	16.59	19.78	23.98	-4.20	0.56	20.34	30.00	-9.66
20M	5620	124	AVG	16.91	16.64	19.79	23.98	-4.19	0.56	20.35	30.00	-9.65
5	5720	144	AVG	16.99	16.88	19.95	23.98	-4.03	0.56	20.51	30.00	-9.49
Ł	5745	149	AVG	16.76	16.86	19.82	30.00	-10.18	-0.05	19.77	36.00	-16.23
ц С	5765	153	AVG	16.79	16.92	19.87	30.00	-10.13	-0.05	19.82	36.00	-16.18
20	5785	157	AVG	16.77	16.54	19.67	30.00	-10.33	-0.05	19.62	36.00	-16.38
	5805	161	AVG	16.66	16.51	19.60	30.00	-10.40	-0.05	19.55	36.00	-16.45
	5825	165	AVG	16.56	16.85	19.72	30.00	-10.28	-0.05	19.67	36.00	-16.33
	5845	169	AVG	16.96	16.86	19.92			0.08	20.00	30.00	-10.00
	5865	173	AVG	16.88	16.85	19.88			0.08	19.96	30.00	-10.04
	5885	177	AVG	16.70	16.75	19.74			0.08	19.82	30.00	-10.18

Table 7-8. MIMO 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

	Freq [MHz] Channel	Channel	Detector	Conducted Power [dBm]			Conducted Power Limit	imit Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	[]		
	5180	36	AVG	16.81	16.79	19.81	23.98	-4.17	-1.03	18.78	30.00	-11.22
_	5200	40	AVG	16.62	16.80	19.72	23.98	-4.26	-1.03	18.69	30.00	-11.31
Ē	5220	44	AVG	16.87	16.86	19.88	23.98	-4.10	-1.03	18.85	30.00	-11.15
<u>d</u>	5240	48	AVG	16.75	16.91	19.84	23.98	-4.14	-1.03	18.81	30.00	-11.19
andwidth	5260	52	AVG	16.53	16.57	19.56	23.98	-4.42	-0.28	19.28	30.00	-10.72
þ	5280	56	AVG	16.92	16.61	19.78	23.98	-4.20	-0.28	19.50	30.00	-10.50
ar	5300	60	AVG	16.76	16.66	19.72	23.98	-4.26	-0.28	19.44	30.00	-10.56
B	5320	64	AVG	16.69	16.96	19.84	23.98	-4.14	-0.28	19.56	30.00	-10.44
(20MHz	5500	100	AVG	16.69	16.78	19.75	23.98	-4.23	0.56	20.31	30.00	-9.69
Ś	5600	120	AVG	16.77	16.49	19.64	23.98	-4.34	0.56	20.20	30.00	-9.80
ō	5620	124	AVG	16.73	16.91	19.83	23.98	-4.15	0.56	20.39	30.00	-9.61
5	5720	144	AVG	16.88	16.72	19.81	23.98	-4.17	0.56	20.37	30.00	-9.63
Ł	5745	149	AVG	16.63	16.82	19.74	30.00	-10.26	-0.05	19.69	36.00	-16.31
ц Ц	5765	153	AVG	16.56	16.79	19.69	30.00	-10.31	-0.05	19.64	36.00	-16.36
50	5785	157	AVG	16.66	16.74	19.71	30.00	-10.29	-0.05	19.66	36.00	-16.34
	5805	161	AVG	16.59	16.81	19.71	30.00	-10.29	-0.05	19.66	36.00	-16.34
	5825	165	AVG	16.90	16.73	19.83	30.00	-10.17	-0.05	19.78	36.00	-16.22
	5845	169	AVG	16.86	16.78	19.83			0.08	19.91	30.00	-10.09
	5865	173	AVG	16.76	16.73	19.76			0.08	19.84	30.00	-10.16
	5885	177	AVG	16.57	16.65	19.62			0.08	19.70	30.00	-10.30

Table 7-9. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 111 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 111 of 254
			1/0.0.02/01/2010

	Freq [MHz]	Channel	Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	[ubiii]		wargin [ub]
	5180	36	AVG	16.88	16.82	19.86	23.98	-4.12	-1.03	18.83	30.00	-11.17
_	5200	40	AVG	16.67	16.87	19.78	23.98	-4.20	-1.03	18.75	30.00	-11.25
Ē	5220	44	AVG	16.81	16.80	19.82	23.98	-4.16	-1.03	18.79	30.00	-11.21
<u>d</u>	5240	48	AVG	16.69	16.89	19.80	23.98	-4.18	-1.03	18.77	30.00	-11.23
andwidth)	5260	52	AVG	16.47	16.58	19.54	23.98	-4.44	-0.28	19.26	30.00	-10.74
ğ	5280	56	AVG	16.97	16.58	19.79	23.98	-4.19	-0.28	19.51	30.00	-10.49
ar	5300	60	AVG	16.68	16.69	19.70	23.98	-4.28	-0.28	19.42	30.00	-10.58
ä	5320	64	AVG	16.65	16.97	19.82	23.98	-4.16	-0.28	19.54	30.00	-10.46
OMHz	5500	100	AVG	16.65	16.87	19.77	23.98	-4.21	0.56	20.33	30.00	-9.67
⇒	5600	120	AVG	16.87	16.98	19.94	23.98	-4.04	0.56	20.50	30.00	-9.50
ō	5620	124	AVG	16.77	16.99	19.89	23.98	-4.09	0.56	20.45	30.00	-9.55
5	5720	144	AVG	16.92	16.76	19.85	23.98	-4.13	0.56	20.41	30.00	-9.59
Ηz	5745	149	AVG	16.67	16.83	19.76	30.00	-10.24	-0.05	19.71	36.00	-16.29
Ч	5765	153	AVG	16.63	16.78	19.72	30.00	-10.28	-0.05	19.67	36.00	-16.33
50	5785	157	AVG	16.66	16.88	19.78	30.00	-10.22	-0.05	19.73	36.00	-16.27
	5805	161	AVG	16.71	16.84	19.79	30.00	-10.21	-0.05	19.74	36.00	-16.26
	5825	165	AVG	16.92	16.71	19.83	30.00	-10.17	-0.05	19.78	36.00	-16.22
	5845	169	AVG	16.88	16.76	19.83			0.08	19.91	30.00	-10.09
	5865	173	AVG	16.78	16.73	19.77			0.08	19.85	30.00	-10.15
	5885	177	AVG	16.63	16.71	19.68			0.08	19.76	30.00	-10.24

Table 7-10. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

	Freq [MHz] Channel	Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]	
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	Lapud	Ennie [GB/II]	margin [ab]
	5180	36	AVG	16.77	16.83	19.81	23.98	-4.17	-1.03	18.78	30.00	-11.22
_	5200	40	AVG	16.58	16.83	19.72	23.98	-4.26	-1.03	18.69	30.00	-11.31
Ē	5220	44	AVG	16.84	16.84	19.85	23.98	-4.13	-1.03	18.82	30.00	-11.18
d	5240	48	AVG	16.69	16.88	19.80	23.98	-4.18	-1.03	18.77	30.00	-11.23
3	5260	52	AVG	16.50	16.53	19.53	23.98	-4.45	-0.28	19.25	30.00	-10.75
andwidth	5280	56	AVG	16.86	16.58	19.73	23.98	-4.25	-0.28	19.45	30.00	-10.55
a	5300	60	AVG	16.75	16.64	19.71	23.98	-4.27	-0.28	19.43	30.00	-10.57
2	5320	64	AVG	16.58	16.90	19.75	23.98	-4.23	-0.28	19.47	30.00	-10.53
(20MHz	5500	100	AVG	16.67	16.83	19.76	23.98	-4.22	0.56	20.32	30.00	-9.68
≣	5600	120	AVG	16.84	16.50	19.68	23.98	-4.30	0.56	20.24	30.00	-9.76
ō	5620	124	AVG	16.77	16.97	19.88	23.98	-4.10	0.56	20.44	30.00	-9.56
<u>9</u>	5720	144	AVG	16.92	16.77	19.86	23.98	-4.12	0.56	20.42	30.00	-9.58
Ŧ	5745	149	AVG	16.64	16.83	19.75	30.00	-10.25	-0.05	19.70	36.00	-16.30
<u>т</u>	5765	153	AVG	16.58	16.98	19.79	30.00	-10.21	-0.05	19.74	36.00	-16.26
5 G	5785	157	AVG	16.63	16.88	19.77	30.00	-10.23	-0.05	19.72	36.00	-16.28
	5805	161	AVG	16.60	16.89	19.76	30.00	-10.24	-0.05	19.71	36.00	-16.29
	5825	165	AVG	16.92	16.74	19.84	30.00	-10.16	-0.05	19.79	36.00	-16.21
	5845	169	AVG	16.90	16.82	19.87			0.08	19.95	30.00	-10.05
	5865	173	AVG	16.84	16.84	19.85			0.08	19.93	30.00	-10.07
	5885	177	AVG	16.58	16.70	19.65			0.08	19.73	30.00	-10.27

Table 7-11. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 112 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 112 of 254
			\/9.0.02/01/2019

th)	Freq [MHz]	Channel	Detector	Conducted Power [dBm]			Conducted Power Limit	it Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
đ				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	1		
Ξ	5190	38	AVG	15.91	15.71	18.82	23.98	-5.16	-1.03	17.79	30.00	-12.21
ndwidth	5230	46	AVG	15.86	15.88	18.88	23.98	-5.10	-1.03	17.85	30.00	-12.15
a	5270	54	AVG	15.62	15.91	18.78	23.98	-5.20	-0.28	18.50	30.00	-11.50
8	5310	62	AVG	15.90	15.87	18.90	23.98	-5.08	-0.28	18.62	30.00	-11.38
ΗZ	5510	102	AVG	15.85	15.79	18.83	23.98	-5.15	0.56	19.39	30.00	-10.61
⇒	5590	118	AVG	15.87	15.64	18.77	23.98	-5.21	0.56	19.33	30.00	-10.67
(40M	5630	126	AVG	15.55	15.91	18.74	23.98	-5.24	0.56	19.30	30.00	-10.70
4	5710	142	AVG	15.97	15.65	18.82	23.98	-5.16	0.56	19.38	30.00	-10.62
<u>N</u>	5755	151	AVG	15.66	15.69	18.69	30.00	-11.31	-0.05	18.64	36.00	-17.36
Т.	5795	159	AVG	15.68	15.63	18.67	30.00	-11.33	-0.05	18.62	36.00	-17.38
56	5835	167	AVG	15.59	15.61	18.61			0.08	18.69	30.00	-11.31
	5875	175	AVG	15.98	15.63	18.82			0.08	18.90	30.00	-11.10

Table 7-12. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	Conducted Power [dBm]			Conducted Power Limit		Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	Lapud	Ennic [GBin]	Margin [ab]
5190	38	AVG	15.86	15.61	18.75	23.98	-5.23	-1.03	17.72	30.00	-12.28
5230	46	AVG	15.92	15.75	18.85	23.98	-5.13	-1.03	17.82	30.00	-12.18
5270	54	AVG	15.59	15.87	18.74	23.98	-5.24	-0.28	18.46	30.00	-11.54
5310	62	AVG	15.94	15.77	18.87	23.98	-5.11	-0.28	18.59	30.00	-11.41
5510	102	AVG	15.81	15.79	18.81	23.98	-5.17	0.56	19.37	30.00	-10.63
5590	118	AVG	15.94	15.54	18.75	23.98	-5.23	0.56	19.31	30.00	-10.69
5630	126	AVG	15.56	15.81	18.70	23.98	-5.28	0.56	19.26	30.00	-10.74
5710	142	AVG	15.54	15.68	18.62	23.98	-5.36	0.56	19.18	30.00	-10.82
5755	151	AVG	15.72	15.75	18.75	30.00	-11.25	-0.05	18.70	36.00	-17.30
5795	159	AVG	15.65	15.65	18.66	30.00	-11.34	-0.05	18.61	36.00	-17.39
5835	167	AVG	15.99	15.59	18.80			0.08	18.88	30.00	-11.12
5875	175	AVG	15.86	15.62	18.75			0.08	18.83	30.00	-11.17

Table 7-13. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 112 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 113 of 254
			\/0.0.02/01/2010

th)	Freq [MHz]	Freq [MHz] Channel		Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
ġ				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]			5 1 1
3	5190	38	AVG	15.65	15.48	18.58	23.98	-5.40	-1.03	17.55	30.00	-12.45
andwidth	5230	46	AVG	15.67	15.61	18.65	23.98	-5.33	-1.03	17.62	30.00	-12.38
	5270	54	AVG	15.59	15.71	18.66	23.98	-5.32	-0.28	18.38	30.00	-11.62
8	5310	62	AVG	15.94	15.99	18.98	23.98	-5.00	-0.28	18.70	30.00	-11.30
¥	5510	102	AVG	15.81	15.67	18.75	23.98	-5.23	0.56	19.31	30.00	-10.69
≒	5590	118	AVG	15.89	15.87	18.89	23.98	-5.09	0.56	19.45	30.00	-10.55
(40M	5630	126	AVG	15.91	15.64	18.79	23.98	-5.19	0.56	19.35	30.00	-10.65
4	5710	142	AVG	15.61	15.89	18.76	23.98	-5.22	0.56	19.32	30.00	-10.68
<u>N</u>	5755	151	AVG	15.77	15.91	18.85	30.00	-11.15	-0.05	18.80	36.00	-17.20
T (D	5795	159	AVG	15.69	15.96	18.84	30.00	-11.16	-0.05	18.79	36.00	-17.21
5G	5835	167	AVG	15.61	15.86	18.75			0.08	18.83	30.00	-11.17
	5875	175	AVG	15.83	15.88	18.87			0.08	18.95	30.00	-11.05

Table 7-14. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power

Bandwidth)	Freq [MHz] Channel	nnel Detector	Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]	
i N				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	Lapuil	Ennic [GDin]	margin [ab]
ano	5210	42	AVG	14.91	14.63	17.78	23.98	-6.20	-1.03	16.75	30.00	-13.25
	5290	58	AVG	14.98	14.16	17.60	23.98	-6.38	-0.28	17.32	30.00	-12.68
(80MHz	5530	106	AVG	14.66	14.63	17.66	23.98	-6.32	0.56	18.22	30.00	-11.78
No.	5610	122	AVG	14.76	14.77	17.78	23.98	-6.20	0.56	18.34	30.00	-11.66
	5690	138	AVG	14.96	14.93	17.96	23.98	-6.02	0.56	18.52	30.00	-11.48
GHz	5775	155	AVG	14.97	14.93	17.96	30.00	-12.04	-0.05	17.91	36.00	-18.09
50	5855	171	AVG	14.89	14.87	17.89			0.08	17.97	30.00	-12.03

Table 7-15. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

42		ANT1		Conducted Power [dBm]			Directional Ant. Gain	Max e.i.r.p. [dBm]	Limit [dBm]	Margin [dB]
42			ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	[abiii]	Ennik [dBin]	margin [ab]
42	AVG	14.97	14.76	17.88	23.98	-6.10	-1.03	16.85	30.00	-13.15
58	AVG	14.72	14.85	17.80	23.98	-6.18	-0.28	17.52	30.00	-12.48
106	AVG	14.62	14.68	17.66	23.98	-6.32	0.56	18.22	30.00	-11.78
122	AVG	14.77	14.81	17.80	23.98	-6.18	0.56	18.36	30.00	-11.64
138	AVG	14.86	14.96	17.92	23.98	-6.06	0.56	18.48	30.00	-11.52
155	AVG	14.91	14.91	17.92	30.00	-12.08	-0.05	17.87	36.00	-18.13
171	AVG	14.86	14.93	17.91			0.08	17.99	30.00	-12.01
	106 122 138 155 171	106 AVG 122 AVG 138 AVG 155 AVG 171 AVG	106 AVG 14.62 122 AVG 14.77 138 AVG 14.86 155 AVG 14.91	106 AVG 14.62 14.68 122 AVG 14.77 14.81 138 AVG 14.86 14.96 155 AVG 14.91 14.91	106 AVG 14.62 14.68 17.66 122 AVG 14.77 14.81 17.80 138 AVG 14.86 14.96 17.92 155 AVG 14.91 14.91 17.92	106 AVG 14.62 14.68 17.66 23.98 122 AVG 14.77 14.81 17.80 23.98 138 AVG 14.86 14.96 17.92 23.98 155 AVG 14.91 14.91 17.92 30.00	106 AVG 14.62 14.68 17.66 23.98 -6.32 122 AVG 14.77 14.81 17.80 23.98 -6.18 138 AVG 14.86 14.96 17.92 23.98 -6.06 155 AVG 14.91 14.91 17.92 30.00 -12.08	106 AVG 14.62 14.68 17.66 23.98 -6.32 0.56 122 AVG 14.77 14.81 17.80 23.98 -6.18 0.56 138 AVG 14.86 14.96 17.92 23.98 -6.06 0.56 155 AVG 14.91 14.91 17.92 30.00 -12.08 -0.05	106 AVG 14.62 14.68 17.66 23.98 -6.32 0.56 18.22 122 AVG 14.77 14.81 17.80 23.98 -6.18 0.56 18.36 138 AVG 14.86 14.96 17.92 23.98 -6.06 0.56 18.48 155 AVG 14.91 17.92 30.00 -12.08 -0.05 17.87	106 AVG 14.62 14.68 17.66 23.98 -6.32 0.56 18.22 30.00 122 AVG 14.77 14.81 17.80 23.98 -6.18 0.56 18.22 30.00 138 AVG 14.86 14.96 17.92 23.98 -6.06 0.56 18.48 30.00 155 AVG 14.91 17.92 30.00 -12.08 -0.05 17.87 36.00

Table 7-16. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power

Ith)	Freq [MHz]	Channel	Detector	Conc	lucted Power [dBm]	Conducted Power Limit	wer Limit Power Ant. Gain Max e.i.r.p.		Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]	
160 wid				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	1		
z (1	5250	50	AVG	13.93	13.57	16.76	23.98	-7.22	-1.03	15.73	30.00	-14.27
GH: Bai	5570	114	AVG	13.71	13.59	16.66	30.00	-13.34	0.56	17.22	36.00	-18.78
26	5815	163	AVG	13.59	13.73	16.67			0.08	16.75	30.00	-13.25

Table 7-17. MIMO 160MHz BW 802.11ac (UNII) Maximum Conducted Output Power

MHz (th)	Freq [MHz]	Channel	Detector	Conc	lucted Power [dBm]	Power Limit Power Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]		
160 wid				ANT1	ANT2	MIMO	[dBm]	Margin [dB]	[dBi]	[]		
z (1 ndv	5250	50	AVG	13.92	13.55	16.75	23.98	-7.23	-1.03	15.72	30.00	-14.28
GH: Bai	5570	114	AVG	13.65	13.97	16.82	30.00	-13.18	0.56	17.38	36.00	-18.62
56	5815	163	AVG	13.51	13.71	16.62			0.08	16.70	30.00	-13.30

Table 7-18. MIMO 160MHz BW 802.11ax (UNII) Maximum Conducted Output Power

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 444 af 054		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 114 of 254		
			V9 0 02/01/2019		

Note:

Per ANSI C63.10-2013 and KDB 662911 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where G_N is the gain of the nth antenna and N_{ANT} , the total number of antennas used.

Directional gain = $10 \log[(10^{G_{1/20}} + 10^{G_{2/20}} + ... + 10^{G_{N/20}})^2 / N_{ANT}] dBi$

Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted output power was measured to be 16.81 dBm for Antenna 1 and 16.79 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(16.81 dBm + 16.79 dBm) = (47.97 mW + 47.75 mW) = 95.73 mW = 19.81 dBm

Sample e.i.r.p Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average MIMO conducted power was calculated to be 19.81 dBm with directional gain of -1.03 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

19.81 dBm + -1.03 dBi = 18.79 dBm

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:			
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 115 of 254		
	•		V9.0 02/01/2019		

7.5 Maximum Power Spectral Density – 802.11a/n/ac/ax §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz band, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.25 – 5.35GHz and 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

In the 5.850 – 5.895 GHz, the maximum power spectral density must not exceed 14dBm/MHz e.i.r.p.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 116 of 254		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 116 of 254		
			V9.0 02/01/2019		

Summed MIMO Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenna-1 Power Density [dBm]	Antenna-2 Power Density [dBm]	Summed MIMO Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	5.81	6.20	9.02	11.0	-1.98
	5200	40	а	6	5.99	6.45	9.24	11.0	-1.76
	5240	48	а	6	6.23	6.00	9.13	11.0	-1.87
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	5.49	6.01	8.77	11.0	-2.23
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	5.49	6.06	8.80	11.0	-2.20
	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.89	5.77	8.84	11.0	-2.16
	5180	36	ax (20MHz)	6.5/7.2 (MCS0)	5.46	6.23	8.88	11.0	-2.12
Band 1	5200	40	ax (20MHz)	6.5/7.2 (MCS0)	5.66	6.16	8.93	11.0	-2.07
Ba	5240	48	ax (20MHz)	6.5/7.2 (MCS0)	5.83	5.59	8.73	11.0	-2.27
	5190	38	n (40MHz)	13.5/15 (MCS0)	1.48	2.02	4.77	11.0	-6.23
	5230	46	n (40MHz)	13.5/15 (MCS0)	1.81	1.81	4.82	11.0	-6.18
	5190	38	ax (40MHz)	13.5/15 (MCS0)	1.51	2.28	4.92	11.0	-6.08
	5230	46	ax (40MHz)	13.5/15 (MCS0)	2.09	1.79	4.95	11.0	-6.05
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-2.26	-2.28	0.74	11.0	-10.26
	5210	42	ax (80MHz)	29.3/32.5 (MCS0)	-2.20	-2.26	0.78	11.0	-10.22
2 4	5250	50	ac (160MHz)	58.5/65 (MCS0)	-6.40	-5.93	-3.15	11.0	-14.15
1/2A	5250	50	ax (160MHz)	58.5/65 (MCS0)	-6.04	-5.73	-2.87	11.0	-13.87
	5260	52	a	6	5.99	6.06	9.04	11.0	-1.96
	5280	56	a	6	5.59	5.77	8.69	11.0	-2.31
	5320	64	a	6	6.22	6.19	9.22	11.0	-1.78
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	5.40	5.79	8.61	11.0	-2.39
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	5.28	5.62	8.46	11.0	-2.54
	5320	64	n (20MHz)	6.5/7.2 (MCS0)	5.52	5.82	8.68	11.0	-2.32
	5260	52	ax (20MHz)	6.5/7.2 (MCS0)	5.69	5.77	8.74	11.0	-2.26
	5280	56	ax (20MHz)	6.5/7.2 (MCS0)	5.90	6.00	8.96	11.0	-2.04
	5320	64	ax (20MHz)	6.5/7.2 (MCS0)	5.53	6.16	8.86	11.0	-2.14
	5270	54	n (40MHz)	13.5/15 (MCS0)	1.71	1.96	4.85	11.0	-6.15
	5310	62	n (40MHz)	13.5/15 (MCS0)	1.69	1.96	4.84	11.0	-6.16
	5270	54	ax (40MHz)	13.5/15 (MCS0)	1.53	2.02	4.79	11.0	-6.21
	5310	62	ax (40MHz)	13.5/15 (MCS0)	1.57	2.02	4.79	11.0	-6.20
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-2.60	-1.55	0.97	11.0	-10.03
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-2.46	-1.36	1.14	11.0	-9.86
	5500	100	. ,	29.3/32.3 (INC30) 6	6.16	5.94	9.06	11.0	-9.80
		120	a	6	6.02	5.82	9.00	11.0	
	5600 5720	120	a	6	6.10	5.94	9.03	11.0	-2.07
			a (2014)	-	5.45	5.94		11.0	
	5500	100	n (20MHz)	6.5/7.2 (MCS0)			8.59		-2.41
	5600	120	n (20MHz)	6.5/7.2 (MCS0)	5.68	5.70	8.70	11.0	-2.30
	5720	144	n (20MHz)	6.5/7.2 (MCS0)	5.69	5.45	8.58	11.0	-2.42
	5500	100	ax (20MHz)	6.5/7.2 (MCS0)	5.47	5.77	8.63	11.0	-2.37
	5600	120	ax (20MHz)	6.5/7.2 (MCS0)	5.51	5.75	8.64	11.0	-2.36
	5720	144	ax (20MHz)	6.5/7.2 (MCS0)	5.69	5.52	8.62	11.0	-2.38
0	5510	102	n (40MHz)	13.5/15 (MCS0)	1.62	1.71	4.68	11.0	-6.32
Band 2C	5590	118	n (40MHz)	13.5/15 (MCS0)	1.56	2.00	4.79	11.0	-6.21
anc	5710	142	n (40MHz)	13.5/15 (MCS0)	1.99	1.84	4.93	11.0	-6.07
60	5510	102	ax (40MHz)	13.5/15 (MCS0)	1.40	1.56	4.49	11.0	-6.51
	5590	118	ax (40MHz)	13.5/15 (MCS0)	1.58	2.02	4.82	11.0	-6.18
	5710	142	ax (40MHz)	13.5/15 (MCS0)	1.63	1.19	4.43	11.0	-6.57
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-2.79	-2.30	0.47	11.0	-10.53
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-3.04	-1.99	0.53	11.0	-10.47
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-5.29	-5.01	-2.14	11.0	-13.14
	5530	106	ax (80MHz)	29.3/32.5 (MCS0)	-2.60	-2.07	0.68	11.0	-10.32
	5610	122	ax (80MHz)	29.3/32.5 (MCS0)	-2.84	-1.79	0.73	11.0	-10.27
	5690	138	ax (80MHz)	29.3/32.5 (MCS0)	-4.85	-4.83	-1.83	11.0	-12.83
	5570	114	ac (160MHz)	29.3/32.5 (MCS0)	-6.10	-6.36	-3.22	11.0	-14.22
	5570	114	ax (160MHz)	29.3/32.5 (MCS0)	-5.78	-6.20	-2.97	11.0	-13.97

Table 7-19. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dego 117 of 254		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 117 of 254		
•			V9.0 02/01/2019		

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]		Summed MIMO Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	3.15	3.05	6.11	30.0	-23.89
	5785	157	а	6	2.92	2.28	5.62	30.0	-24.38
	5825	165	а	6	2.86	2.74	5.81	30.0	-24.19
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	2.85	2.78	5.83	30.0	-24.17
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	2.69	1.63	5.20	30.0	-24.80
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	2.53	2.14	5.35	30.0	-24.65
3	5745	149	ax (20MHz)	6.5/7.2 (MCS0)	2.90	2.72	5.82	30.0	-24.18
Band	5785	157	ax (20MHz)	6.5/7.2 (MCS0)	2.89	2.41	5.67	30.0	-24.33
ä	5825	165	ax (20MHz)	6.5/7.2 (MCS0)	2.69	2.28	5.50	30.0	-24.50
	5755	151	n (40MHz)	13.5/15 (MCS0)	-1.14	-1.28	1.80	30.0	-28.20
	5795	159	n (40MHz)	13.5/15 (MCS0)	-1.26	-1.94	1.42	30.0	-28.58
	5755	151	ax (40MHz)	13.5/15 (MCS0)	-1.43	-0.91	1.85	30.0	-28.15
	5795	159	ax (40MHz)	13.5/15 (MCS0)	-1.06	-1.60	1.69	30.0	-28.31
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-2.04	-2.90	0.56	30.0	-29.44
	5775	155	ax (80MHz)	29.3/32.5 (MCS0)	-2.11	-2.67	0.63	30.0	-29.37

 Table 7-20. Band 3 MIMO Conducted Power Spectral Density Measurements

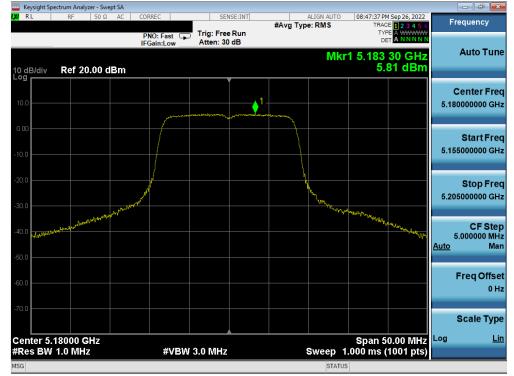
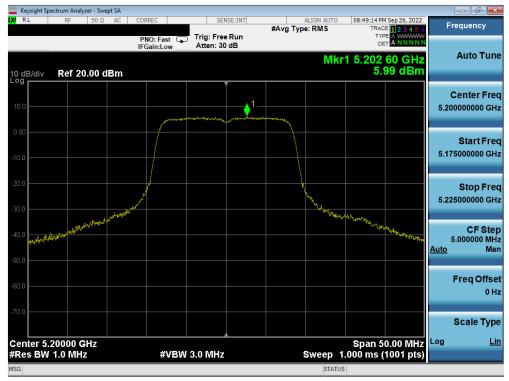
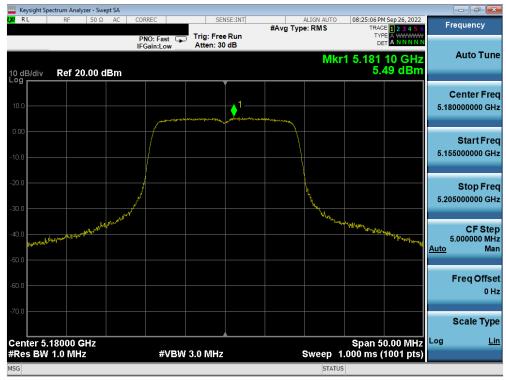

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenna-1 Power Density [dBm/MHz]	Antenna-2 Power Density [dBm/MHz]	MIMO Summed Power Density [dBm/MHz]	Directional Antenna Gain [dBi]	EIRP Power Density [dBm/MHz]	Max EIRP Power Density [dBm/MHz]	Margin [dB]
Band 3/4	5845	169	а	6	6.05	5.78	8.92	0.08	9.00	14.00	-5.00
Band 4	5865	173	а	6	5.97	5.75	8.87	0.08	8.95	14.00	-5.05
Dallu 4	5885	177	а	6	6.10	5.71	8.92	0.08	8.99	14.00	-5.01
Band 3/4	5845	169	n (20MHz)	6.5/7.2 (MCS0)	5.83	5.43	8.64	0.08	8.72	14.00	-5.28
Band 4	5865	173	n (20MHz)	6.5/7.2 (MCS0)	5.75	5.53	8.65	0.08	8.73	14.00	-5.27
Danu 4	5885	177	n (20MHz)	6.5/7.2 (MCS0)	5.99	5.31	8.67	0.08	8.75	14.00	-5.25
Band 3/4	5845	169	ax (20MHz)	6.5/7.2 (MCS0)	5.67	5.35	8.53	0.08	8.60	14.00	-5.40
Band 4	5865	173	ax (20MHz)	6.5/7.2 (MCS0)	5.83	5.47	8.66	0.08	8.74	14.00	-5.26
Dallu 4	5885	177	ax (20MHz)	6.5/7.2 (MCS0)	5.97	5.31	8.66	0.08	8.74	14.00	-5.26
Band 3/4	5835	167	n (40MHz)	13.5/15 (MCS0)	1.55	1.22	4.40	0.08	4.47	14.00	-9.53
Band 4	5875	175	n (40MHz)	13.5/15 (MCS0)	1.37	1.11	4.25	0.08	4.33	14.00	-9.67
Band 3/4	5835	167	ax (40MHz)	13.5/15 (MCS0)	1.64	1.23	4.45	0.08	4.53	14.00	-9.47
Band 4	5875	175	ax (40MHz)	13.5/15 (MCS0)	1.52	1.40	4.47	0.08	4.55	14.00	-9.45
	5855	171	ac (80MHz)	29.3/32.5 (MCS0)	-2.42	-2.39	0.60	0.08	0.68	14.00	-13.32
Band 3/4	5855	171	ax (80MHz)	29.3/32.5 (MCS0)	-2.40	-2.22	0.70	0.08	0.77	14.00	-13.23
Dar10 3/4	5815	163	ac (160MHz)	58.5/65 (MCS0)	-6.36	-7.39	-3.83	0.08	-3.76	14.00	-17.76
	5815	163	ax (160MHz)	58.5/65 (MCS0)	-6.20	-6.92	-3.54	0.08	-3.46	14.00	-17.46

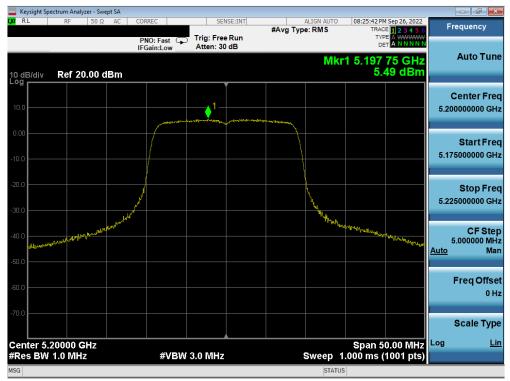
Table 7-21. Band 3/4 MIMO Conducted Power Spectral Density Measurements

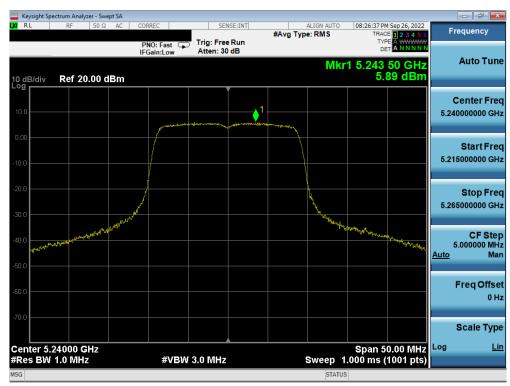

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 110 of 254		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 118 of 254		
			\/9.0.02/01/2019		

MIMO Antenna-1 Power Spectral Density Measurements

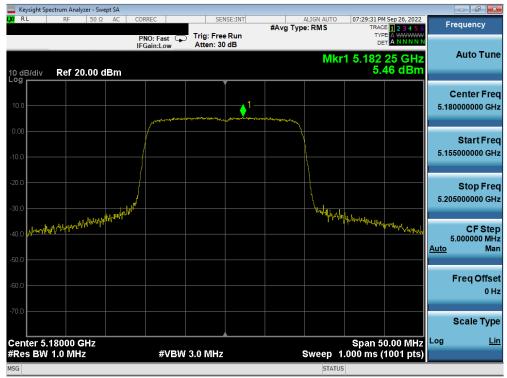

Plot 7-176. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 1) - Ch. 40)

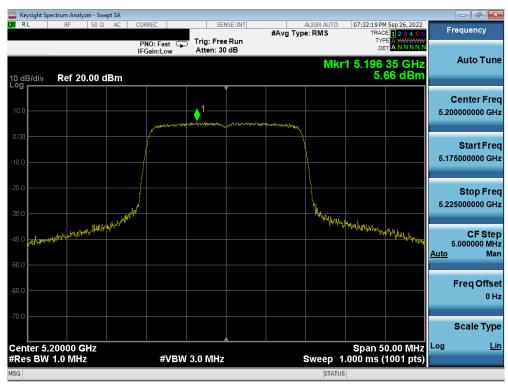
FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 110 of 254		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 119 of 254		
		·	V9.0 02/01/2019		


Plot 7-177. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 1) - Ch. 48)

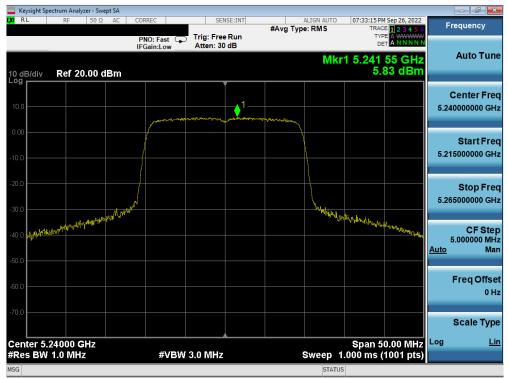

Plot 7-178. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: A3LSMS916U		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 054		
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 120 of 254		
			V9.0.02/01/2019		


Plot 7-179. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

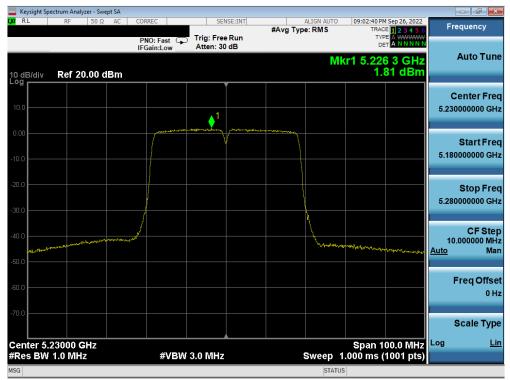

Plot 7-180. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

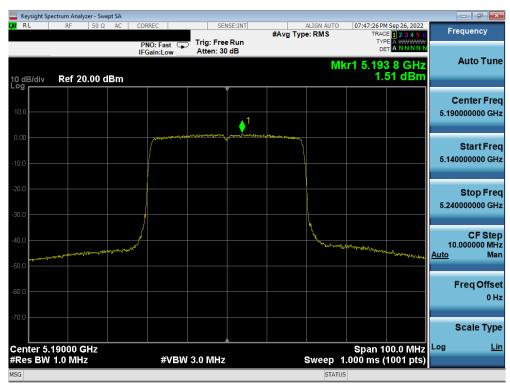
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 101 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 121 of 254
	<u> </u>		V9.0 02/01/2019


Plot 7-181. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 36)

Plot 7-182. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 40)

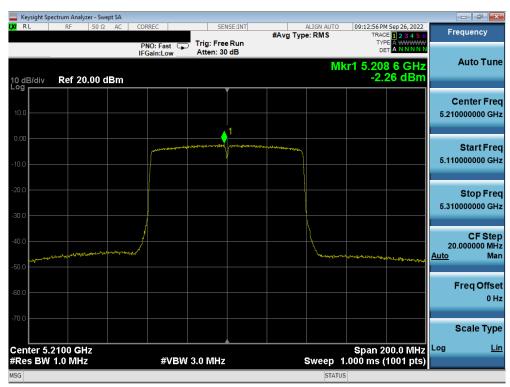
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 122 of 254
			V9 0 02/01/2019


Plot 7-183. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 48)


Plot 7-184. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

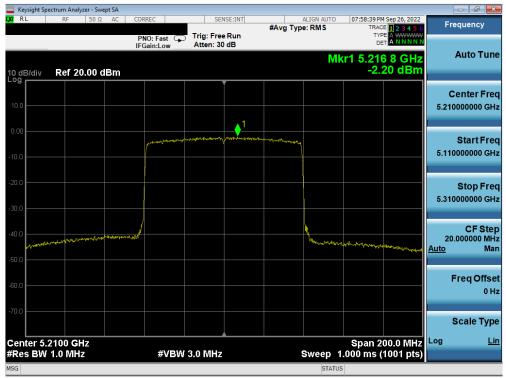
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 af 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 123 of 254
		-	V9 0 02/01/2019

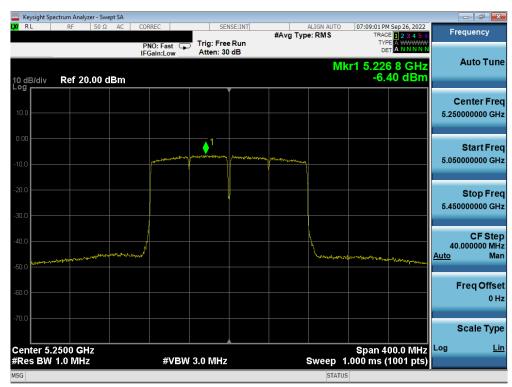
Plot 7-185. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)


Plot 7-186. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 1) - Ch. 38)

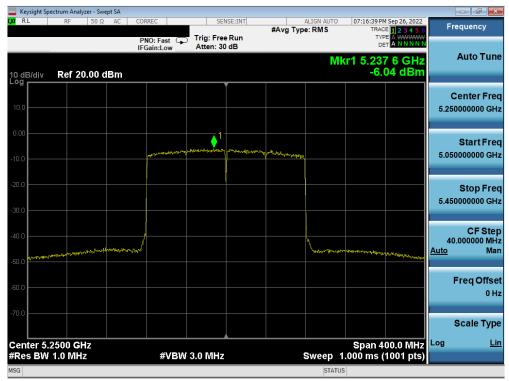
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 124 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 124 of 254
			V9 0 02/01/2019

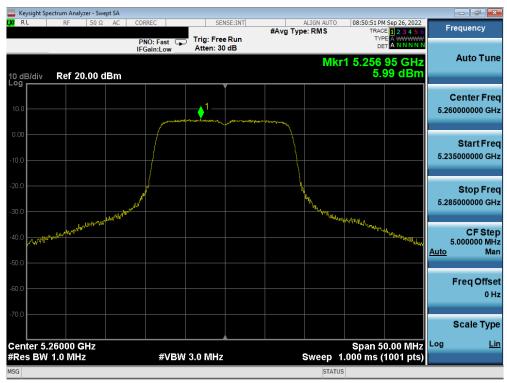
	ctrum Analyzer - Swej	•								_	
LX/RL	RF 50 Ω	AC CORR	REC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		E 1 2 3 4 5 6	Free	quency
			0: Fast 🕞 ain:Low	Trig: Free Atten: 30				TYP			
10 dB/div Log	Ref 20.00 d	Bm					Mk	r1 5.227 2.0	7 4 GHz 09 dBm	A	uto Tune
10.0											nter Freq 00000 GHz
-10.0				p.1.1	ganangangan ang ang ang ang ang ang ang						Start Freq 00000 GHz
-20.0											Stop Freq 00000 GHz
-40.0	hangen hander and	www.					hannon an	ing with the series of the last	WANNY MARINE YE	10.0 <u>Auto</u>	CF Step 00000 MHz Man
-60.0										Fi	eq Offset 0 Hz
-70.0											cale Type
Center 5.2 #Res BW	3000 GHz		#VBW	3.0 MHz			Sween 1	Span 1 000 ms (00.0 MHz 1001 pts)	Log	<u>Lin</u>
MSG			<i>"</i> v D v •	0.0 10112			STATUS		1001 pt3)		


Plot 7-187. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 1) - Ch. 46)

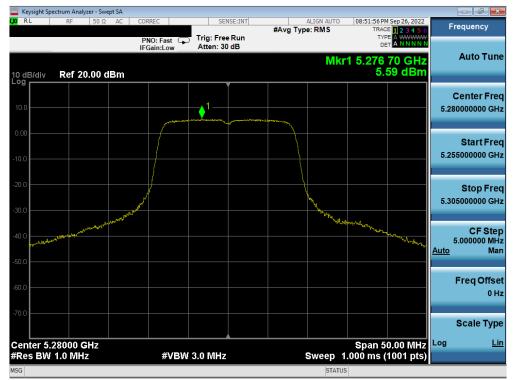

Plot 7-188. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

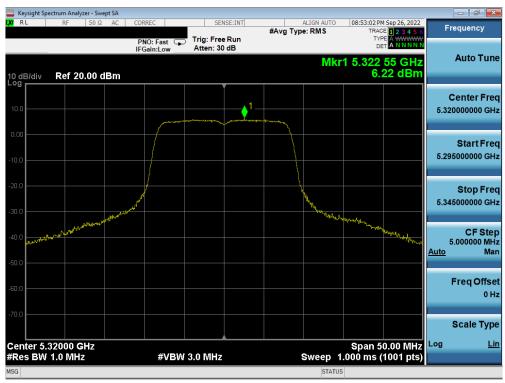
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 105 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 125 of 254
	-		V9.0 02/01/2019


Plot 7-189. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax (UNII Band 1) - Ch. 42)

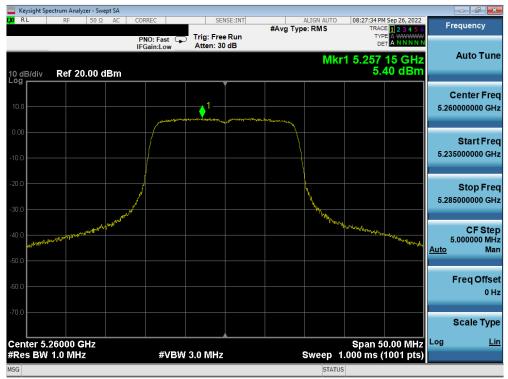

Plot 7-190. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 1/2A) - Ch. 50)

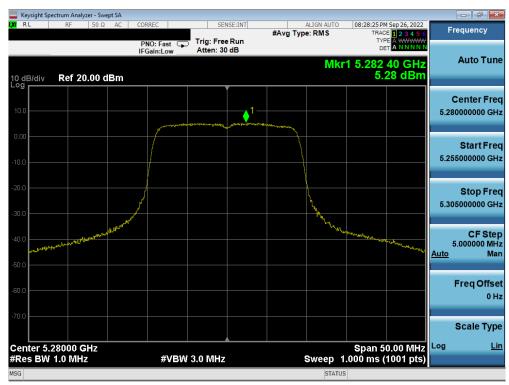
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 af 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 126 of 254
		-	V9 0 02/01/2019


Plot 7-191. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ax (UNII Band 1/2A) - Ch. 50)

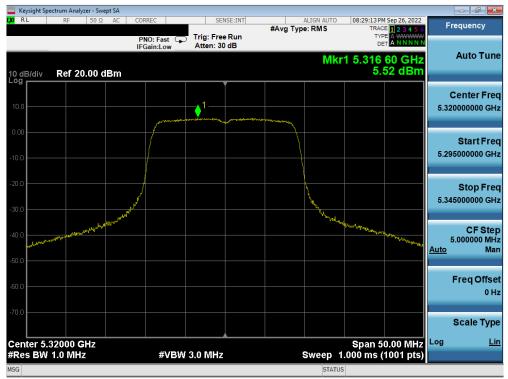

Plot 7-192. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 2A) - Ch. 52)

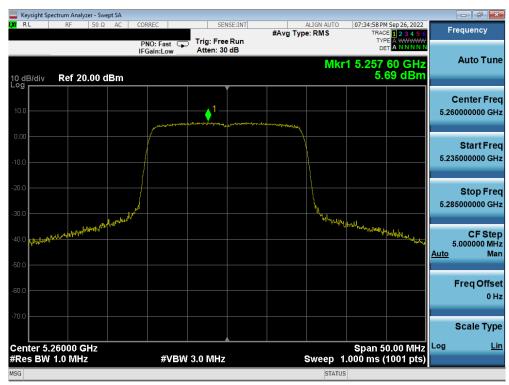
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 107 of 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 127 of 254
			\/9.0.02/01/2019


Plot 7-193. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 2A) - Ch. 56)


Plot 7-194. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 2A) - Ch. 64)

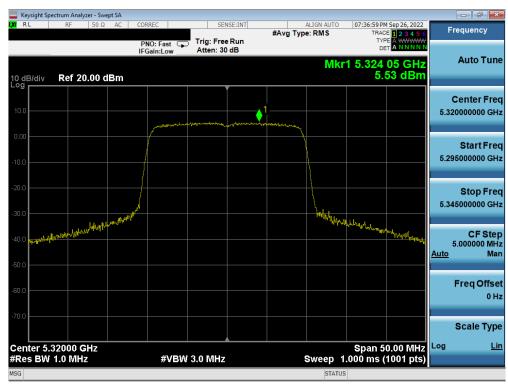
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 128 of 254
	-		V9.0 02/01/2019


Plot 7-195. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)


Plot 7-196. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

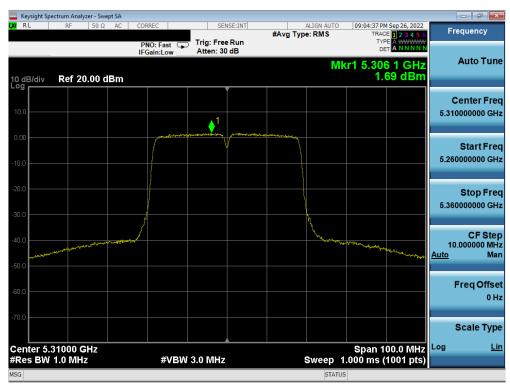
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Degs 120 of 251
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 129 of 254
			V9.0 02/01/2019

Plot 7-197. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)


Plot 7-198. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 52)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 120 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 130 of 254
			V9.0 02/01/2019

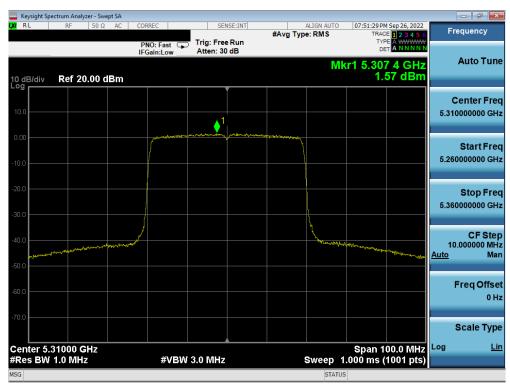
Plot 7-199. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 56)


Plot 7-200. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 64)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 121 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 131 of 254
			V9.0 02/01/2019

	ectrum Analyzer - Swe	•									J X
LX/IRL	RF 50 Ω	AC COR	REC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		E 1 2 3 4 5 6	Frequen	су
			IO:Fast ⊂⊾ Gain:Low	Trig: Free Atten: 30		•	Mł	TYF DE		Auto	Tune
10 dB/div Log	Ref 20.00 c	IBm						1.	71 dBm		
10.0				. 1						Center 5.27000000	
0.00				white many rolling many	and a second second	water land					
-10.0				\						Start 5.22000000	t Freq 00 GHz
-20.0										Stop 5.32000000	o Freq 00 GHz
-30.0	and the start of the start of the	free constraints and a					×			CF 10.00000	Step
-50.0	Land and the second						matrix	notherstone	holy managered	<u>Auto</u>	Man
-60.0										Freq	Offset 0 Hz
-70.0											_
										Scale	туре
	27000 GHz							Span 1	00.0 MHz	Log	Lin
#Res BW	1.0 MHz		#VBW	3.0 MHz					1001 pts)		
MSG							STATUS	5			

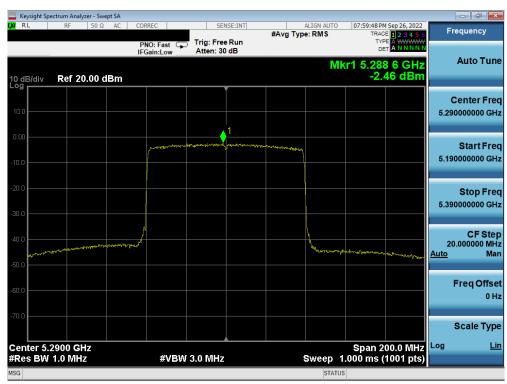
Plot 7-201. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)


Plot 7-202. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 122 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 132 of 254
	<u> </u>		V9.0 02/01/2019

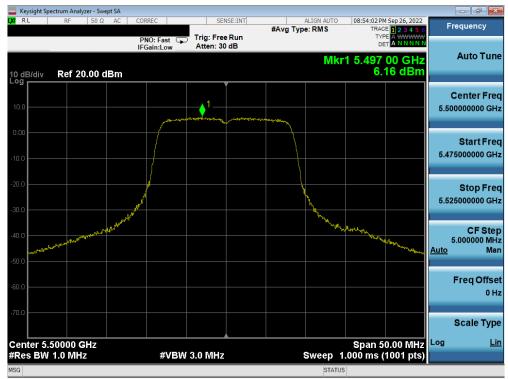
	ectrum Analyzer - Swep										
LXI RL	RF 50 Ω	AC CORRE	C	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		E 1 2 3 4 5 6	Fre	quency
			:Fast 😱 in:Low	Trig: Free Atten: 30				TYP		ļ	Auto Tune
10 dB/div Log	Ref 20.00 d	Bm						1.	53 dBm		_
										Ce	enter Freq
10.0				♦1						5.2700	00000 GHz
0.00		(glage and a state of the second	ng panang t A							Start Freq
-10.0											000000 GHz
-20.0											Stop Freq
-30.0											000000 GHz
-40.0							۱				CF Step
	and a stand a s	protectional					monor		an and a start and a start and a start	10.0 <u>Auto</u>	000000 MHz Man
-30.0											
-60.0											req Offset 0 Hz
-70.0											
										S	cale Type
	27000 GHz							Span 1	21 111 2.00	Log	Lin
#Res BW	1.0 MHz		#VBW	3.0 MHz			Sweep	1.000 ms (1001 pts)		
MSG							STATU	IS			

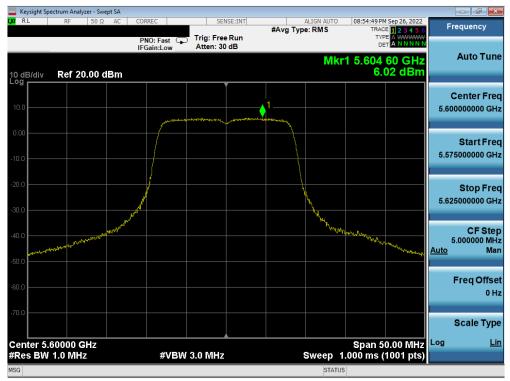
Plot 7-203. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 54)


Plot 7-204. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 62)

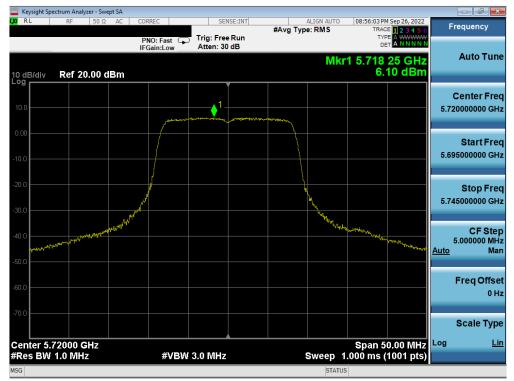
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 133 of 254
			\/9.0.02/01/2019

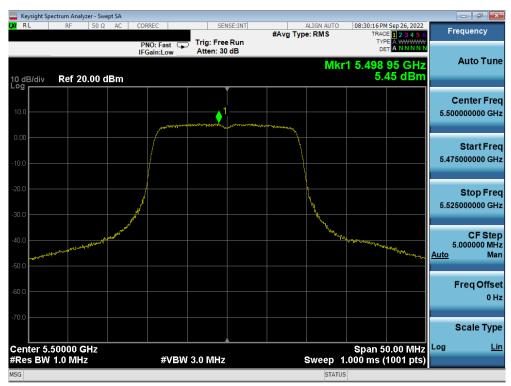
Keysight Spectrum Analyzer - Swept SA							- đ ×
LX RL RF 50Ω AC	CORREC	SENSE:	#Avg	ALIGN AUTO Type: RMS	TRACE	2345 6	Frequency
10 dB/div Ref 20.00 dBm	PNO: Fast 🖵 IFGain:Low	Trig: Free Ru Atten: 30 dE		N	DET <mark>4</mark> Ikr1 5.301 (0 GHz 0 dBm	Auto Tune
							Center Freq 5.290000000 GHz
-10.0		were straining and	1	******			Start Freq 5.190000000 GHz
-20.0							Stop Freq 5.390000000 GHz
-40.0	und			h hourse	1 marine and the second second	and the second	CF Step 20.000000 MHz <u>Auto</u> Man
-60.0						_	Freq Offset 0 Hz
-70.0							Scale Type
Center 5.2900 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz		Sweep	Span 200 1.000 ms (10	01 pts)	
MSG				STAT			


Plot 7-205. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

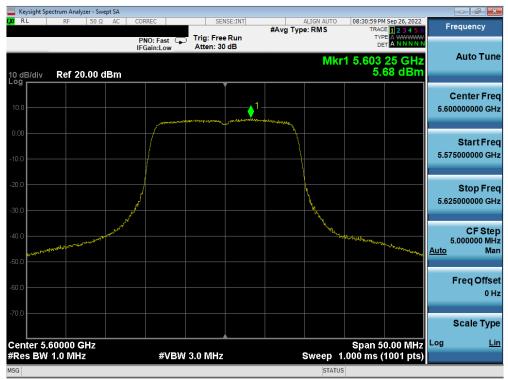

Plot 7-206. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax (UNII Band 2A) - Ch. 58)

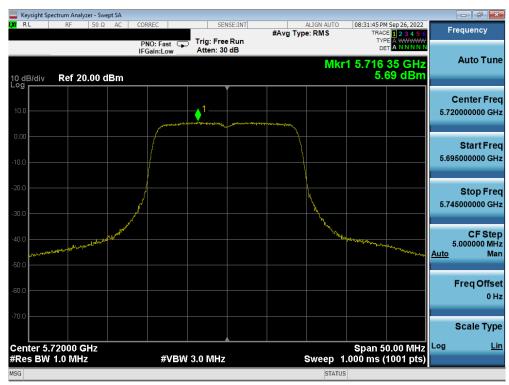
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 124 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 134 of 254
	•		V9.0.02/01/2019


Plot 7-207. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 2C) – Ch. 100)

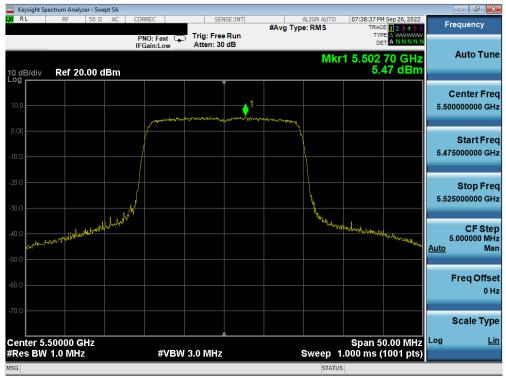

Plot 7-208. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 2C) - Ch. 120)

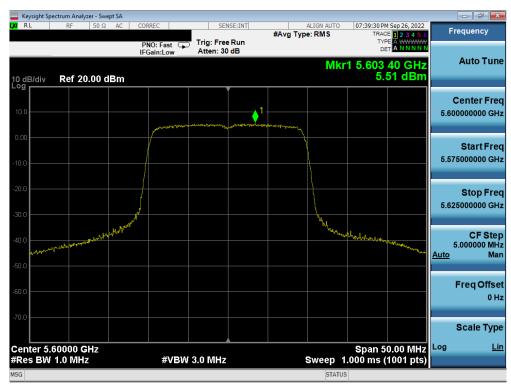
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 125 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 135 of 254
	•		V9.0 02/01/2019


Plot 7-209. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 2C) - Ch. 144)

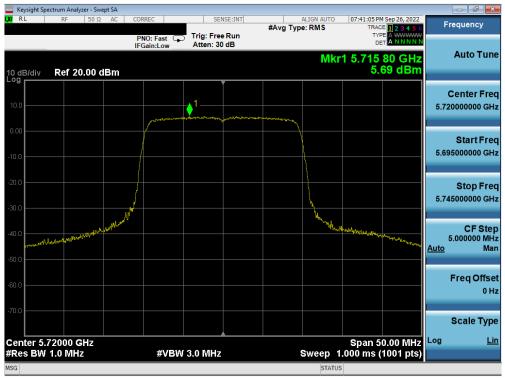

Plot 7-210. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

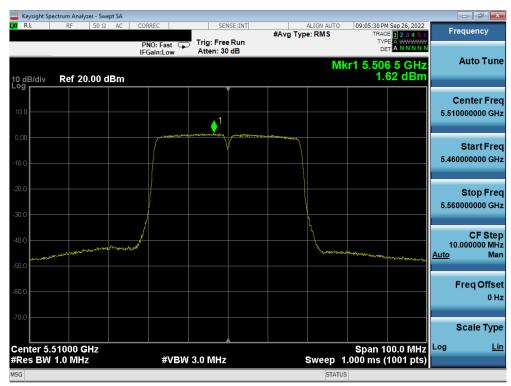
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 126 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 136 of 254
			V9.0 02/01/2019


Plot 7-211. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

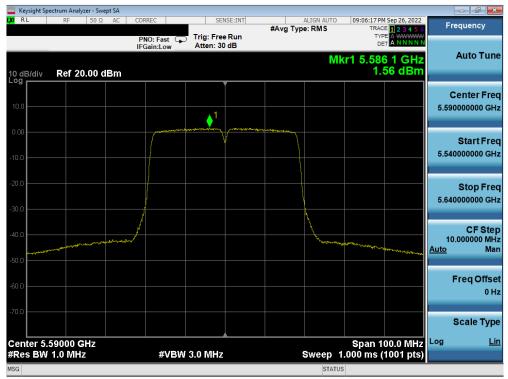

Plot 7-212. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 107 of 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 137 of 254
			V9.0 02/01/2019


Plot 7-213. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 100)


Plot 7-214. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 120)

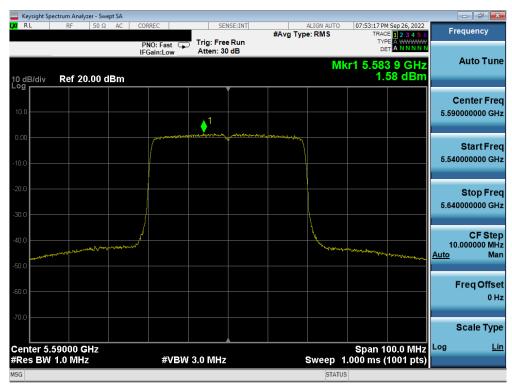
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 120 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 138 of 254
			V9.0 02/01/2019


Plot 7-215. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 144)


Plot 7-216. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 af 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 139 of 254
			V9 0 02/01/2019

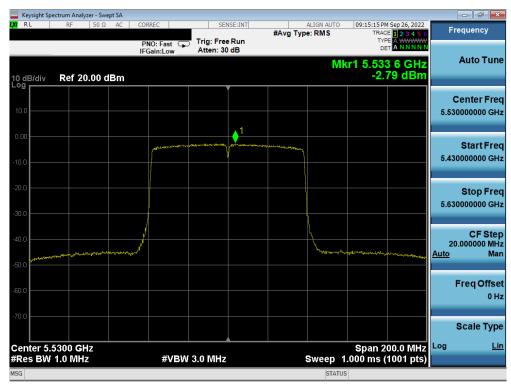
Plot 7-217. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)


Plot 7-218. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 140 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 140 of 254
			V9.0 02/01/2019

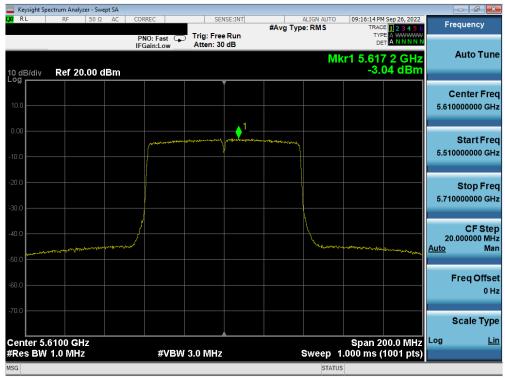
	ctrum Analyzer - Swept SA								
LX/IRL	RF 50 Ω AC	CORREC		SE:INT	#Avg Typ	ALIGN AUTO	TRAC	E 1 2 3 4 5 6	Frequency
		PNO: Fast 🖵 IFGain:Low	Trig: Free Atten: 30				DE		
10 dB/div Log	Ref 20.00 dBm					Mł	ar1 5.51 1.4	1 7 GHz 40 dBm	Auto Tune
									Center Freq
10.0				▲1					5.510000000 GHz
0.00			www.men	Summer and	mannen				
									Start Freq 5.46000000 GHz
-10.0									0.4000000000000
-20.0									Stop Freq
									5.560000000 GHz
-30.0)				l			
-40.0	and the second s	and the second s				the walnut			CF Step 10.000000 MHz
-50.0	- Martin Martin and Martin a						a share a shar	a margine free for	<u>Auto</u> Man
-50.0									
-60.0									Freq Offset 0 Hz
-70.0									
-70.0									Scale Type
Center 5.5	51000 GHz						Span 1	00.0 MHz	Log <u>Lin</u>
#Res BW		#VBW	3.0 MHz			Sweep 1	.000 ms (1001 pts)	
MSG						STATUS			

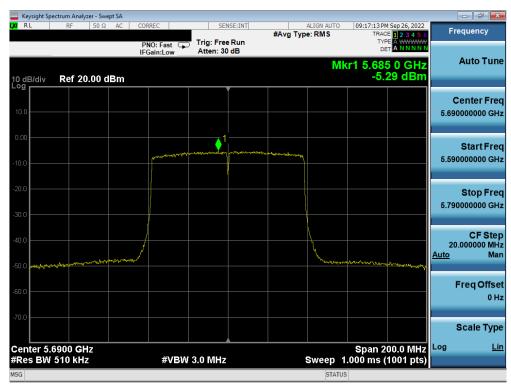
Plot 7-219. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 102)


Plot 7-220. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 118)

FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 141 of 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 141 of 254
			V9.0 02/01/2019

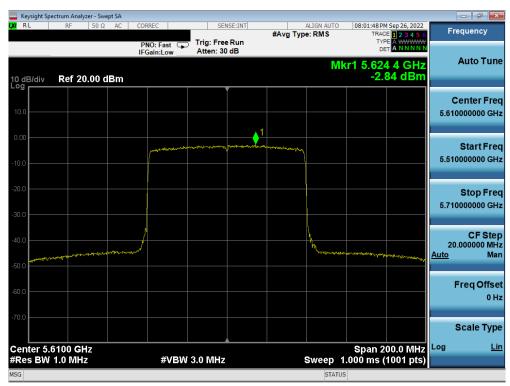
🔤 Keysight Spectrum Analyzer - Swept					
LX/ R L RF 50 Ω	AC CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	07:54:12 PM Sep 26, 2022 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 30 dB			Auto Tune
10 dB/div Ref 20.00 dB	im			1.63 dBm	
		Ĭ			Center Freq
10.0		↓ ¹			5.710000000 GHz
0.00		un mar prairie provincementer	Sectors to be a distance		Start Freq
-10.0					5.660000000 GHz
-20.0					Stop Freq
-30.0					5.760000000 GHz
	J.		l l		CF Step
-40.0	and the second of the second		and the second s	hand all all and a start	10.000000 MHz Auto Man
					Freq Offset
-60.0					0 Hz
-70.0					Scale Type
Center 5.71000 GHz				Spap 100.0 MHz	Log <u>Lin</u>
#Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	
MSG			STAT	US	


Plot 7-221. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 142)


Plot 7-222. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

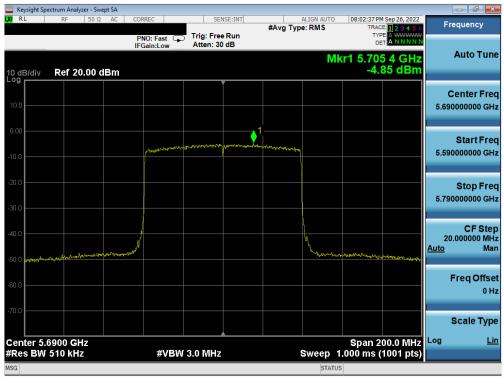
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 142 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 142 of 254
	-		V9.0 02/01/2019

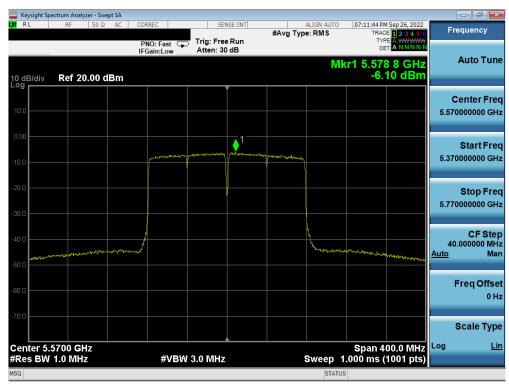
Plot 7-223. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)


Plot 7-224. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

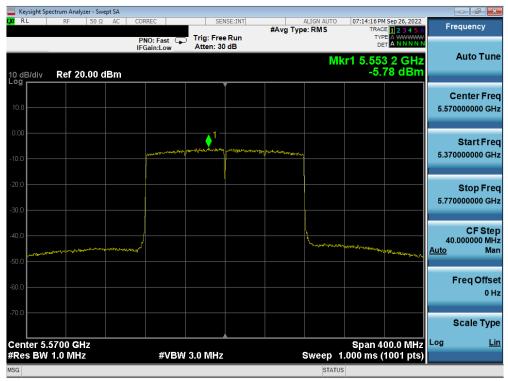
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 142 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 143 of 254
	-		V9.0 02/01/2019

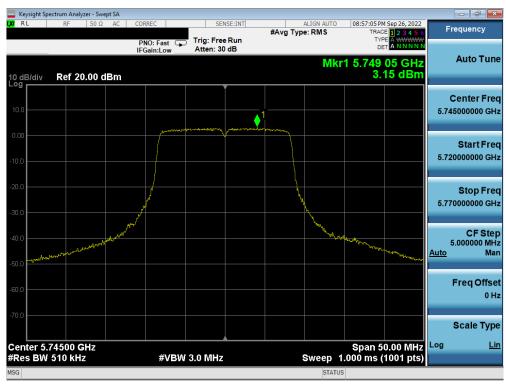
	ctrum Analyzer - Swept			1							
L <mark>XI</mark> RL	RF 50 Ω	AC COR	REC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO e: RMS		4 Sep 26, 2022	Freq	uency
10 dB/div	Ref 20.00 dB	IFG	O: Fast 😱 ain:Low	Trig: Free Atten: 30			M	cr1 5.54		A	uto Tune
10.0											nter Freq 00000 GHz
-10.0			phonemapur	Ang the grant of the state of the	/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- other glowshap					tart Freq 00000 GHz
-20.0											top Freq 00000 GHz
-40.0	ange on one of the state of the	mand					h h h h h h h h h h h h h h h h h h h	-l.p.ssayadaulaga	لي من المنظمة ا	20.00 <u>Auto</u>	CF Step 00000 MHz Man
-60.0										Fr	eq Offset 0 Hz
-70.0 Center 5.5	300 GHz							Span 2	00.0 MHz	Sc Log	ale Type <u>Lin</u>
#Res BW			#VBW	3.0 MHz		;	Sweep	.000 ms (1001 pts)		
MSG							STATU	s			


Plot 7-225. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 106)

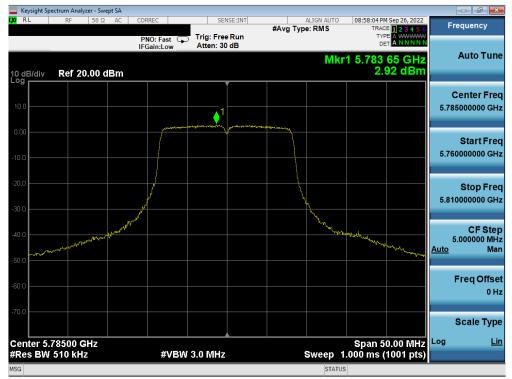

Plot 7-226. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 122)

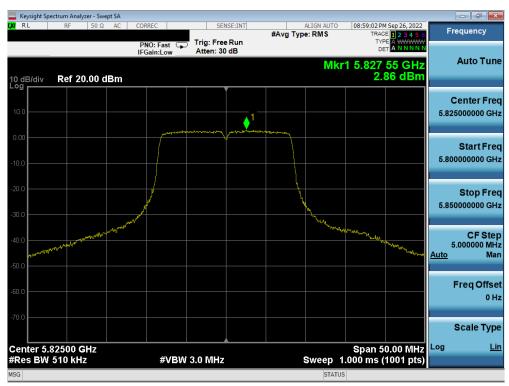
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 444 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 144 of 254
	•		V9.0 02/01/2019


Plot 7-227. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 138)

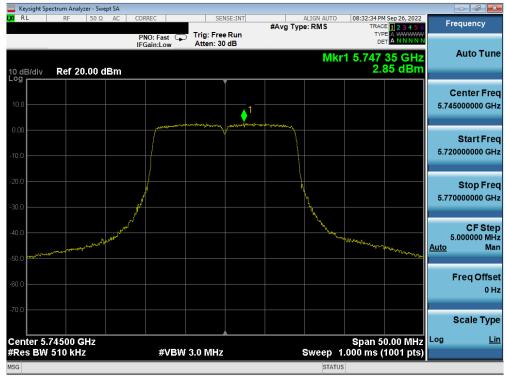

Plot 7-228. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ax (UNII Band 2C) - Ch. 114)

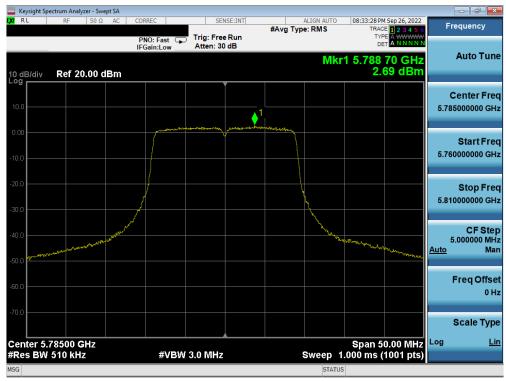
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 145 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 145 of 254
		· · · · · · · · · · · · · · · · · · ·	\/9.0.02/01/2019


Plot 7-229. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ax (UNII Band 2C) - Ch. 114)

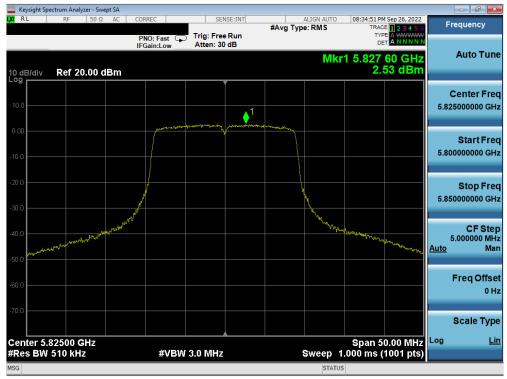

Plot 7-230. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 3) - Ch. 149)

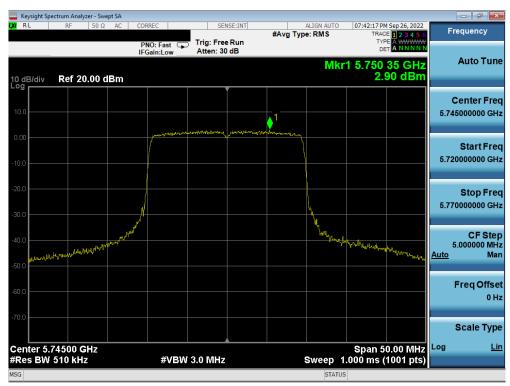
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 146 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 146 of 254
-			V9.0 02/01/2019


Plot 7-231. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 3) - Ch. 157)

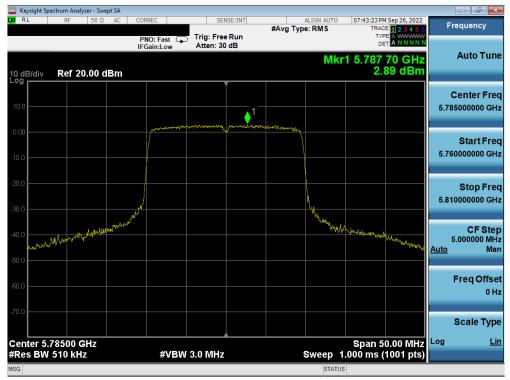

Plot 7-232. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 3) - Ch. 165)

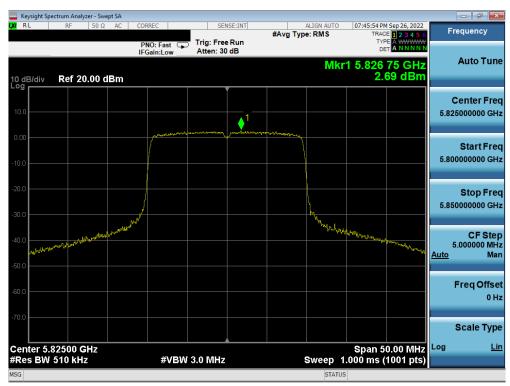
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 447 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 147 of 254
		· · · · · · · · · · · · · · · · · · ·	\/9.0.02/01/2019


Plot 7-233. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)

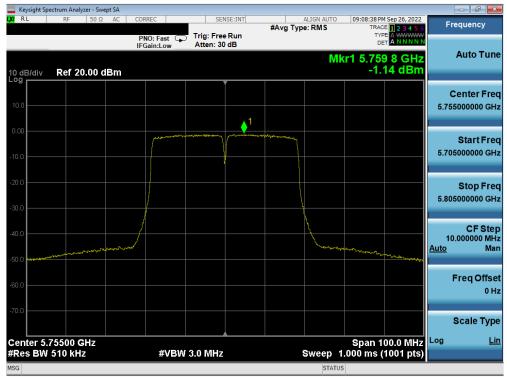

Plot 7-234. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 3) – Ch. 157)

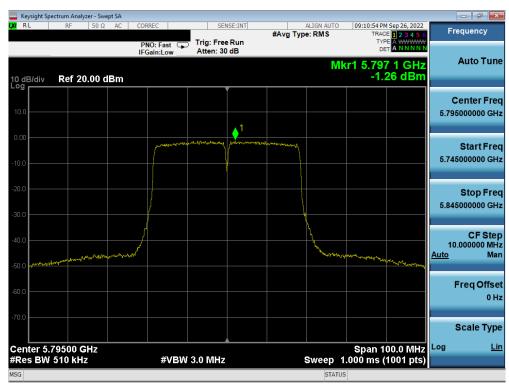
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 440 at 054
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 148 of 254
			\/9.0.02/01/2019


Plot 7-235. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

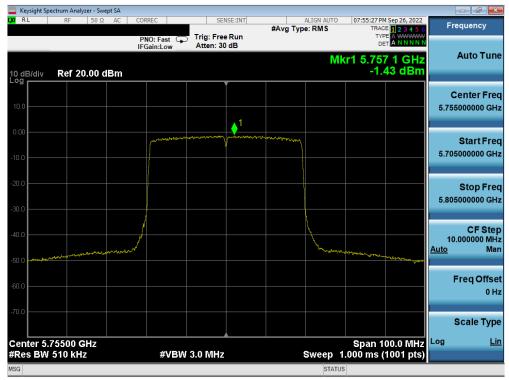

Plot 7-236. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 149)

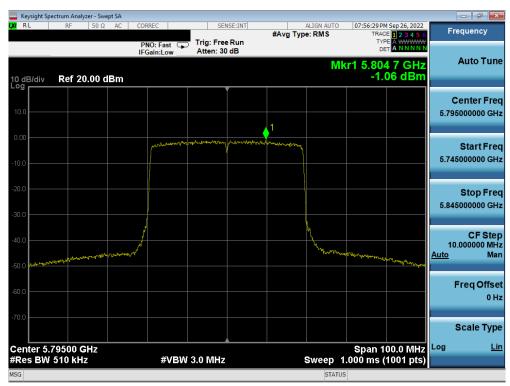
FCC ID: A3LSMS916U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 140 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 149 of 254
			V9.0 02/01/2019


Plot 7-237. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 157)

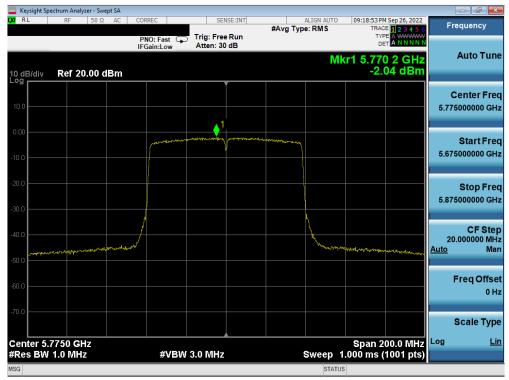

Plot 7-238. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 165)

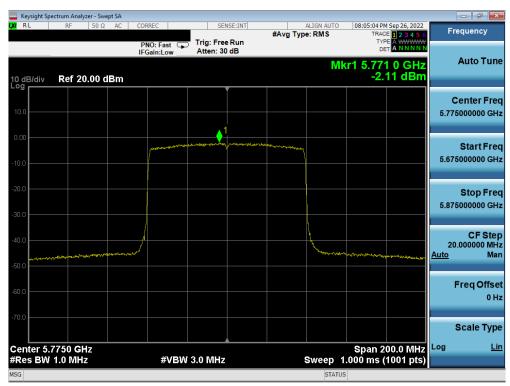
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 150 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 150 of 254
			V9 0 02/01/2019


Plot 7-239. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

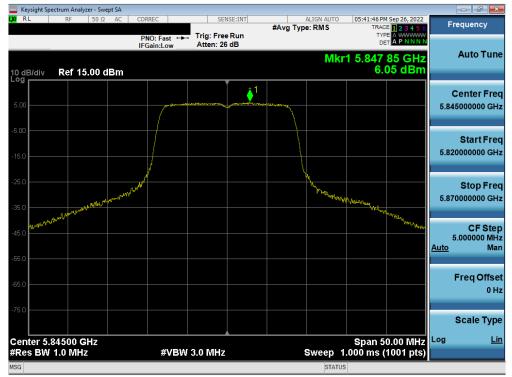

Plot 7-240. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

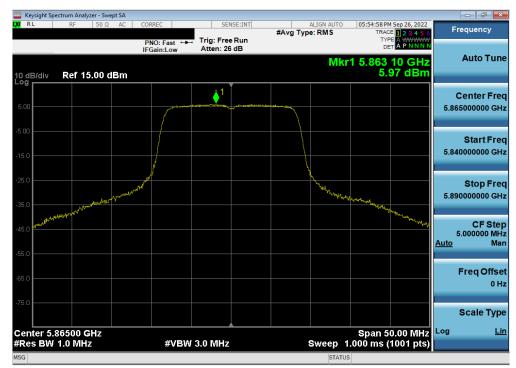
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 151 of 251
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 151 of 254
			V9.0 02/01/2019


Plot 7-241. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 151)

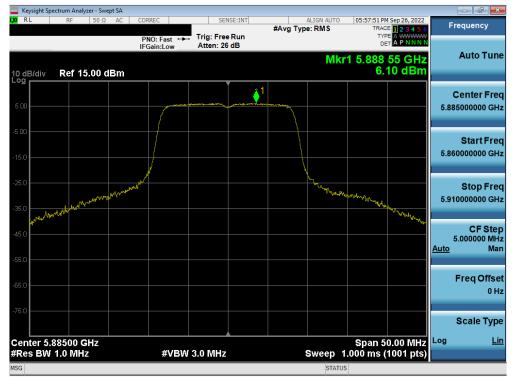

Plot 7-242. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159)

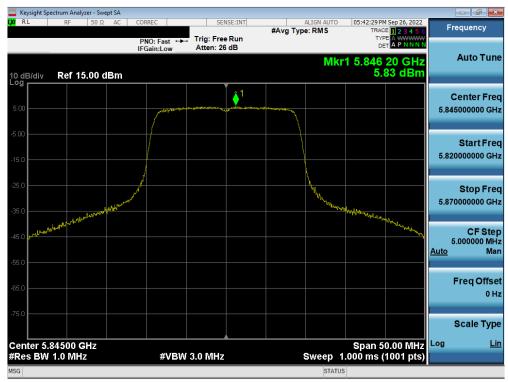
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 152 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 152 of 254
		· · · · · · · · · · · · · · · · · · ·	\/9.0.02/01/2019


Plot 7-243. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

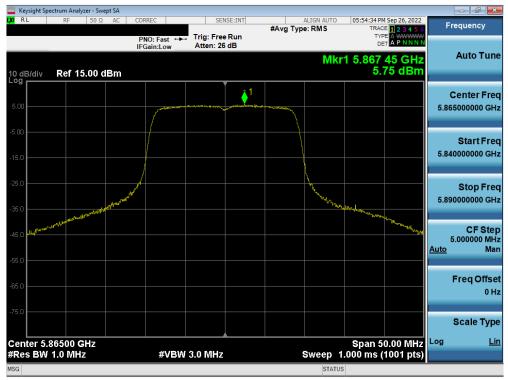

Plot 7-244. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

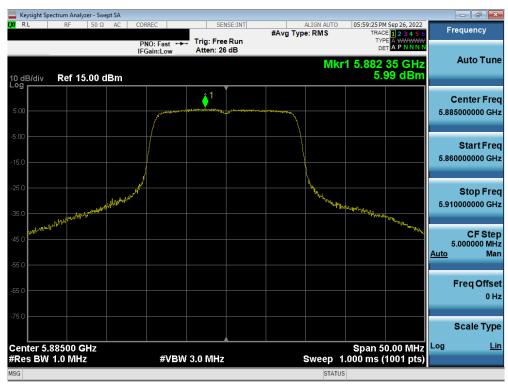
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 450 at 054	
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 153 of 254	
			\/9.0.02/01/2019	


Plot 7-245. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band ³/₄) – Ch. 169)

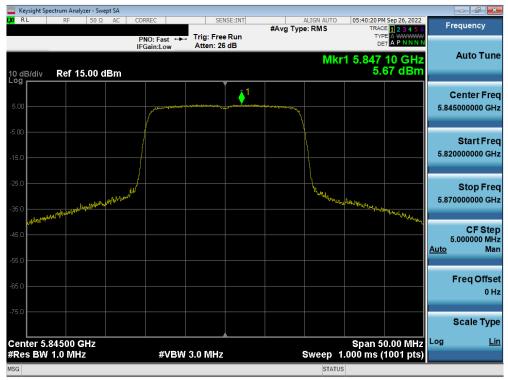

Plot 7-246. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 4) – Ch. 173)

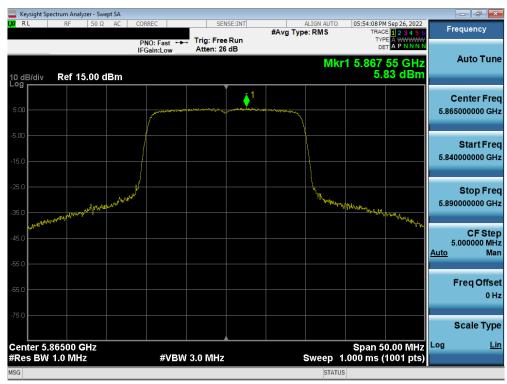
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 454 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 154 of 254
1			V9.0 02/01/2019


Plot 7-247. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 4) - Ch. 177)


Plot 7-248. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band ³/₄) – Ch. 169)

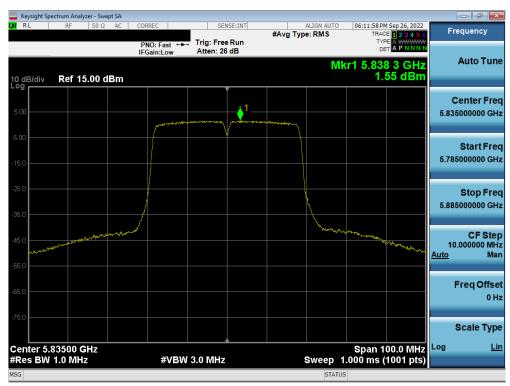
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 155 of 254
			V9 0 02/01/2019


Plot 7-249. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 4) - Ch. 173)

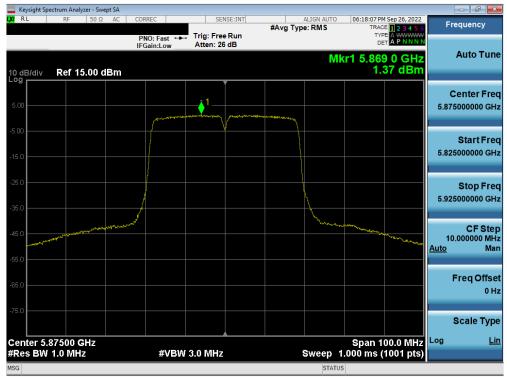

Plot 7-250. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 4) - Ch. 177)

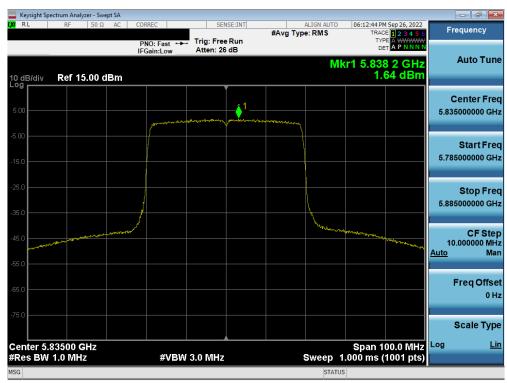
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 156 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 156 of 254
			V9.0 02/01/2019

Plot 7-251. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band ³/₄) – Ch. 169)

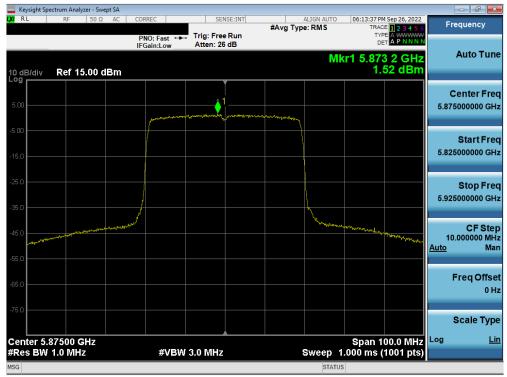

Plot 7-252. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 4) - Ch. 173)

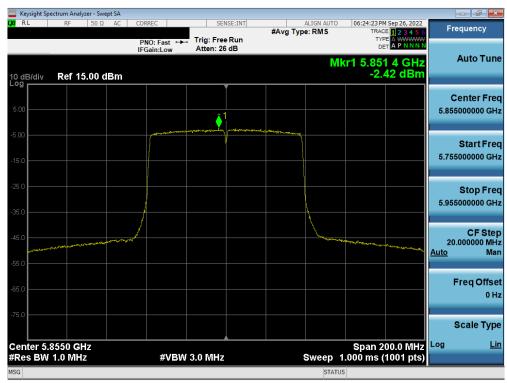
FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 157 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 157 of 254
		-	\/9.0.02/01/2019


Plot 7-253. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax (UNII Band 4) - Ch. 177)

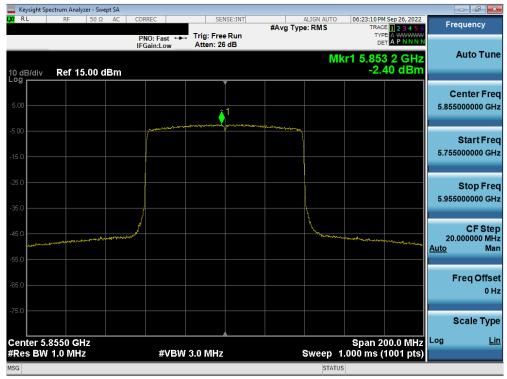

Plot 7-254. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band ³/₄) – Ch. 167)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 150 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 158 of 254
			V9 0 02/01/2019


Plot 7-255. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 4) - Ch. 175)


Plot 7-256. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band ³/₄) – Ch. 167)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 150 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 159 of 254
			\/9.0.02/01/2019


Plot 7-257. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax (UNII Band 4) - Ch. 175)

Plot 7-258. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band ³/₄) – Ch. 171)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 160 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 160 of 254
			V9.0 02/01/2019

Plot 7-259. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax (UNII Band ³/₄) – Ch. 171)

Plot 7-260. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band ³/₄) – Ch. 163)

FCC ID: A3LSMS916U	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 161 of 254
1M2209010097-13.A3L	09/08 - 11/08/2022	Portable Handset	Page 161 of 254
			V9.0 02/01/2019