

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea Date of Testing: 08/20/14 - 08/26/14 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1408211756.A3L

FCC ID: A3LSMR750C

APPLICANT: SAMSUNG ELECTRONICS, CO. LTD.

DUT Type: Portable Wrist Device

Application Type: Certification FCC Rule Part(s): CFR §2.1093

 Model(s):
 SM-R750P, SM-R750V, SM-R750R4

 Test Device Serial No.:
 Pre-Production [S/N: 314A7, 314F4]

Equipment Class	Band & Mode	Tx Frequency	SAR	
			1 gm Head (W/kg)	10 gm Extremity (W/kg)
PCB	Cell. CDMA/EVDO 824.70 - 848.31		< 0.1	0.35
PCB	PCS CDMA/EVDO 1851.25 - 1908.75 Mi		0.70	0.83
DTS	2.4 GHz WLAN 2412 - 2462 MH		0.11	0.24
DTS	DTS Bluetooth LE 2402 - 2480 MHz		N	I/A
DSS Bluetooth 2402 - 2480 MHz			<0.1	0.21
Simultaneous SAR per KDB 690783 D01v01r03:			0.81	1.07

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: A3LSMR750C	PCTEST INGUILITIAN LANDATONY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 1 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 1 of 26

TABLE OF CONTENTS

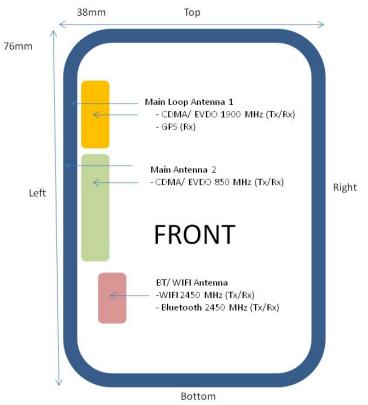
1	DEVICE	UNDER TEST	3
2	INTROD	UCTION	6
3	DOSIME	TRIC ASSESSMENT	7
4	TEST CO	ONFIGURATION POSITIONS FOR WRIST-WORN DEVICES	8
5	RF EXP	OSURE LIMITS	9
6	FCC ME	ASUREMENT PROCEDURES	10
7	RF CON	DUCTED POWERS	12
8	SYSTEM	I VERIFICATION	15
9	SAR DA	TA SUMMARY	17
10	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	19
11	SAR ME	ASUREMENT VARIABILITY	21
12	EQUIPM	ENT LIST	22
13	MEASUF	REMENT UNCERTAINTIES	23
14	CONCLU	JSION	24
15	REFERE	NCES	25
APPEN	NDIX A:	SAR TEST PLOTS	
APPEN	NDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	NDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	NDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	NDIX E:	SAR SYSTEM VALIDATION	
APPEN	NDIX F:	SAR TEST SETUP PHOTOGRAPHS	

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 2 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		raye 2 01 20

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
Cell. CDMA/EVDO	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz


1.2 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

Mode / Band	Modulated Average (dBm)	
Cell. CDMA/EVDO	Maximum	25.5
Cell. CDIVIA/LVDO	Nominal	25.0
PCS CDMA/EVDO	Maximum	25.5
PCS CDIVIA/EVDO	Nominal	25.0
Mode / Band	Modulated Average (dBm)	
IEEE 902 11h /2 4 CHz)	Maximum	17.5
IEEE 802.11b (2.4 GHz)	Nominal	17.0
IEEE 802.11g (2.4 GHz)	Maximum	13.5
TEEE 802.11g (2.4 GHZ)	Nominal	13.0
IEEE 902 44 m /2 4 CUs)	Maximum	13.5
IEEE 802.11n (2.4 GHz)	Nominal	13.0
Bluetooth	Maximum	18.0
Biuetootii	Nominal	17.5
Bluetooth LE	Maximum	7.0
Bluetooth LE	Nominal	6.5

FCC ID: A3LSMR750C	PETEST INGINITAL LADRATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 2 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 3 of 26

1.3 DUT Antenna Locations

Note: Exact antenna dimensions and separation distances are shown in the Technical Descriptions.

Figure 1-1 DUT Antenna Locations

1.4 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

Table 1-1
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Extremity	Notes
1	CDMA/EVDO voice/ data + 2.4 GHz WI-FI	Yes	Yes	
2	CDMA/EVDO voice/data + 2.4 GHz Bluetooth	Yes	Yes	
3	1x CDMA voice + CDMA/EVDO data	N/A	N/A	Not supported by HW

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.

FCC ID: A3LSMR750C	PCTEST INGUILITIAN LANDATONY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 4 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 4 of 26

1.5 **SAR Test Exclusions Applied**

(A) WIFI/BT

Per FCC KDB 447498 D01v05, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth LE (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth LE Head SAR was not required; $[(5/10)^* \sqrt{2.480}] = 0.8$ < 3.0. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v05, the 10g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency (GHz)}} \leq 7.5$$

Based on the maximum conducted power of Bluetooth LE (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth LE Extremity SAR was not required; $[(5/5)^*\sqrt{2.480}]$ = 1.6 < 7.5. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

1.6 **Power Reduction for SAR**

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.7 **Guidance Applied**

- FCC KDB Publication 941225 D01v02, D02v02 (2G/3G)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 5 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device	Page 5 of 26

2 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMR750C	PCTEST'	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg C of OC
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 6 of 26

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01 and IEEE 1528-2003:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 3-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

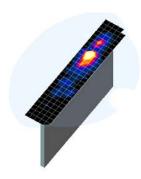


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 3-1) and IEEE 1528-2003. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	$\Delta z_{zoom}(1)^*$	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMR750C	PCTEST* INCIDENTAL DADDATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Wrist Device		Dogg 7 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14			Page 7 of 26

4 TEST CONFIGURATION POSITIONS FOR WRIST-WORN DEVICES

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

4.2 Positioning for Head

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions. The 1-g head SAR Exclusion Thresholds found in KDB Publication 447498 D01v05 should be applied to determine SAR test requirements.

4.3 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. When extremity SAR evaluation is required, the device is evaluated with the back of the device touching the flat phantom, which is filled with body tissue-equivalent medium. The device is evaluated with wrist bands unstrapped and touching the phantom; the space between the device and the phantom must represent actual use conditions. The 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v05 should be applied to determine SAR test requirements.

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 0 of 20
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 8 of 26

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS						
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)				
Peak Spatial Average SAR Head	1.6	8.0				
Whole Body SAR	0.08	0.4				
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20				

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMR750C	PCTEST INCIDENTAL INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 0 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 9 of 26

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6 FCC MEASUREMENT PROCEDURES

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

6.2 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

6.2.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by "SAR Measurement Procedures for 3G Devices" v02, October 2007. Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 6-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH₀ data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 6-2 was applied.

Table 6-1
Parameters for Max. Power for RC1

Parameter	Units	Value	
ľor	dBm/1.23 MHz	-104	
Pilot E _c	dB	-7	
Traffic E _c	dB	-7.4	

Table 6-2 Parameters for Max. Power for RC3

Parameter	Units	Value	
Îor	dBm/1.23 MHz	-86	
Pilot E _c	dB	-7	
Traffic E _c	dB	-7.4	

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

6.2.2 CDMA2000 1x Advanced

This device additionally supports 1x Advanced. Conducted powers were measured using SO75 with RC8 on the uplink and RC11 on the downlink per KDB Publication 941225 D02v02. Smart blanking was disabled for all measurements. The EUT was configured with forward power control Mode 000 and reverse power control at 400 bps. Conducted powers were measured on an Agilent 8960 Series 10 Wireless Communications Test Set, Model E5515C using the CDMA2000 1x Advanced application, Option E1962B-410.

Based on the maximum output power measured for 1x Advanced, SAR is required for 1x advanced when the maximum output for 1x Advanced is more than 0.25 dB higher than the maximum measured for 1x. Also, if the measured SAR in any 1x mode exposure conditions (head, body etc.) is larger than 1.2 W/kg, the highest of those configurations above 1.2 W/kg for each exposure condition in 1x Advanced has to be repeated. All measured SAR in 1x mode higher than 1.5 W/kg must be repeated for 1x Advanced.

6.2.3 Head SAR Measurements

SAR for head exposure configurations is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required when the maximum average output of each channel is less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

FCC ID: A3LSMR750C	POTEST INCIDENTAL IAPPRATURY, INC.	SAR EVALUATION REPORT	AMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Wrist Device		Dags 40 of 20
0Y1408211756.A3L	08/20/14 - 08/26/14			Page 10 of 26

6.2.4 Extremity SAR Measurements

Extremity Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 per KDB Publication 941225 D01 procedures for "1x Ev-Do data Devices". SAR for Subtype 2 Physical layer configurations is not required for Rev. A when the maximum average output of each RF channels is less than that measured in Subtype 0/1 Physical layer configurations. Otherwise, SAR is measured on the maximum output channel for Rev. A using the exposure configuration that results in the highest SAR for the RF channels in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

SAR is not required for 1x RTT for Ev-Do devices that also support 1x RTT voice and/or data operations. when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0. Otherwise, CDMA "Body-SAR Measurement" procedures for "CDMA 2000 1x Handsets" were applied.

6.3 **SAR Testing with 802.11 Transmitters**

Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

6.3.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

Frequency Channel Configurations [24] 6.3.2

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

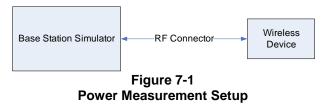
If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: A3LSMR750C	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 11 of 20
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device	Page 11 of 26

RF CONDUCTED POWERS

7.1 CDMA Conducted Powers

					Loopback		Data			
Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	SO75 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	RC11	FCH+SCH	FCH	(RTAP)	(RETAP)
	1013	22H	824.7	25.47	25.47	25.42	25.44	25.46	25.48	25.47
Cellular	384	22H	836.52	25.49	25.44	25.45	25.50	25.46	25.49	25.46
	777	22H	848.31	25.50	25.50	25.41	25.41	25.45	25.42	25.41
	25	24E	1851.25	25.39	25.46	25.49	25.35	25.45	25.44	25.43
PCS	600	24E	1880	25.48	25.47	25.48	25.44	25.42	25.46	25.44
	1175	24E	1908.75	25.37	25.36	25.32	25.47	25.47	25.46	25.45


Note: RC1 is only applicable for IS-95 compatibility.

Per KDB Publication 941225 D01v02:

- 1. Head SAR was tested with SO55 RC3. SO55 RC1 was not required since the average output power was not more than 0.25 dB than the SO55 RC3 powers.
- 2. Extremity SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. If the average output power of Subtype 2 for Rev. A is less than the Rev. 0 power levels, then Rev. A SAR is not required. Otherwise, SAR is measured on the maximum output channel for Rev. A using the exposure configuration that results in the highest SAR for that RF channel in Rev. 0. SAR is not required for 1x RTT for Ev-Do devices when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0

Per KDB Publication 941225 D02v02

1. CDMA 1X Advanced technology was not required for SAR since the maximum output powers for 1x Advanced was not more than 0.25 dB higher than the maximum measured powers for 1x and the measured SAR in any 1x mode exposure conditions was not greater than 1.2 W/kg. See Section 6.2.2 for 1x Advanced test set up.

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 12 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device	Fage 12 01 26

7.2 WLAN Conducted Powers

Table 7-1 IEEE 802.11b Average RF Power

	F===:		802.11b Conducted Power [dBm]					
Mode	le Freq Channel		Data Rate [Mbps]					
	[IVITIZ]		1	2	5.5	11		
802.11b	2412	1*	17.12	17.01	17.01	17.09		
802.11b	2437	6*	17.14	17.17	17.09	17.16		
802.11b	2462	11*	17.19	17.30	17.23	17.09		

Table 7-2 IEEE 802.11g Average RF Power

	F		802.11g Conducted Power [dBm] Data Rate [Mbps]							
Mode	Freq [MHz]	Channel								
	[1411 12]		6	9	12	18	24	36	48	54
802.11g	2412	1	13.46	13.45	13.30	13.45	13.42	13.36	13.45	13.27
802.11g	2437	6	12.91	12.95	12.72	12.89	12.85	12.89	12.99	12.76
802.11g	2462	11	12.80	12.77	12.68	12.80	12.82	12.70	12.91	12.66

Table 7-3
IEEE 802.11n Average RF Power

	From		802.11n (2.4GHz) Conducted Power [dBm]											
Mode	Freq [MHz]	Channel				Data Rat	e [Mbps]							
	[IVITIZ]		6.5	13	19.5	26	39	52	58.5	65				
802.11n	2412	1	12.65	12.54	12.62	12.63	12.72	12.58	12.65	12.64				
802.11n	2437	6	12.96	12.84	12.91	12.88	13.03	12.84	12.88	12.96				
802.11n	2462	11	12.74	12.74										

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012/April 2013 FCC/TCB Meeting Notes:

- For 2.4 GHz operations, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

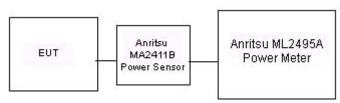


Figure 7-2
Power Measurement Setup

FCC ID: A3LSMR750C	PCTEST INCIDENTAL LABORATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 13 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		raye 13 01 20

7.3 Bluetooth Conducted Powers

Table 7-4
Bluetooth RF Power

_	D (D (nducted wer	Avg Conducted Power		
Frequency [MHz]	Data Rate [Mbps]	Channel No.	[dBm]	[mW]	[dBm]	[mW]	
2402	1.0	0	16.80	47.819	16.10	40.719	
2441	1.0	39	17.66	58.291	16.99	49.971	
2480	1.0	78	18.04	63.709	17.80	60.259	
2402	2.0	0	15.30	33.853	12.51	17.828	
2441	2.0	39	16.18	41.524	13.28	21.297	
2480	2.0	78	16.61	45.793	13.63	23.069	
2402	3.0	0	15.93	39.183	12.50	17.783	
2441	3.0	39	16.83	48.228	13.33	21.549	
2480	3.0	78	17.24	52.930	13.70	23.445	

Note: The bolded data rate and channel above were tested for SAR.

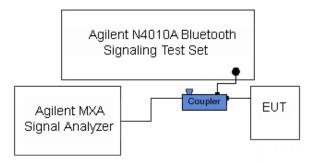


Figure 7-3
Power Measurement Setup

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 14 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		raye 14 01 26

SYSTEM VERIFICATION

8.1 Tissue Verification

Table 8-1
Measured Tissue Properties

Measured Hissue Froperties												
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε			
			820	0.888	40.032	0.899	41.578	-1.22%	-3.72%			
08/25/2014	835H	21.5	835	0.903	39.855	0.900	41.500	0.33%	-3.96%			
			850	0.916	39.642	0.916	41.500	0.00%	-4.48%			
			1850	1.380	39.065	1.400	40.000	-1.43%	-2.34%			
08/25/2014	1900H	22.2	1880	1.413	38.944	1.400	40.000	0.93%	-2.64%			
			1910	1.447	38.826	1.400	40.000	3.36%	-2.94%			
			2401	1.784	37.666	1.756	39.287	1.59%	-4.13%			
08/25/2014	2450H	23.9	2450	1.846	37.475	1.800	39.200	2.56%	-4.40%			
			2499	1.897	37.286	1.853	39.138	2.37%	-4.73%			
			820	0.978	53.802	0.969	55.258	0.93%	-2.63%			
08/26/2014	835B	23.6	835	0.994	53.640	0.970	55.200	2.47%	-2.83%			
			850	1.007	53.492	0.988	55.154	1.92%	-3.01%			
			1850	1.486	52.330	1.520	53.300	-2.24%	-1.82%			
08/20/2014	1900B	22.8	1880	1.524	52.206	1.520	53.300	0.26%	-2.05%			
			1910	1.551	52.113	1.520	53.300	2.04%	-2.23%			
			2401	1.944	50.954	1.903	52.765	2.15%	-3.43%			
08/20/2014	2450B	22.0	2450	2.017	50.824	1.950	52.700	3.44%	-3.56%			
			2499	2.077	50.608	2.019	52.638	2.87%	-3.86%			

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2003 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 45 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 15 of 26

8.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 8-2 1g System Verification Results

	- g - y													
	System Verification TARGET & MEASURED													
SAR System #	stem Frequency Tissue Date: Temp Temp Power SN SAR ₁₉ SAR ₁₉ Normalized Deviation ₁₉ (%)													
K	835	HEAD	08/25/2014	23.4	21.5	0.100	4d119	3287	0.915	9.220	9.150	-0.76%		
Е	1900	HEAD	08/25/2014	24.3	22.3	0.100	5d141	3914	4.020	40.100	40.200	0.25%		
G	2450	HEAD	08/25/2014	22.3	23.9	0.100	797	3258	4.770	51.800	47.700	-7.92%		

Table 8-3
10g System Verification Results

	Tog System Vermication Nesdits													
	System Verification TARGET & MEASURED													
SAR System #	stem Frequency Tissue Date: Temp Temp Power SN SAR _{10g} SAR _{10g} Normalized Deviation _{10g} (%)													
D	835	BODY	08/26/2014	23.4	23.6	0.100	4d119	3263	0.621	6.150	6.210	0.98%		
Н	1900	BODY	08/20/2014	23.5	22.3	0.100	5d141	3319	2.110	21.600	21.100	-2.31%		
G	2450	BODY	08/20/2014	20.7	21.8	0.100	797	3258	2.410	23.100	24.100	4.33%		

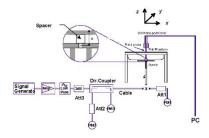


Figure 8-1
System Verification Setup Diagram

Figure 8-2
System Verification Setup Photo

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 46 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device	Page 16 of 26

9 SAR DATA SUMMARY

9.1 Standalone Head SAR Data

Table 9-1 PCB Head SAR Data

					MEASURE	MENT R	ESULTS	3								
FREQUE		Mode	Power Drift [dB]	Spacing	Device Serial	Duty Cycle	Side	SAR (1g)	Scaling Factor	(19)	Plot #					
MHz	Ch.			Power [dBm]				Number	,		(W/kg)		(W/kg)			
836.52	384	Cell. CDMA	RC3/SO55	25.5	25.44	0.00	10 mm	314A7	1:1	Front	0.012	1.014	0.012	A1		
1880.00	600	PCS CDMA	RC3/SO55	25.5	25.47	-0.07	10 mm	314A7	1:1	Front	0.699	1.007	0.704	A2		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak								Head 1.6 W/kg (mW/g)							
		Uncontrolled	d Exposure/Gen	eral Populati	on				av	eraged o	ver 1 gra	m				

Table 9-2 BT/WLAN Head SAR Data

					MEA	SUREME	NT RES	SULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed Power [dBm]	Power	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			rower [dBill]	[dBm]	լասյ		Number	(Mbps)		Cycle	(W/kg)	1 actor	(W/kg)	
2462	11	IEEE 802.11b	DSSS	17.5	17.19	-0.04	10 mm	314F4	1	Front	1:1	0.100	1.074	0.107	А3
2480	78	Bluetooth	FHSS	18.0	17.80	0.12	10 mm	314F4	1	Front	1:1	0.008	1.047	0.008	A4
		ANSI / IEEE	C95.1 19	92 - SAFETY LIN	ΛIT						Head				
			Spatial	Peak		1.6 W/kg (mW/g)									
		Uncontrolled	Exposure	e/General Popul					averag	ed over	1 gram				

9.2 Standalone Extremity SAR Data

Table 9-3 PCB Extremity SAR Data

1 OB Extremity OAK Butta															
				M	IEASURE	EMENT I	RESULT	rs							
FREQUENCY Mode Service Allowed Power Drift [dB] Spacing Serial Cycle Side (10)												Scaling Factor	Scaled SAR (10g)	Plot #	
MHz	Ch.			Power [dBm]	[dBm]	Driit [ab]		Number	Cycle		(W/kg)	Factor	(W/kg)		
836.52	384	Cell. CDMA	EVDO Rev. 0	25.5	25.49	-0.01	0 mm	314A7	1:1	back	0.351	1.002	0.352	A5	
1880.00	600	PCS CDMA	EVDO Rev. 0	25.5	25.46	-0.03	0 mm	314A7	1:1	back	0.825	1.009	0.832	A6	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak								Extremity 4.0 W/kg (mW/g)						
		Uncontrolled E	xposure/Gener	al Population	n				aver	aged ove	er 10 grai	ms			

Table 9-4 BT/WLAN Extremity SAR Data

	BITWEAR Extremity OAR Bata														
	MEASUREMENT RESULTS														
FREQU	REQUENCY Mode		Mode Service		Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (10g)		Scaled SAR (10g)	Plot #
MHz	Ch.			[dBm]	[dBm]	[dB]		Number	(Mbps)	٠ ا	Cycle	(W/kg)	Factor	(W/kg)	
2462	11	IEEE 802.11b	DSSS	17.5	17.19	-0.18	0 mm	314F4	1	back	1:1	0.222	1.074	0.238	A7
2480	78	Bluetooth	FHSS	18.0	17.80	-0.06	0 mm	314F4	1	back	1:1	0.200	1.047	0.209	A8
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								4.0	Extremi: W/kg (m ed over 1	-					

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 17 of 20
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 17 of 26

9.3 **SAR Test Notes**

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Per FCC KDB 865664 D01 v01, variability SAR tests were not required since the measured SAR results were less than 0.8 W/kg for 1g SAR and less than 2.0 W/kg for 10g SAR. Please see Section 11 for more information.

CDMA Notes:

- 1. Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225
- 2. Extremity SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01 procedures for data devices. Since the average output power of Subtype 2 for Rev. A is less than the Rev. 0 power levels, EVDO Rev. A SAR is not required, SAR is not required for 1x RTT for Ev-Do devices when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Laver configurations for Rev. 0.
- 3. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is $\leq 0.8 \text{ W/kg}$ (1g) or ≤ 2 W/kg (10g) then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

WLAN Notes:

- 1. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI SISO operations: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other SISO IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- 3. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg or the reported 10g averaged SAR is <2.0 W/kg, SAR testing on other default channels was not required.

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 20
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 18 of 26

10.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

10.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. Per FCC KDB 447498 D01v05 IV.C.1.iii and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 10-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤4.0 W/kg.

Estimated 1g SAR =
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$$
Estimated 10g SAR = $\frac{\sqrt{f(GHz)}}{18.75} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$

Table 10-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Head)	Estimated SAR (Head)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth LE	2480	7.00	10	0.105

Mode	Frequency	Maximum Allowed Power	Separation Distance (Extremity)	SAR
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth LE	2480	7.00	5	0.084

Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: A3LSMR750C	SHOULDHAND JAPONATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 20
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 19 of 26

10.3 Head SAR Simultaneous Transmission Analysis

Table 10-2
Simultaneous Transmission Scenario with 2.4 GHz Head (Front Side at 10mm)

Configuration	Mode	CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Front Side	Cell. CDMA	0.012	0.107	0.119
Front Side	PCS CDMA	0.704	0.107	0.811
Configuration	Mode	CDMA SAR (W/kg)	Bluetooth LE SAR (W/kg)	Σ SAR (W/kg)
Front Side	Cell. CDMA	0.012	0.105	0.117
Front Side	Front Side PCS CDMA		0.105	0.809

Note: Bluetooth LE Estimated SAR was used because it is more conservative than measured Bluetooth SAR.

10.4 Extremity SAR Simultaneous Transmission Analysis

Table 10-3
Simultaneous Transmission Scenario (Extremity at 0.0 cm)

Configuration	Mode	CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	Cell. CDMA	0.352	0.238	0.590
Back Side	PCS CDMA	0.832	0.238	1.070
Configuration	Mode	CDMA SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Back Side	Cell. CDMA	0.352	0.209	0.561
Back Side	PCS CDMA	0.832	0.209	1.041

10.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 20 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 20 01 26

11 SAR MEASUREMENT VARIABILITY

11.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability is assessed when measured 1g SAR is > 0.8 W/kg or 10g SAR is > 2.0 W/kg. Since highest measured SAR for this device was below these limits, measurement variability was not assessed.

11.2 Measurement Uncertainty

The measured 1g SAR was <1.5 W/kg or 10g SAR was <3.75 W/kg for all frequency bands. Therefore, per KDB Publication $865664\ D01v01$, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 21 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 21 01 26

12

EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/30/2013	Annual	10/30/2014	1833460
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/15/2014	Annual	4/15/2015	MY45470194
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8648D	(9kHz-4GHz) Signal Generator	4/15/2014	Annual	4/15/2015	3629U00687
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
SPEAG	D1900V2	1900 MHz SAR Dipole	4/9/2014	Annual	4/9/2015	5d141
SPEAG	D2450V2	2450 MHz SAR Dipole	1/21/2014	Annual	1/21/2015	797
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
SPEAG	D835V2	835 MHz SAR Dipole	4/7/2014	Annual	4/7/2015	4d119
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Rohde & Schwarz	CMU200	Base Station Simulator	6/6/2014	Annual	6/6/2015	109892
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/19/2013	Annual	11/19/2014	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/19/2013	Annual	11/19/2014	1408
SPEAG	DAF4	Dasy Data Acquisition Electronics	2/26/2014	Annual	2/26/2015	665
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	4/11/2014	Annual	4/11/2015	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	5/14/2014	Annual	5/14/2015	859
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	5/14/2014 CBT	N/A	5/14/2015 CBT	859 N/A
						1091
SPEAG SPEAG	DAK-3.5 DAK-3.5	Dielectric Assessment Kit Dielectric Assessment Kit	11/13/2013 5/6/2014	Annual Annual	11/13/2014 5/6/2015	1070
Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264162
	15-077-960		11/6/2012	Biennial	11/6/2014	122640025
Fisher Scientific		Digital Thermometer				
Rohde & Schwarz	NRVD E4438C	Dual Channel Power Meter	10/12/2012 3/31/2014	Biennial Annual	10/12/2014 3/31/2015	101695 MY42082659
Agilent	4353	ESG Vector Signal Generator				122541143
Control Company		Long Stem Thermometer	9/25/2012	Biennial	9/25/2014	
Control Company	4353	Long Stem Thermometer	9/25/2012	Biennial	9/25/2014	122541139
MiniCircuits Mini-Circuits	SLP-2400+ NLP-1200+	Low Pass Filter Low Pass Filter DC to 1000 MHz	CBT CBT	N/A N/A	CBT CBT	R8979500903 N/A
	NLP-1200+ NLP-2950+		CBT	N/A N/A	CBT	N/A N/A
Mini-Circuits		Low Pass Filter DC to 2700 MHz		,		,
Agilent	N9020A	MXA Signal Analyzer	10/29/2013	Annual	10/29/2014	US46470561
Agilent	N5182A NRV-Z32	MXG Vector Signal Generator	4/15/2014	Annual	4/15/2015	MY47420800 836019/013
Rohde & Schwarz		Peak Power Sensor	10/12/2012	Biennial	10/12/2014	
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Anritsu	ML2495A	Power Meter	10/31/2013	Annual	10/31/2014	1039008
Anritsu	ML2469A	Power Meter	3/14/2014	Annual	3/14/2015	1306009
Anritsu	MA2481A	Power Sensor	10/30/2013	Annual	10/30/2014	5605
Anritsu	MA2411B	Pulse Power Sensor	11/14/2013	Annual	11/14/2014	1126066
Anritsu	MA2411B	Pulse Power Sensor	2/3/2014	Annual	2/3/2015	1339018 6200901190
Anritsu	MT8820C	Radio Communication Analyzer	12/12/2013	Annual	12/12/2014	
Rohde & Schwarz	CMW500	Radio Communication Tester	10/4/2013	Annual	10/4/2014	108798
Rohde & Schwarz	CMW500	Radio Communication Tester	10/18/2013	Annual	10/18/2014	100976
Tektronix	RSA6114A	Real Time Spectrum Analyzer	4/16/2014	Annual	4/16/2015	B010177
SPEAG	EX3DV4	SAR Probe	10/23/2013	Annual	10/23/2014	3914
SPEAG	ES3DV3	SAR Probe	11/20/2013	Annual	11/20/2014	3287
SPEAG	ES3DV3	SAR Probe	2/25/2014	Annual	2/25/2015	3258
SPEAG	ES3DV3	SAR Probe	4/17/2014	Annual	4/17/2015	3319
SPEAG	ES3DV3	SAR Probe	5/15/2014	Annual	5/15/2015	3263
Rohde & Schwarz	SME06	Signal Generator	10/30/2013	Annual	10/30/2014	832026
Rohde & Schwarz	NRVS	Single Channel Power Meter	10/31/2013	Annual	10/31/2014	835360/0079
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
Agilent	8753ES	S-Parameter Network Analyzer	10/29/2013	Annual	10/29/2014	US39170122
Fisher Scientific	S97611	Thermometer	4/12/2013	Biennial	4/12/2015	130219303
Fisher Scientific	S97611	Thermometer	4/12/2013	Biennial	4/12/2015	130219304
Seekonk	NC-100	Torque Wrench	3/18/2014	Biennial	3/18/2016	N/A
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/18/2014	Biennial	3/18/2016	N/A
Gigatronics	8651A	Universal Power Meter	10/30/2013	Annual	10/30/2014	8650319
Anritsu	MA24106A	USB Power Sensor	12/18/2013	Annual	12/18/2014	1344555
Anritsu	MA24106A	USB Power Sensor	12/18/2013	Annual	12/18/2014	1344556
VWR	36934-158	Wall-Mounted Thermometer	8/8/2013	Biennial	8/8/2015	130477877
VWR	36934-158	Wall-Mounted Thermometer	8/8/2013	Biennial	8/8/2015	130477866
A -:	E5515C	Wireless Communications Test Set	3/28/2014	Annual	3/28/2015	GB44400860
Agilent Agilent	E5515C	Wireless Communications Test Set	5/9/2013	Biennial	5/9/2015	GB43304447

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: A3LSMR750C	SHOULDHAND JAPONATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 22 of 26
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Faye 22 01 20

13 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz:

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.	1(0,11)	Ci	C _i	1gm	10gms	
·	1528			-	·				
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
Measurement System							(± %)	(± %)	
Probe Calibration	E.2.1	6.0	N	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	×
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	œ
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1) RSS						12.1	11.7	299	
Expanded Uncertainty k=2						24.2	23.5		
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMR750C	PCTEST'	SAR EVALUATION REPORT	MSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 22 of 26	
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 23 of 26	

14 CONCLUSION

Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 24 of 26	
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 24 01 26	

15 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.

FCC ID: A3LSMR750C	POTEST INCIDENTAL IAPPRATURY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 25 of 26	
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device			

- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 26 of 26	
0Y1408211756.A3L	08/20/14 - 08/26/14	Portable Wrist Device		Page 26 01 26	

APPENDIX A: SAR TEST DATA

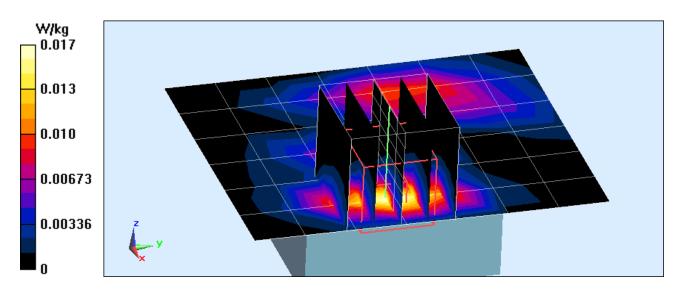
DUT: A3LSMR750C; Type: Portable Wrist Device; Serial: 314A7

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head, Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.904 \text{ S/m}; \ \epsilon_r = 39.833; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2014; Ambient Temp: 23.4°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3287; ConvF(6.3, 6.3, 6.3); Calibrated: 11/20/2013; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA, Head SAR, Front Side, Mid.ch


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.044 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.0240 W/kg

SAR(1 g) = 0.012 W/kg

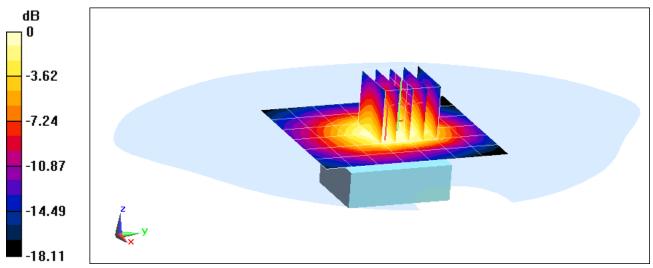
DUT: A3LSMR750C; Type: Portable Wrist Device; Serial: 314A7

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.413 \text{ S/m}; \ \epsilon_r = 38.944; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2014; Ambient Temp: 24.3°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN3914; ConvF(7.69, 7.69, 7.69); Calibrated: 10/23/2013; Sensor-Surface: 2mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS CDMA, Head SAR, Front side, Mid.ch


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.38 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.699 W/kg

0 dB = 0.899 W/kg = -0.46 dBW/kg

DUT: A3LSMR750C; Type: Portable Wrist Device; Serial: 314F4

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head, Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.858 \text{ S/m}; \ \epsilon_r = 37.429; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

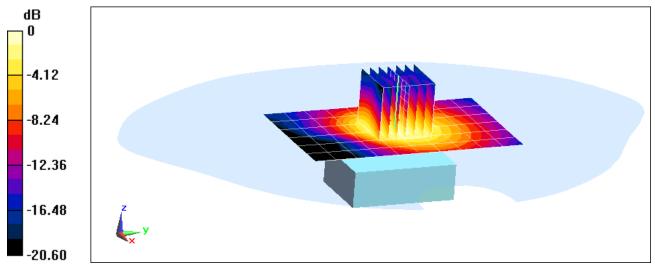
Test Date: 08-25-2014; Ambient Temp: 22.3°C; Tissue Temp: 23.9°C

Probe: ES3DV3 - SN3258; ConvF(4.52, 4.52, 4.52); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, Head SAR, Ch 11, 1 Mbps, Front Side


Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.868 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.183 W/kg

SAR(1 g) = 0.100 W/kg

0 dB = 0.124 W/kg = -9.07 dBW/kg

DUT: A3LSMR750C; Type: Portable Wrist Device; Serial: 314F4

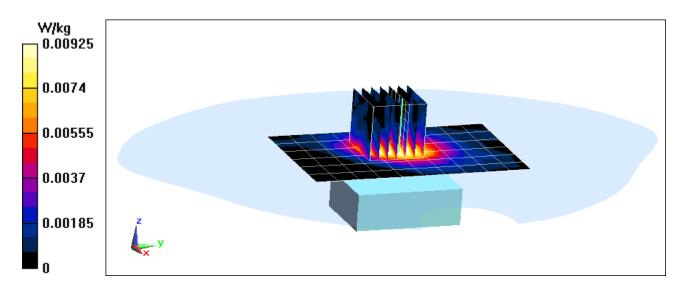
Communication System: UID 0, Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1 Medium: 2450 Head, Medium parameters used (interpolated): $f = 2480 \text{ MHz}; \ \sigma = 1.877 \text{ S/m}; \ \epsilon_r = 37.359; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2014; Ambient Temp: 22.3°C; Tissue Temp: 23.9°C

Probe: ES3DV3 - SN3258; ConvF(4.52, 4.52, 4.52); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/26/2014
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Bluetooth, Head SAR, Ch 78, 1 Mbps, Front Side


Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.167 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.0400 W/kg

SAR(1 g) = 0.00827 W/kg

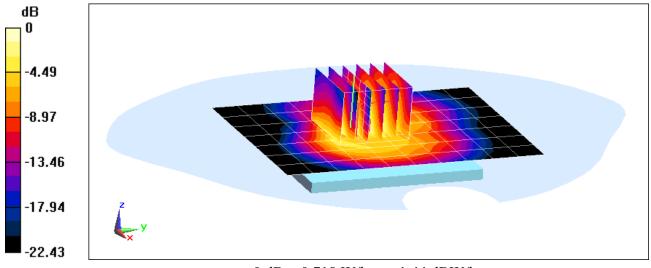
DUT: A3LSMR750C; Type: Portable Wrist Device; Serial: 314A7

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.995 \text{ S/m}; \ \epsilon_r = 53.625; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-26-2014; Ambient Temp: 23.4°C; Tissue Temp: 23.6°C

Probe: ES3DV3 - SN3263; ConvF(6.16, 6.16, 6.16); Calibrated: 5/15/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/14/2014
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. EVDO, Extremity SAR, Back side, Mid.ch


Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.530 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(10 g) = 0.351 W/kg

0 dB = 0.718 W/kg = -1.44 dBW/kg

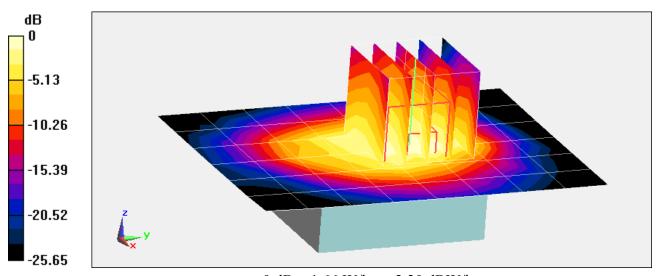
DUT: A3LSMR750C; Type: Portable Wrist Device; Serial: 314A7

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.524 \text{ S/m}; \ \epsilon_r = 52.206; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-20-2014; Ambient Temp: 23.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3319; ConvF(4.67, 4.67, 4.67); Calibrated: 4/17/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 4/11/2014
Phantom: ELI left; Type: QDOVA002AA; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS EVDO, Extremity SAR, Back side, Mid.ch


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.80 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.16 W/kg

SAR(10 g) = 0.825 W/kg

0 dB = 1.66 W/kg = 2.20 dBW/kg

DUT: A3LSMR750C; Type: Portable Wrist Device; Serial: 314F4

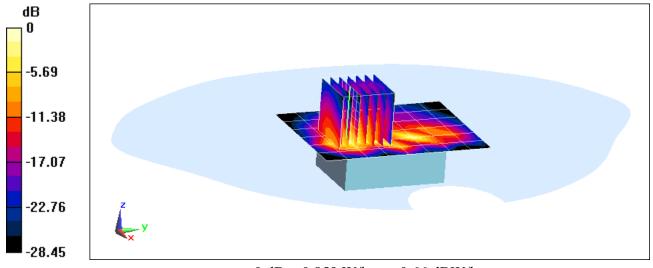
Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.032 \text{ S/m}; \ \epsilon_r = 50.771; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-20-2014; Ambient Temp: 20.7°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/26/2014
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, Extremity SAR, Ch 11, 1 Mbps, Back Side


Area Scan (7x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.66 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(10 g) = 0.222 W/kg

0 dB = 0.859 W/kg = -0.66 dBW/kg

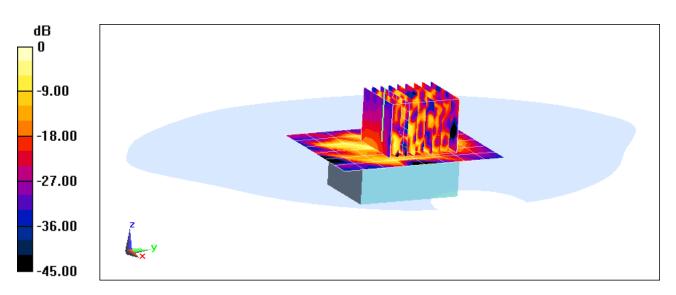
DUT: A3LSMR750C; Type: Portable Wrist Device; Serial: 314F4

Communication System: UID 0, Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used (interpolated): $f = 2480 \text{ MHz}; \ \sigma = 2.054 \text{ S/m}; \ \epsilon_r = 50.692; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08-20-2014; Ambient Temp: 20.7°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/26/2014
Phantom: SAM Front; Type: SAM; Serial: 1686
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Bluetooth, Extremity SAR, Ch 78, 1 Mbps, Back Side


Area Scan (7x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.05 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.26 W/kg

SAR(10 g) = 0.200 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

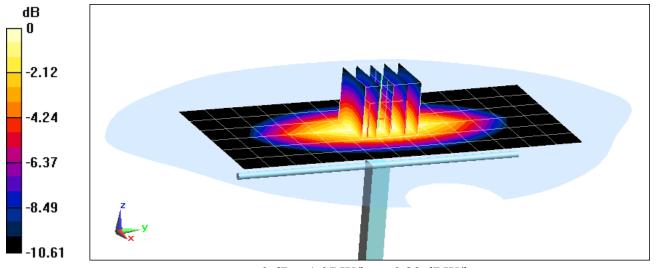
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head, Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \epsilon_r = 39.855; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-25-2014; Ambient Temp: 23.4°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3287; ConvF(6.3, 6.3, 6.3); Calibrated: 11/20/2013; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 1.37 W/kg

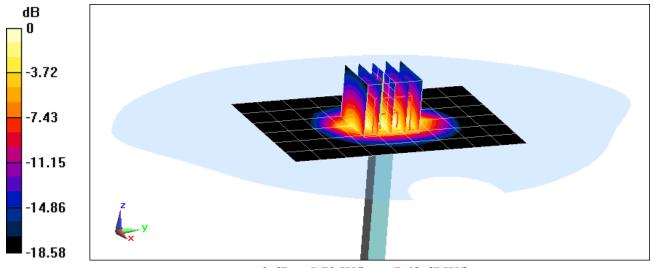
SAR(1 g) = 0.915 W/kg

Deviation(1 g) = -0.76%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head, Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.436 \text{ S/m}; \ \epsilon_r = 38.865; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2014; Ambient Temp: 24.3°C; Tissue Temp: 22.3°C


Probe: EX3DV4 - SN3914; ConvF(7.69, 7.69, 7.69); Calibrated: 10/23/2013; Sensor-Surface: 2mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

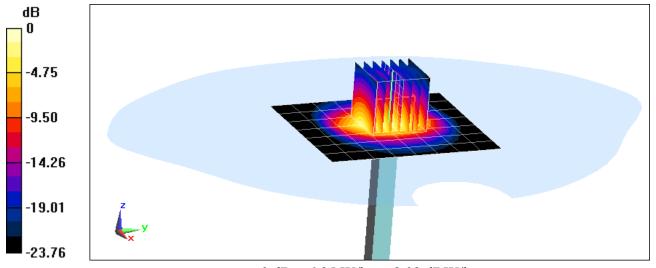
Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 7.50 W/kgSAR(1 g) = 4.02 W/kgDeviation(1 g) = 0.25%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head, Medium parameters used: f = 2450 MHz; $\sigma = 1.846 \text{ S/m}$; $\varepsilon_r = 37.475$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2014; Ambient Temp: 22.3°C; Tissue Temp: 23.9°C


Probe: ES3DV3 - SN3258; ConvF(4.52, 4.52, 4.52); Calibrated: 2/25/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification

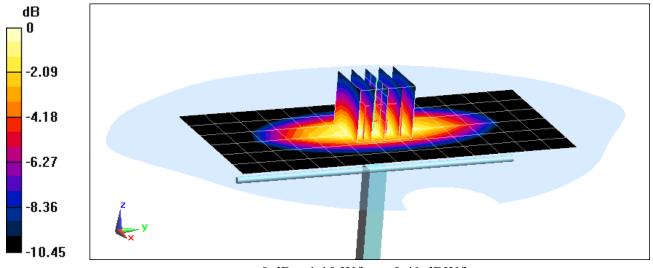
Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmInput Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 10.3 W/kg SAR(1 g) = 4.77 W/kg Deviation(1 g) = -7.92%

0 dB = 6.35 W/kg = 8.03 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.994 \text{ S/m}; \ \epsilon_r = 53.64; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-26-2014; Ambient Temp: 23.4°C; Tissue Temp: 23.6°C


Probe: ES3DV3 - SN3263; ConvF(6.16, 6.16, 6.16); Calibrated: 5/15/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/14/2014
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

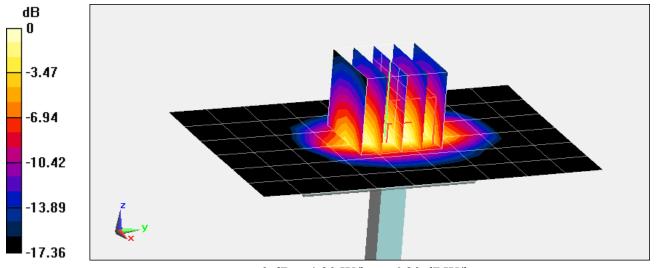
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 1.39 W/kgSAR(10 g) = 0.621 W/kgDeviation(10 g) = 0.98%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.542 \text{ S/m}; \ \epsilon_r = 52.144; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-20-2014; Ambient Temp: 23.5°C; Tissue Temp: 22.3°C


Probe: ES3DV3 - SN3319; ConvF(4.67, 4.67, 4.67); Calibrated: 4/17/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 4/11/2014
Phantom: ELI left; Type: QDOVA002AA; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

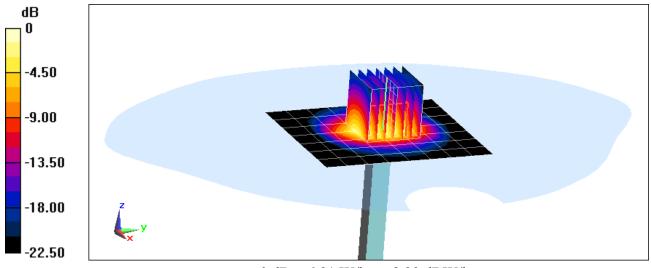
Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 6.88 W/kgSAR(10 g) = 2.11 W/kgDeviation(10 g) = -2.31%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.017 \text{ S/m}; \ \epsilon_r = 50.824; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-20-2014; Ambient Temp: 20.7°C; Tissue Temp: 21.8°C


Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmInput Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 11.2 W/kg SAR(10 g) = 2.41 W/kg Deviation(10 g) = 4.33%

0 dB = 6.91 W/kg = 8.39 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

Cilent

PC Test

Certificate No: ES3-3287_Nov13

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3287

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

November 20, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: ES3-3287_Nov13

Discou Chandarda	ID	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power meter E4419B	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A		04-Apr-13 (No. 217-01737)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)		Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Sep-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	in house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Issued: November 20, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF **DCP**

sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

Polarization 9

φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

Certificate No: ES3-3287_Nov13

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

November 20, 2013

Probe ES3DV3

SN:3287

Manufactured:

June 7, 2010

Calibrated:

November 20, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

November 20, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Basic Calibration Parameters

Buolo Guillatution 1 4.14	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.31	1.25	1.25	± 10.1 %
DCP (mV) ^B	102.6	102.5	100.4	

Modulation	Calibration	Parameters
woomanon	Campianon	raiaiiicicis

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	157.3	±2.7 %
		Y	0.0	0.0	1.0		159.9	
		Z	0.0	0.0	1.0		152.5	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	2.23	57.9	9.9	10.00	45.7	±1.4 %
0/01		Y	2.13	57.6	9.8		46.6	
		Z	3.31	61.1	11.8		47.6	
10011- CAA	UMTS-FDD (WCDMA)	X	3.25	66.3	17.9	2.91	124.8	±0.5 %
0,01		Y	3.16	65.7	17.4		127.4	
		Z	3.15	65.5	17.4	L	122.8	
10012- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	3.08	68.7	18.3	1.87	127.2	±0.7 %
		Υ	3.03	68.2	17.9		129.4	
		Z	2.87	67.0	17.3		126.5	
10021- DAA	GSM-FDD (TDMA, GMSK)	Х	15.99	90.6	25.0	9.39	99.9	±1.2 %
		Υ	12.41	86.6	23.6		101.5	
		Ζ	29.18	99.9	28.5		109.2	
10023- DAA	GPRS-FDD (TDMA, GMSK, TN 0)	Х	25.67	98.9	27.8	9.57	97.9	±1.7 %
		Υ	14.20	88.5	24.3		100.6	
		Z_	27.68	99.8	28.8		107.7	
10024- DAA	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	42.95	99.6	24.9	6.56	124.4	±1.4 %
		Y	45.27	99.9	24.8	ļ	128.8	
		Z	42.64	99.6	25.5	<u> </u>	135.7	
10027- DAA	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Х	27.78	91,3	21.1	4.80	136.0	±1.4 %
		Y	32.74	93.9	21.9	ļ	146.6	
		Z	23.93	89.5	21.1		144.8	
10028- DAA	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	59.17	99.6	22.4	3.55	142.5	±1.2 %
		Y	78.76	99.7	21.7		104.9	
		Z	38.06	94.2	21.4	<u> </u>	148.8	10000
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	93.35	99.7	19.5	1.16	108.1	±0.9 %
		Y	96.67	94.0	16.9	_	114.7	
		Z	98.17	96.2	18.2	1	108.9	10.0.0/
10039- CAA	CDMA2000 (1xRTT, RC1)	×	4.84	66.7	18.8	4.57	126.5	±0.9 %
		Y	4.83	66.6	18.6		134.4	
		Z	4.76	66.0	18.3	0.07	125.9	10 7 04
10081- CAA	CDMA2000 (1xRTT, RC3)	X	4.00	66.2	18.5	3.97	121.9	±0.7 %
		Y	3.91	65.5	17.9		128.9	 _
		Z	3.88	65.2	17.8	<u> </u>	120.7	<u> </u>

0098-	UMTS-FDD (HSUPA, Subtest 2)	Х	4.66	66.6	18.4	3.98	132.5	±0.7 %
AA		Y	4.66	66.5	18.2		141.3	
		Z	4.54	65.9	17.9		130.7	
0100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.65	68.3	20.1	5.67	139.5	±1.4 %
,AD	IVII 12, QI GIV)	Υ	6.69	68.3	19.9		148.9	
		Z	6.60	67.9	19.8		137.5	
0108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.52	67.8	20.0	5.80	137.3	±1.4 %
<u> </u>		Υ	6.53	67.6	19.7		147.5	
		Z	6.51	67.6	19.8		135.3	. 4 0 0/
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	6.19	67.2	19.7	5.75	134.3	±1.2 %
		Y	6.24	67.3	19.6			
		Z	6.23	67.1	19.6		132.3	±3.0 %
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	11.56	79.1	27.9	9.28	130.1 141.9	±3.0 %
		Y	11.01	76.8	26.2		135.7	<u> </u>
		Z	12.98	81.2	28.7	5.75	135.1	±1.2 %
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	6.25	67.4	19.8	5.75	143.6	
		Y	6.17	66.9	19.3		132.8	
10160-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z X	6.16 6.66	66.8 67.8	19.4 20.0	5.82	140.3	±1.4 %
CAB	QPSK)	Y	6.72	67.9	19.9		148.8	
		Z	6.66	67.6	19.8		137.4	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.05	66.7	19.5	5.73	117.8	±0.9 %
CAB	QF3N)	Y	4.93	66.0	18.9		125.0	
		Z	5.08	66.3	19.3		116.3	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	8.47	76.8	26.9	9.21	100.3	±2.2 %
•••••		Y	8.06	74.6	25.3		107.5	
		Z	9.43	78.2	27.4		102.5	10.00
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.98	66.3	19.3	5.72	118.2	±0.9 %
		Y	4.96	66.1	19.0	<u> </u>	116.1	
		Z	5.03	66.1	19.1			±0.9 %
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	5.06	66.7	19.6	5.72	118.7	10.5 /6
		Y_	4.97	66.2	19.1	<u> </u>	116.3	
10225-	UMTS-FDD (HSPA+)	Z	5.03 6.78	66.1 66.1	19.1 18.9	5.97	105.3	±1.2 %
CAA		Y	6.68	65.7	18.6	+	106.8	
		<u>T</u>	7.32	67.6	19.7	 	148.0	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	$\frac{1}{x}$	8.56	77.1	27.1	9.21	100.8	±1.9 %
CAB	QPSK)	Y	8.33	75.8	26.1		103.8	
		<u>'</u>	9.39	78.0	27.3		101.9	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	10.58	77.8	27.4	9.24	123.3	±2.5 %
טאט		Y	10.48	76.9	26.5		128.1	
		Z	11.79	79.6	28.0		127.0	<u> </u>
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	11.52	79.1	27.9	9.30	130.1	±2.7 %
		Y	11.24	77.7	26.9		136.0	<u> </u>
		Z	12.96	81.2	28.8		134.8	<u> </u>

November 20, 2013 ES3DV3-SN:3287

10274- CAA	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	Х	6.14	67.4	19.0	4.87	145.5	±1.2 %
CAA	(Neio. 10)	Y	6.19	67.4	19.0		149.2	
		Z	6.10	66.9	18.8		142.3	
10275- CAA	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	4.41	66.4	18.3	3.96	126.4	±0.7 %
	1.00.1	Y	4.43	66.3	18.2		130.4	
·		Z	4.36	65.9	18.0		123.8	
10291- AAA	CDMA2000, RC3, SO55, Full Rate	Х	3.57	65.9	17.9	3.46	120.0	±0.5 %
,,,,,		Υ	3.55	65.6	17.6		121.7	
		Z.	3.50	65.1	17.5		117.2	
10292- AAA	CDMA2000, RC3, SO32, Full Rate	Х	3.55	66.1	18.0	3.39	121.3	±0.5 %
,,,,,		Υ	3.54	66.0	17. <u>8</u>		123.6	
		Z	3.45	65.2	17.4		118.9	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.53	67.8	20.0	5.81	136.2	±1.2 %
200.		Υ	6.48	67.5	19.6		139.3	
		Z	6.52	67.6	19.8		134.1	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	7.12	68.4	20.4	6.06	141.7	±1.4 %
,,,,,,		Υ	7.11	68.3	20.1		145.3	
		Z	7.14	68.4	20.3		139.8	
10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	Х	2.79	67.6	18.0	1.71	125.5	±0.5 %
		Υ	2.71	66.9	17.3		128.2	
		Z	2.64	66.2	17.0		123.5	
10403- AAA	CDMA2000 (1xEV-DO, Rev. 0)	Х	4.78	67.5	18.3	3.76	130.6	±0.5 %
		Υ	4.77	67.5	18.2		133.8	
		Z	4.65	66.5	17.8		130.0	
10404- AAA	CDMA2000 (1xEV-DO, Rev. A)	Х	4.83	68.2	18.6	3.77	129.2	±0.7 %
		Υ	4.68	67.4	18.0		131.9	
		Z	4.52	66.3	17.7		128.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 7 and 8).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

November 20, 2013 ES3DV3-SN:3287

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.52	6.52	6.52	0.47	1.46	± 12.0 %
835	41.5	0.90	6.30	6.30	6.30	0.40	1.59	± 12.0 %
1750	40.1	1.37	5.27	5.27	5.27	0.63	1.34	± 12.0 %
1900	40.0	1.40	5.08	5.08	5.08	0.62	1.37	± 12.0 %
2450	39.2	1.80	4.43	4.43	4.43	0.79	1.28	± 12.0 %
2600	39.0	1.96	4.29	4.29	4.29	0.77	1.38	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

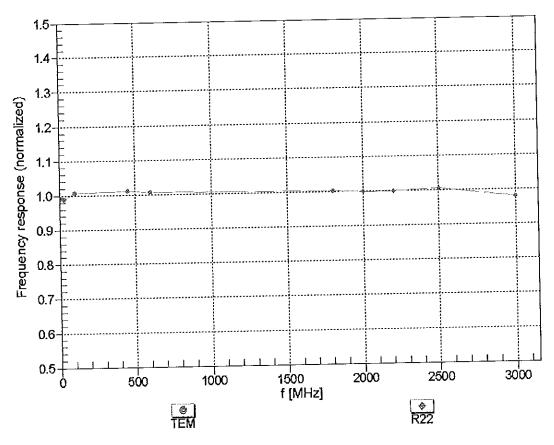
November 20, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Calibration Parameter Determined in Body Tissue Simulating Media

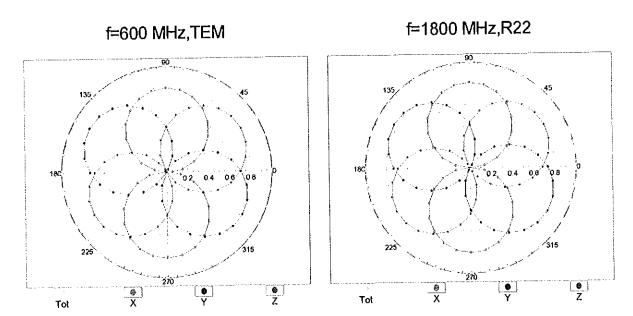
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.09	6.09	6.09	0.55	1.37	± 12.0 %
835	55,2	0.97	6.04	6.04	6.04	0.55	1.39	± 12.0 %
1750	53.4	1.49	4.93	4.93	4.93	0.39	1.73	± 12.0 %
1900	53.3	1.52	4.67	4.67	4.67	0.38	1.75	± 12.0 %
2450	52.7	1.95	4.17	4.17	4.17	0.60	1.20	± 12.0 %
2600	52.5	2.16	4.00	4.00	4.00	0.60	1.10	± 12.0 %

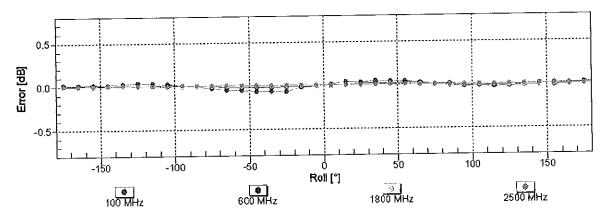
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

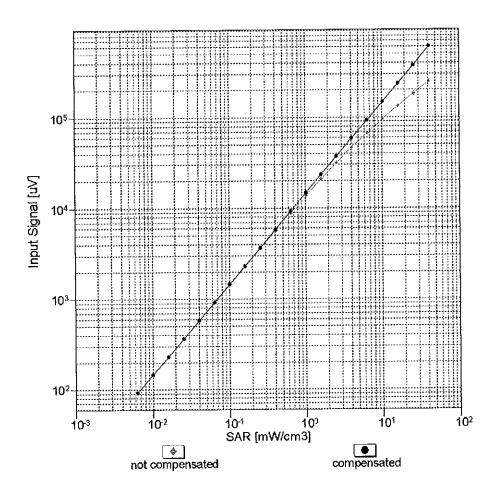
At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

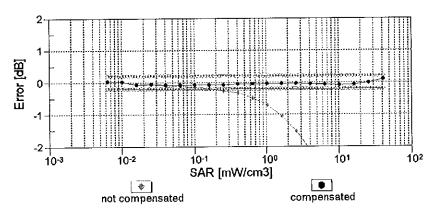
the ConvF uncertainty for indicated target tissue parameters.


Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

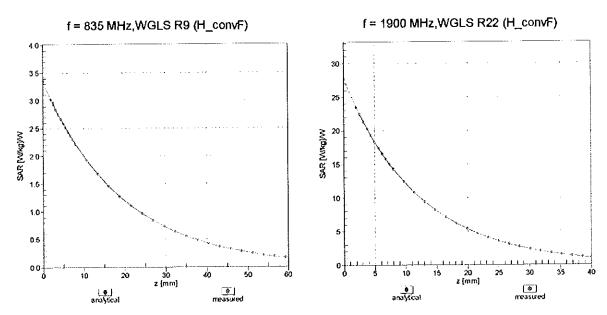
Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

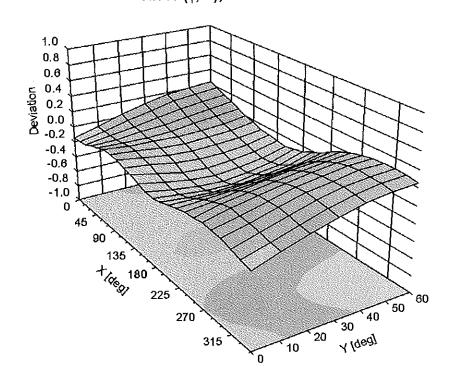

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

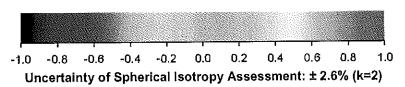


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


November 20, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz

November 20, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-15
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

S

Client

PC Test

Certificate No: EX3-3914_Oct13

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3914

Calibration procedure(s)

QA CAL-01,v3; QA CAL-16,v4; QA CAL-25,v5; QA CAL-25,v6

Calibrallor procedure for dearriable E-lieb trobes

Calibration date:

October 23, 2013

VCC

11/24/201)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Sep-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name Function Signature

Leif Klysner Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: October 25, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

PCT#81072

Certificate No: EX3-3914_Oct13

Page 1 of 14

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3914

Manufactured: December 18, 2012

Calibrated:

October 23, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4-SN:3914

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3914

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.47	0.49	0.51	± 10.1 %
DCP (mV) ⁸	99.2	98.9	98.2	

Modulation	Calibration	Parameters
modulation	vanbiation	raiametera

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	158.3	±3.0 %
		Υ	0.0	0.0	1.0		154.6	
		Z	0.0	0.0	1.0		170.8	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	0.71	53.3	6.1	10.00	48.4	±2.5 %
		Υ	2.43	67.0	13.8		39.9	
		Z	4.18	68.7	13.8		45.7	
10011- CAA	UMTS-FDD (WCDMA)	X	3.05	64.4	16.5	2.91	122.4	±0.5 %
		Y	3.31	66.5	18.2		123.5	
		Z	3.34	66.3	17.8		136.6	
10012- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	2.49	64.8	16.1	1.87	120.6	±0.5 %
		Υ	2.94	68.6	18.7	ļ	123.6	
		Z	2.63	65.9	17.0		135.4	
10021- DAA	GSM-FDD (TDMA, GMSK)	X	1.52	61.5	10.9	9.39	83.6	±1.2 %
		Υ	2.22	67.4	15.0		116.0	
		Z	2.47	66.8	14.7		95.9	
10023- DAA	GPRS-FDD (TDMA, GMSK, TN 0)	X	1.73 	63.3	11.9	9.57	81.5	±1.7 %
		Υ	2.11	66.2	14.2		111.8	
		Z	2.76	69.0	16.0		93.6	
10024- DAA	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	1.34	62.1	9.4	6.56	121.0	±1.2 %
		Υ	4.24	78.6	17.9		130.0	
		Z	2.91	70.7	14.9		141.4	
10027- DAA	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	1.25	63.5	9.7	4.80	143.5	±1.4 %
		Υ	1.59	66.9	12.2		149.7	
		Z	2.98	71.5	14.0		123.3	
10028- DAA	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	0.51	58.3	7.4	3.55	113.4	±1.2 %
		Υ	25.43	100.0	22.6		121.3	
40000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z	38.67	97.5	20.6	4.40	133.3	.0.0.0/
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	0.28	58.6	5.3	1.16	134.7	±0.9 %
		Y	65.75	99.6	18.6		141.3	
40000	ODMANOON (AUDIT DOA)	Z	0.20	55.6	4.1	4 = 7	112.1	±0.7.0/
10039- CAA	CDMA2000 (1xRTT, RC1)	X	4.33	64.6	17.4	4.57	113.8	±0.7 %
		Y	4.55	66.0	18.6		120.8	
40000	IEEE 000 44 att MEE: 5 OU - 10 PDA 4	Z	4.85	66.2	18.4	0.00	135.9	10 5 0/
10062- CAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	9.83	67.6	20.7	8.68	109.0	±2.5 %
		Y	10.06	68.4	21.5	ļ	118.2	
		Z	10.66	69.2	21.7		134.0	

EX3DV4- SN:3914 October 23, 2013

10081- CAA	CDMA2000 (1xRTT, RC3)	Х	3.59	63.9	16.9	3.97	113.6	±0.7 %
		Υ	3.84	65.6	18.2		119.6	
		Z	3.95	65.4	17.8		134.5	
10098- CAA	UMTS-FDD (HSUPA, Subtest 2)	Х	4.41	65.2	17.3	3.98	126.0	±0.7 %
		Υ	4.73	66.9	18.6		132.5	
		Z	4.51	65.5	17.7		105.6	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.26	66.2	18.6	5.67	130.5	±1.2 %
		Υ	6.61	67.7	19.8		139.3	
		Z	6.21	66.0	18.7		107.7	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.13	65.8	18.6	5.80	126.3	±1.2 %
		Y	6.40	67.1	19.6		135.6	
40440	LTC CDD (OO CDAAL 4000) DD CAUL	Z	6.10	65.5	18.5	C 70	107.4	.4.0.0/
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	5.78	65.3	18.3	5.75	123.1	±1.2 %
		Y	5.97	66.3	19.2		131.5	
10114-	IEEE 802.11n (HT Greenfield, 13.5	Z	5.86	65.3	18.4	0.40	104.9	±0 € 0/
10114- CAA	Mbps, BPSK)	X	9.92	67.7	20.3	8.10	115.7	±2.5 %
		Y	10.25	68.7	21.2		126.8	
		Z	10.71	69.4	21.3		146.0	
10117- CAA	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	9.95	67.8	20.3	8.07	116.6	±2.5 %
		Υ	10.26	68.7	21.1		128.3	
		Z	10.70	69.4	21.3		146.9	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	7.19	67.3	21.5	9.28	145.0	±2.2 %
		Υ	7.40	68.3	22.4		110.8	
		Z	7.79	68.4	22.0		128.0	
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	5.79	65.3	18.3	5.75	124.2	±1.2 %
		Υ	6.03	66.5	19.4		131.9	
40400	LET EDD (OO EDAM FOOL DD 45 MIL	Z	6.29	66.9	19.3	F 00	149.7	14.0.0/
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.23	65.9	18.6	5.82	128.3	±1.2 %
		Y	6.51	67.2	19.7		136.9	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	6.24 4.83	65.7 66.0	18.6 18.9	5.73	107.3 147.5	±1.2 %
QAD.	Qt Oity	Y	4.72	65.8	19.2		113.8	
		Z	5.03	66.1	19.1		129.7	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.83	69.2	22.8	9.21	149.9	±1.9 %
		Υ	5.81	69.4	23.4		120.3	
		Z	6.38	70.0	23.2		137.2	
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	4.86	66.1	18.9	5.72	149.8	±1.2 %
		Υ	4.72	65.8	19.2		113.3	
		Z	5.09	66.4	19.1		126.0	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	4.83	66.0	18.9	5.72	146.3	±1.2 %
		Υ	4.69	65.6	19.1		112.2	
		Z	5.02	66.1	19.0		125.1	
10193- CAA	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	9.51	67.4	20.2	8.09	108.6	±2.5 %
		Υ	9.72	68.1	20.9		118.2	
		Z	10.30	68.9	21.1		135.0	

EX3DV4- SN:3914 October 23, 2013

10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	9.52	67.4	20.2	8.10	111.6	±2.5 %
		Υ	9.79	68.3	21.1		121.3	
		Z	10.30	68.9	21.2		139.2	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	9.47	67.4	20.2	8.03	111.8	±2.2 %
		Υ	9.67	68.3	21.0		120.0	
		Z	10.20	68.9	21.1		138.0	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	Х	9.96	67.9	20.4	8.06	118.4	±2.5 %
		Υ	10.25	68.8	21.2		128.2	•
		Z	10.65	69.3	21.3		144.5	
10225- CAA	UMTS-FDD (HSPA+)	X	6.96	66.7	18.9	5.97	140.0	±1.4 %
		Υ	7.23	67.9	20.0		148.9	
		Z	7.03	66.4	18.9		115.6	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.51	67.5	21.8	9.21	114.2	±1.9 %
		Υ	5.82	69.4	23.4		123.0	
		Z	6.49	70.6	23.6		140.2	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.83	67.1	21.4	9.24	136.6	±1.9 %
		Υ	7.30	69.4	23.2		147.3	
		Z	7.36	68.1	22.0		117.5	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	7.26	67.5	21.6	9.30	142.7	±1.9 %
		Y	7.44	68.4	22.4		110.5	
		Z	7.84	68.7	22.2		122.6	
10274- CAA	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	Х	5.86	66.2	18.2	4.87	135.4	±0.9 %
		Υ	6.12	67.5	19.2		142.3	
10275-	UMTS-FDD (HSUPA, Subtest 5, 3GPP	Z	5.91 4.17	65.9 64.8	18.2 17.3	3.96	107.6 115.6	±0.7 %
CAA	Rel8.4)	Y	4.42	66.4	18.5	<u> </u>	124.6	
			4.42				132.6	
10291- AAA	CDMA2000, RC3, SO55, Full Rate	Z	3.36	66.0 64.7	18.0 17.1	3.46	109.4	±0.5 %
7///		Υ	3.55	66.2	18.3		118.2	
		z	3.60	65.6	17.7		120.9	
10292- AAA	CDMA2000, RC3, SO32, Full Rate	X	3.34	64.9	17.2	3.39	110.1	±0.5 %
		Υ	3.57	66.7	18.5		121.0	
		Ζ	3.54	65.6	17.7		123.9	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.14	65.8	18.6	5.81	125.1	±1.2 %
		Υ	6.44	67.2	19.7		135.7	
		Ζ	6.52	67.0	19.3		142.2	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.76	66.6	19.1	6.06	131.8	±1.4 %
		Υ	7.03	67.8	20.0		142.5	
		Z	7.15	67.7	19.7		148.6	
10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	Х	2.42	64.6	16.1	1.71	116.8	±0.5 %
		Y	3.00	69.3	19.0		126.9	
		Z	2.61	66.3	17.2		128.2	
10317- AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	9.71	67.6	20.5	8.36	111.7	±2.5 %
		Υ	9.99	68.6	21.4		122.2	
	<u> </u>	Z	10.38	68.9	21.3		129.5	

EX3DV4-SN:3914 October 23, 2013

10400- AAA	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	9.83	67.8	20.6	8.37	112.9	±2.5 %
		Y	10.09	68.7	21.4		123.9	
		Z	10.48	68.9	21.3		130.5	
10402- AAA	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	10.61	68.3	20.7	8.53	121.1	±2.5 %
		Υ	11.25	70.0	21.9		135.4	
		Z	11.15	69.4	21.4		137.4	
10403- AAA	CDMA2000 (1xEV-DO, Rev. 0)	X	4.51	67.4	17.8	3.76	119.2	±0.5 %
		Υ	4.91	69.5	19.3		128.3	
		Z	4.84	67.5	18.1		135.4	
10404- AAA	CDMA2000 (1xEV-DO, Rev. A)	X	4.51	67.7	18.0	3.77	117.4	±0.5 %
		Υ	4.92	69.8	19.5		125.4	
		Z	4.71	67.3	18.0		131.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3914 October 23, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3914

Calibration Parameter Determined in Head Tissue Simulating Media

	<u> </u>							
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.70	9.70	9.70	0.34	1.01	± 12.0 %
835	41.5	0.90	9.34	9.34	9.34	0.67	0.67	± 12.0 %
1750	40.1	1.37	7.99	7.99	7.99	0.79	0.56	± 12.0 %
1900	40.0	1.40	7.69	7.69	7.69	0.80	0.58	± 12.0 %
2450	39.2	1.80	6.95	6.95	6.95	0.41	0.77	± 12.0 %
2600	39.0	1.96	6.79	6.79	6.79	0.40	0.82	± 12.0 %
5200	36.0	4.66	4.99	4.99	4.99	0.30	1.80	± 13.1 %
5300	35.9	4.76	4.82	4.82	4.82	0.30	1.80	± 13.1 %
5500	35.6	4.96	4.55	4.55	4.55	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.37	4.37	4.37	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.52	4.52	4.52	0.35	1.80	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

October 23, 2013 EX3DV4-- SN:3914

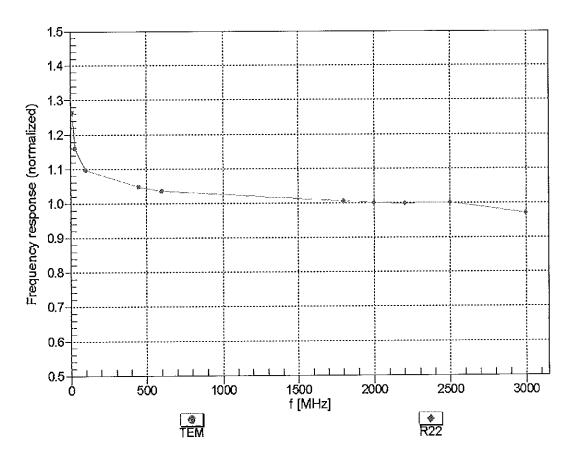
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3914

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.39	9.39	9.39	0.63	0.74	± 12.0 %
835	55.2	0.97	9.31	9.31	9.31	0.56	0.76	± 12.0 %
1750	53.4	1.49	7.89	7.89	7.89	0.32	1.03	± 12.0 %
1900	53.3	1.52	7.51	7.51	7.51	0.51	0.76	± 12.0 %
2450	52.7	1.95	7.02	7.02	7.02	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.81	6.81	6.81	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.52	4.52	4.52	0.35	1.90	± 13.1 %
5300	48.9	5.42	4.32	4.32	4.32	0.35	1.90	± 13.1 %
5500	48.6	5.65	4.07	4.07	4.07	0.35	1.90	± 13.1 %
5600	48.5	5.77	3.97	3.97	3.97	0.35	1.90	± 13.1 %
5800	48.2	6.00	4.14	4.14	4.14	0.40	1.90	± 13.1 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

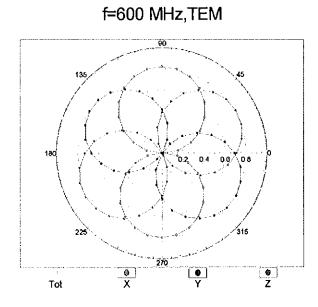

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

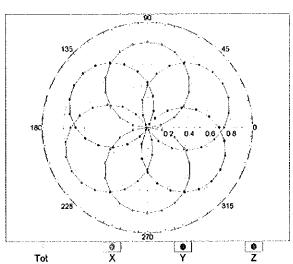
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip

diameter from the boundary.

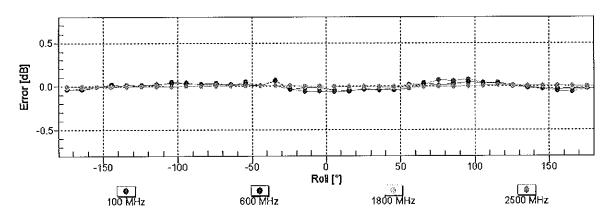
Certificate No: EX3-3914_Oct13

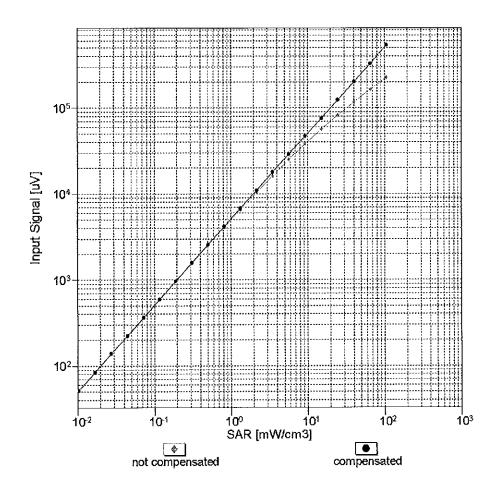
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

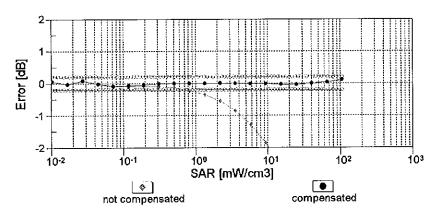



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

EX3DV4- SN:3914 October 23, 2013


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

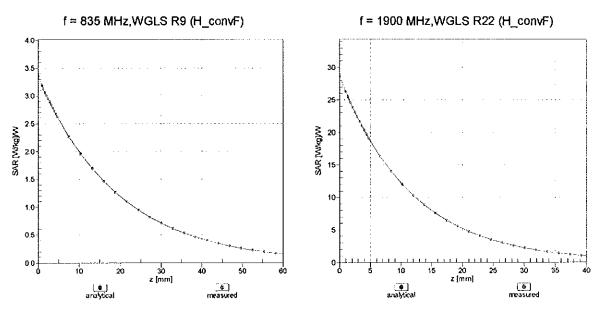

f=1800 MHz,R22

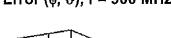


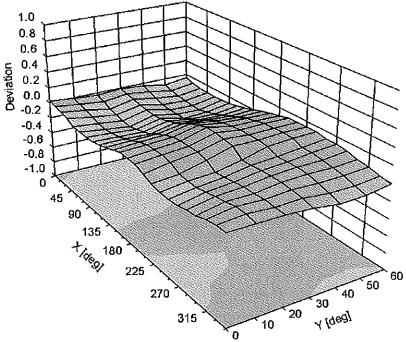
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

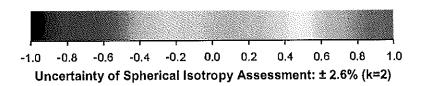
October 23, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


EX3DV4- SN:3914 October 23, 2013


Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz

EX3DV4-SN:3914

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3914

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-24.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3258_Feb14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3258

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

) 3/6/19

Calibration date:

February 25, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: ES3-3258_Feb14

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name Function Signature

Calibrated by: Israe El-Naouq Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: February 27, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\theta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3258

Calibrated:

Manufactured: January 25, 2010 February 25, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3 - SN:3258

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3258

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.29	1.19	1.23	± 10.1 %
DCP (mV) ^B	104.5	107.0	103.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	222.4	±3.8 %
		Υ	0.0	0.0	1.0		202.2	
		Z	0.0	0.0	1.0	·	207.1	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	5.09	65.6	14.1	10.00	44.8	±1.9 %
		Υ	1.68	57.4	9.3		40.7	
		Ζ	4.01	62,4	13.0		51.1	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.34	67.5	18.9	2.91	131.2	±0.5 %
		Υ	3.43	67.9	18.7		137.1	
		Z	3.42	67.8	19.0		146.0	
10012- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	3.40	70.9	19.8	1.87	134.2	±0.7 %
		Υ	3.19	70.2	19.2		137.9	
		Z	3.46	70.8	19.6		149.6	
10021- DAB	GSM-FDD (TDMA, GMSK)	Х	30.24	99.7	28.7	9.39	131.2	±1.4 %
		Υ	12.91	88.5	23.9		147.5	
		Z	30.37	99.5	28.9		128.0	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	Х	29.88	100.0	29.0	9.57	123.0	±1.9 %
		Υ	16.02	92.5	25.4		140.7	
		Z	30.01	100.0	29.4		125.8	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	44.57	99.7	25.9	6.56	119.6	±1.7 %
		Υ	28.97	95.3	23.2		127.6	
		Z	43.72	99.8	26.3		120.1	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	53.52	99.7	24.4	4.80	129.4	±2.2 %
		Υ	54.55	99.9	22.9		143.3	
		Z	51.63	99.7	24.8		127.5	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	58.93	99.8	23.4	3.55	133.4	±2.2 %
		Υ	77.54	99.7	21.3		125.3	
		Z	56.64	99.8	23.8		130.8	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	47.03	99.5	21.3	1.16	136.3	±1.7 %
		Y	95.86	95.2	17.1		138.2	
		Z	39.68	100.0	22.2		132.3	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	4.84	66.8	19.1	4.57	131.3	±0.9 %
		Y	4.75	67.0	18.9		135.2	
		Z	4.86	66.7	19.0		127.2	<u></u>

10081- CAB	CDMA2000 (1xRTT, RC3)	X	4.06	66.8	19.0	3.97	148.4	±0.7 %
		Υ	3.96	66.6	18.6		134.7	
		Z	4.13	66.9	19.1		143.4	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	Х	4.63	66.8	18.7	3.98	137.3	±0.7 %
		Υ	4.75	67.5	18.8		148.4	
		Z	4.65	66.7	18.7		133.2	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.66	68.5	20.3	5.67	144.0	±1.2 %
		Υ	6.27	67.1	19.3		130.6	
		Z	6.62	68.2	20.1		140.5	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.53	68.0	20.2	5.80	142.6	±1.4 %
		Υ	6.17	66.8	19.3		129.2	
		Z	6.52	67.8	20.1		139.0	
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	6.19	67.3	19.9	5.75	137.9	±1.4 %
		Υ	6.12	67.3	19.6		149.5	
		Z	6.19	67.1	19.8		136.1	
10114- CAA	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	10.49	69.5	21.7	8.10	132.4	±2.5 %
		Y	10.23	69.1	21.3		144.3	
		Z	10.45	69.3	21.6		129.5	
10117- CAA	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.46	69.5	21.7	8.07	133.9	±2.5 %
		Y	10.26	69.2	21.3		147.4	
		Z	10.47	69.4	21.7		130.5	_
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	11.61	77.4	26.8	9.28	118.8	±3.0 %
		Υ	9.89	75.2	25.7		144.9	
		Z	12.01	77.8	26.9		119.6	
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	6.20	67.3	19.9	5.75	139.2	±1.2 %
		Y	5.86	66.2	19.0		128.5	
		Z	6.22	67.3	19.9		136.3	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.63	67.8	20.1	5.82	144.1	±1.4 %
		Y	6.31	66.8	19.3		133.1	
		Z	6.66	67.7	20.0		140.9	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.25	67.5	20.2	5.73	143.6	±1.2 %
		Y	4.92	66.7	19.5		131.0	
		Z	5.29	67.4	20.2		140.7	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	13.49	87.5	31.6	9.21	139.0	±2.7 %
		Υ	7.83	75.5	26.0		124.9	
		Z	13.47	86.5	31.1		137.8	
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.22	67.4	20.1	5.72	144.3	±1.4 %
		Y	5.08	67.5	19.9		147.9	
		Z	5.26	67.2	20.0		139.6	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	5.24	67.5	20.1	5.72	144.5	±1.2 %
		Y	5.06	67.4	19.8		147.0	
		Z	5.29	67.3	20.1	<u></u>	139.2	

ES3DV3- SN:3258 February 25, 2014

10193-	IEEE 802.11n (HT Greenfield, 6.5 Mbps,	l v	40.40	60.4	04.6	8.09	128.8	±2.2 %
CAA	BPSK)	X	10.12	69.1	21.6	0.09		12.2 /0
		Υ	9.76	68.4	21.0		132.8	
		Z	10.08	68.9	21.5		123.4	
10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	10.15	69.2	21.7	8.10	130.2	±2.2 %
		Υ	9.77	68.5	21.0		134.1	
		Z	10.10	69.0	21.5		124.0	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	Х	10.02	69.0	21.5	8.03	128.7	±2.2 %
		Υ	9.67	68.5	21.0		133.3	
,		Z	10.02	68.9	21.5		123.9	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	10.46	69.6	21.7	8.06	134.0	±2.2 %
		Α	10.09	68.8	21.1		139.7	
		Z	10.40	69.3	21.6		128.7	
10225- UMTS-FDD (HSPA+) CAB	UMTS-FDD (HSPA+)	Х	7.09	67.1	19.6	5.97	131.2	±1.4 %
		Υ	6.98	67.2	19.4		138.0	
		Z	7.06	66.8	19.4		127.2	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	13.63	87.8	31.7	9.21	141.6	±3.0 %
		Υ	7.85	75.5	26.0		126.5	
		Z	13.99	87.7	31.6		141.4	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	12.86	81.4	28.9	9.24	142.1	±3.0 %
		Υ	8.91	73.4	24.8		129.9	
		Z	13.15	81.4	28.8		142.0	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	11.63	77.5	26.8	9.30	118.7	±3.0 %
		Y	9.62	74.3	25.2		138.4	
		Z	11.96	77.7	26.9		119.3	
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.10)	Х	6.14	67.4	19.3	4.87	149.9	±0.9 %
		Y	5.90	66.9	18.7		132.8	
		Z	6.20	67.5	19.3		146.6	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.4)	X	4.45	66.9	18.9	3.96	130.1	±0.7 %
		Y	4.50	67.2	18.8		137.9	
		Z	4.64	67.6	19.3		149.2	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	3.79	67.5	19.2	3.46	145.3	±0.7 %
		Υ	3.74	67.5	18.9		128.2	
		Z	3.78	67.3	19.1		139.1	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	×	3.77	67.8	19.3	3.39	147.0	±0.5 %
		Y	3.69	67.7	18.9		130.1	
		Z	3.73	67.3	19.0		141.3	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.52	67.9	20.1	5.81	141.4	±1.4 %
		Y	6.41	67.6	19.7	<u> </u>	147.4	
		Z	6.51	67.7	20.1		135.4	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	7.17	68.7	20.7	6.06	147.7	±1.4 %
		Y	6.69	67.2	19.6		128.6	
		Z	7.12	68.4	20.5		142.0	

ES3DV3-SN:3258 February 25, 2014

10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	3.04	70.0	19.6	1.71	129.8	±0.5 %
		Υ	3.25	71.3	19.7		136.9	
		Z	3.09	69.9	19.5		148.7	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.73	67.3	18.6	3.76	135.7	±0.5 %
		Y	4.93	69.1	19.0		141.5	
		Z	4.73	67.1	18.4		132.7	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	×	4.67	67.5	18.6	3.77	134.0	±0.5 %
		Υ	4.92	69.4	19.1		139.8	
		Z	4.65	67.1	18.5		130.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3258

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.53	6.53	6.53	0.40	1.60	± 12.0 %
835	41.5	0.90	6.27	6.27	6.27	0.80	1.17	± 12.0 %
1750	40.1	1.37	5.19	5.19	5.19	0.80	1.10	± 12.0 %
1900	40.0	1.40	5.04	5.04	5.04	0.68	1.27	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.78	1.23	± 12.0 %
2600	39.0	1.96	4.34	4.34	4.34	0.76	1.33	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3- SN:3258 February 25, 2014

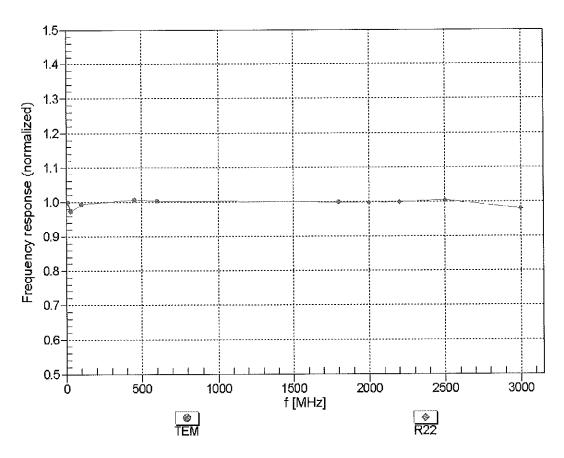
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3258

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.15	6.15	6.15	0.61	1.32	± 12.0 %
835	55.2	0.97	6.11	6.11	6.11	0.80	1.15	± 12.0 %
1750	53.4	1.49	4.83	4.83	4.83	0.47	1.74	± 12.0 %
1900	53,3	1.52	4.61	4.61	4.61	0.55	1.59	± 12.0 %
2450	52.7	1.95	4.14	4.14	4.14	0.80	1.11	± 12.0 %
2600	52.5	2.16	3.91	3.91	3.91	0.80	1.00	± 12.0 %

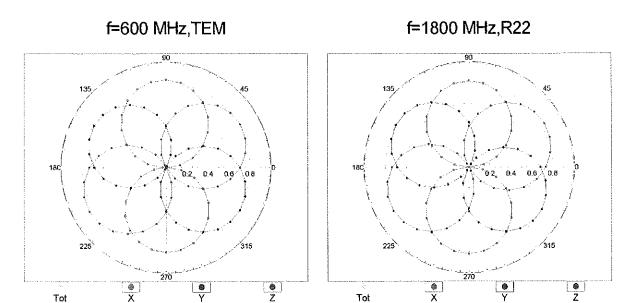
Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

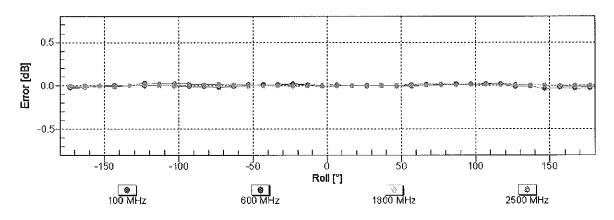
At frequencies below 2 GHz, the widdity of these parameters (a and -) can be releved to 1.40% (Figure 1).


Certificate No: ES3-3258_Feb14

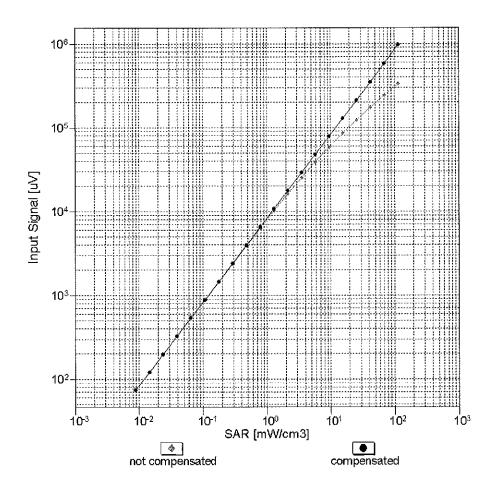
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters.

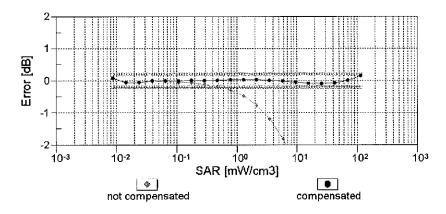
the ConvF uncertainty for indicated target tissue parameters.


Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

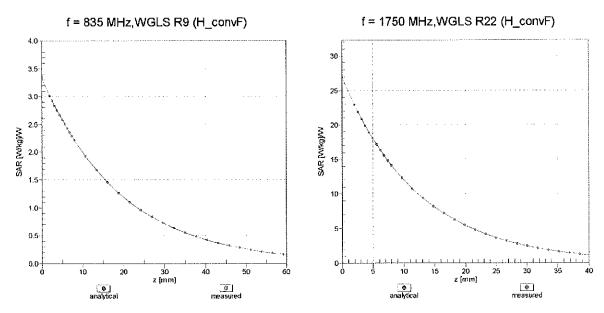

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

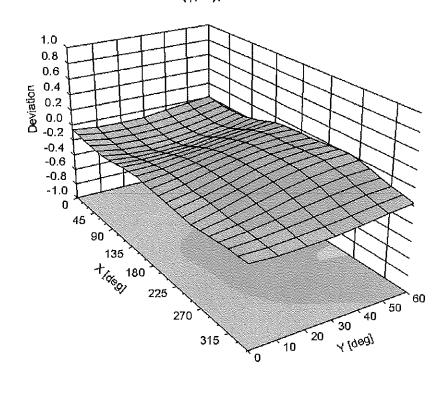
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3258

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-123.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3263_May14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3263

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

()C√ 7/17/14

Calibration date:

May 15, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: May 15, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

Certificate No: ES3-3263_May14

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

ES3DV3 - SN:3263

Probe ES3DV3

SN:3263

Manufactured: January 25, 2010

Calibrated:

May 15, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3263

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.21	1.24	1.13	± 10.1 %
DCP (mV) ^B	103.8	102.3	104.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	C	D dB	VR mV	Unc [⊨] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	156.3	±3.5 %
		Υ	0.0	0.0	1.0		203.1	
		Z	0.0	0.0	1.0		197.2	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	2.33	59.4	10.8	10.00	46.4	±1.4 %
		Υ	4.39	63.4	13.6		50.8	
		Ζ	1.35	55.5	7.8		39.6	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.49	68.2	19.1	2.91	126.7	±0.7 %
		Υ	3.28	66.9	18.5		120.7	
		Ζ	2.74	63.1	15.1		113.5	
10012- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	3.51	72.0	20.3	1.87	127.9	±0.7 %
		Υ	3.21	69.4	18.8		124.1	
		Z	1.93	60.6	12.6		113.3	
	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	11.30	70.8	23.3	9.46	125.2	±2.5 %
		Υ	12.42	72.7	24.4		129.4	
		Z	10.03	67.8	21.1		105.5	
10021- DAB	GSM-FDD (TDMA, GMSK)	Х	24.45	99.1	27.6	9.39	141.4	±1.4 %
		Υ	29.93	99.5	29.0		124.5	
		Ζ	4.53	73.0	18.1		111.6	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	Х	25.10	99.7	27.9	9.57	134.2	±1.9 %
		Υ	24.85	96.1	28.0		120.2	
		Z	5.99	76.5	19.1		142.5	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	24.34	93.0	23.0	6.56	117.1	±1.4 %
		Υ	26.49	92.6	24.2		148.7	
		Ζ	4.00	69.6	13.8		136.6	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Х	51.24	99.9	23.5	4.80	131.1	±1.9 %
		Υ	56.83	99.5	24.3		101.8	
		Z	1.70	61.4	9.1		107.7	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	60.12	99.6	22.2	3.55	138.7	±1.9 %
		Υ	64.73	99.9	23.4	-	105.5	•
		Z	1.13	58.4	6.0		116.0	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	77.27	99.6	19.6	1.16	149.5	±2.5 %
		Υ	60.44	99.7	21.0		109.4	
		Z	0.34	55.9	2.9		131.4	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	4.79	66.8	19.0	4.57	124.5	±0.9 %
		Υ	4.85	66.4	18.8		125.6	
		Z	4.06	63.4	16.1		108.1	

10081- CAB	CDMA2000 (1xRTT, RC3)	х	3.93	66.1	18.5	3.97	119.8	±0.7 %
<u> </u>		Υ	3.90	65.5	18.2		120.1	
		Z	3.29	62.4	15.3		108.5	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	Х	4.68	66.9	18.7	3.98	131.2	±0.7 %
		Υ	4.64	66.6	18.6		130.5	
		Z	4.15	64.5	16.5		118.8	
	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.61	68.1	20.0	5.67	137.5	±1.7 %
		Υ	6.70	68.4	20.2		137.7	
		Z	5.90	65.6	17.9		124.0	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.44	67.5	19.8	5.80	135.1	±1.7 %
		Y	6.60	68.0	20.1		135.4	
10110	LTE EDD (OO EDMA 4000) DD E MIL	Z	5.75	64.9	17.6	E 7E	121.8	14 2 0/
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	6.14	67.1	19.7	5.75	131.6 132.7	±1.2 %
	Y	6.28	67.4	19.9		118.4		
10114-	IEEE 902 11n (UT Orogniald 12 E	Z	5.62	65.5	18.2 21.2	8.10	124.3	±1.9 %
CAA	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	10.18	68.8		0,10		11.5 76
		Υ	10.60	69.7	21.8		126.2	
10/17	1555 000 44 (UT) 4 1 40 5 H	Z	9.38	67.0	19.8	0.07	108.4	14 0 0/
10117- CAA	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.23	68.9	21.3	8.07	125.0 127.1	±1.9 %
		Y	10.56	69.6	21.7		109.1	
10151	LITE TOD (OO FDAM 500) DD COAN	Z	9.37	67.1	19.8	0.20		±0.7.0/
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	10.23	75.7	26.0	9.28	125.0 147.3	±2.7 %
		Y	14.60	83.3	29.5		106.3	
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Z X	8.05 6.12	69.7 67.0	22.3 19.6	5.75	131.6	±1.4 %
Orto		Υ	6.28	67.4	19.9		132.4	
		Z	5.49	64.7	17.4		117.9	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.57	67.5	19.8	5.82	136.0	±1.4 %
		Υ	6.71	67.9	20.1		137.1	
		Z	5.89	65.2	17.8		122.4	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	4.82	66.0	19.3	5.73	113.5	±1.4 %
		Υ	5.12	66.3	19.4		116.6	
		Z	4.75	65.9	18.3		142.7	.0.0.5
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	9.53	80.6	28.6	9.21	136.5	±2.2 %
		Υ	11.32	81.6	28.8		109.2	
		Z	6.84	72.0	23.8	F 70	117.3	14 0 0/
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.86	66.2	19.4	5.72	112.9	±1.2 %
		Y	5.10	66.2	19.4		115.9 137.7	
40404	LTE EDD (OO EDMA A DD 45 MIL	Z	4.55	64.9	17.8	E 70		+1 2 0/
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.81	66.0	19.2	5.72	111.6 116.1	±1.2 %
		Y	5.13	66.4	19.5	ļ	137.1	
10100	VIETE COD AL VITTO CITA OF STA	Z	4.70	65.7	18.3	9.00		±2.2 %
10193- CAA	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	9.80	68.3	21.0	8.09	117.2	12.2 70
		Y	10.23	69.1	21.6			
		Z	9.85	68.9	20.8	<u> </u>	148.4	<u> </u>

10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	9.81	68.4	21.1	8.10	117.7	±2.2 %
-		Υ	10.23	69.2	21.6		121.7	
		Z	9.87	69.0	20.9		149.9	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	9.71	68.3	21.0	8.03	117.8	±2.2 %
		Υ	10.12	69.1	21.6		121.0	
		Z	8.90	66.6	19.6		104.1	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	Х	10.14	68.7	21.2	8.06	122.3	±1.9 %
		Υ	10.52	69.5	21.7		125.4	
		Z	9.28	66.8	19.6		108.5	
10225- CAB	UMTS-FDD (HSPA+)	Х	7.25	67.8	19.9	5.97	146.3	±1.7 %
		Υ	7.32	67.5	19.8		149.3	
		Z	6.52	65.7	18.0		130.7	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	9.55	80.7	28.7	9.21	137.2	±2.5 %
		Υ	11.34	81.7	28.9		109.9	
		Z	6.98	72.5	24.0	ļ	119.5	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	9.26	74.1	25.3	9.24	115.6	±3.3 %
		Υ	13.72	82.5	29.3		137.9	
		Z	8.83	73.3	24.4		144.1	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	10.06	75.2	25.8	9.30	122.9	±2.7 %
		Υ	14.69	83.4	29.6		147.6	
		Z	8.02	69.6	22.3		103.4	
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.10)	Х	6.08	67.2	19.0	4.87	140.2	±1.2 %
		Υ	6.23	67.5	19.2		143.5	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Z X	5.52 4.44	65.4 66.7	17.4 18.7	3.96	125.1 122.1	±0.7 %
CAB	1(6:0.4)	Υ	4.39	66.3	18.5		124.4	
		Z	3.83	63,7	16.0		114.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	3.64	66.7	18.6	3.46	115.7	±0.7 %
		Υ	3.60	66.0	18.2		118.0	
		Z	3.17	64.2	16.3		108.4	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.62	67.0	18.8	3.39	116.9	±0.9 %
		Υ	3.54	66.1	18.2		119.1	
		Z	3.24	64.2	15.8		145.6	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.43	67.5	19.8	5.81	132.0	±1.4 %
		Υ	6.60	68.0	20.1		134.9	
		Z	5.81	65.4	18.0		115.0	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	7.04	68.1	20.2	6.06	137.5	±1.4 %
		Υ	7.19	68.6	20.5		140.3	
		Z	6.26	65.7	18.2	ļ	119.6	
10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	Х	3.05	70.0	19.4	1.71	121.7	±0.7 %
		Y	2.91	68.7	18.7	ļ <u> </u>	123.4	
		Z	1.83	60.2	12.3		108.4	
10316- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	10.05	68.7	21.4	8.36	117.3	±1.9 %
		Y	10.57	69.7	22.0		122.8	
		Z	9.11	66.5	19.7		103.1	l

Page 6 of 14

May 15, 2014 ES3DV3-SN:3263

10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	4.81	68.3	18.8	3.76	125.8	±0.7 %
, , , , ,		Y	4.65	66.5	18.1		130.8	
		Z	3.98	64.7	16.0		114.7	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.91	69.1	19.2	3.77	123.3	±0.7 %
		Y	4.60	66.6	18.1		128.5	
		Z	3.73	64.0	15.4		112.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	2.78	69.0	19.0	1.54	121.9	±0.7 %
,,,,,		Y	2.46	66.8	17.9		122.5	
		Z	1.83	60.9	13.0		112.4	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	Х	9.88	68.4	21.2	8.23	116.6	±1.7 %
1001	Of Pint o mopo, oppositor	Y	10.29	69.2	21.7		121.5	
		z	9.25	67.3	20.2		103.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3263

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.42	6.42	6.42	0.72	1.18	± 12.0 %
835	41.5	0.90	6.23	6.23	6.23	0.27	2.02	± 12.0 %
1750	40.1	1.37	5.41	5.41	5.41	0.74	1.23	± 12.0 %
1900	40.0	1.40	5.08	5.08	5.08	0.80	1.16	± 12.0 %
2450	39.2	1.80	4.47	4.47	4.47	0.80	1.22	± 12.0 %
2600	39.0	1.96	4.33	4.33	4.33	0.66	1.41	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (s. and s.) can be relayed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

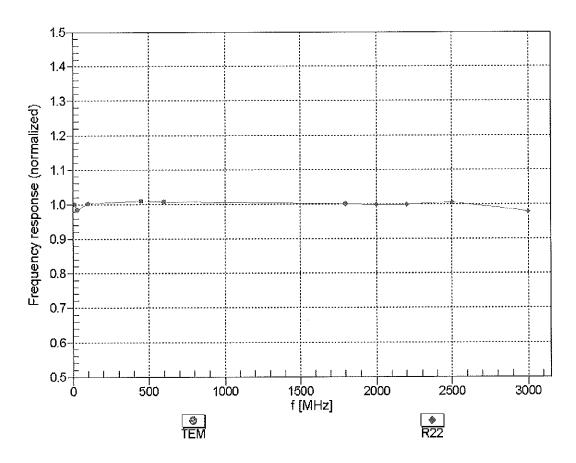
May 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3263

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.19	6.19	6.19	0.52	1.41	± 12.0 %
835	55.2	0.97	6.16	6.16	6.16	0.68	1.28	± 12.0 %
1750	53.4	1.49	4.98	4.98	4.98	0.38	1.91	± 12.0 %
1900	53.3	1.52	4.78	4.78	4.78	0.66	1.35	± 12.0 %
2450	52.7	1.95	4.27	4.27	4.27	0.72	1.13	± 12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.74	1.07	± 12.0 %

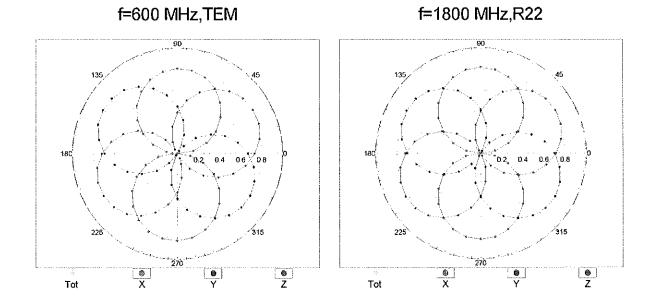
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

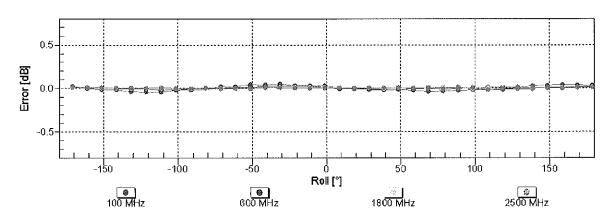

Fig. 1. The uncertainty of the unlight of the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

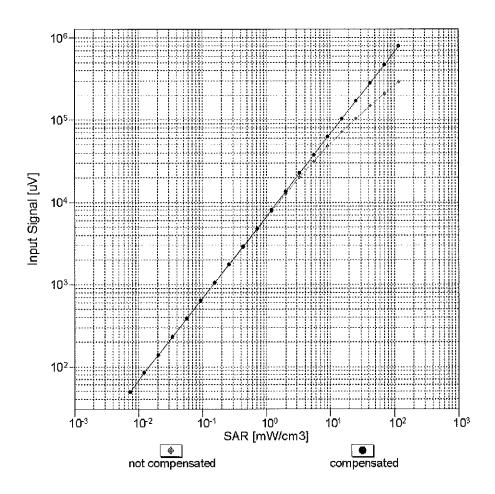
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

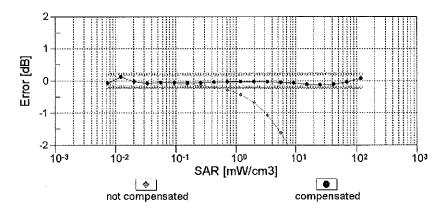

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



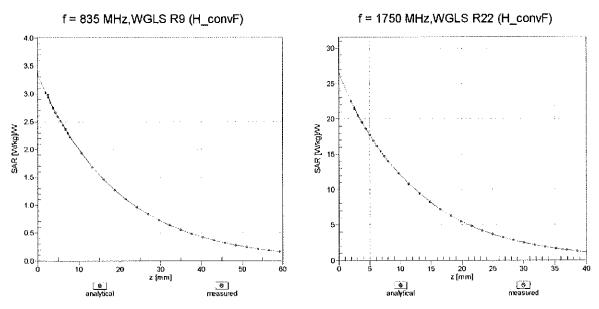
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

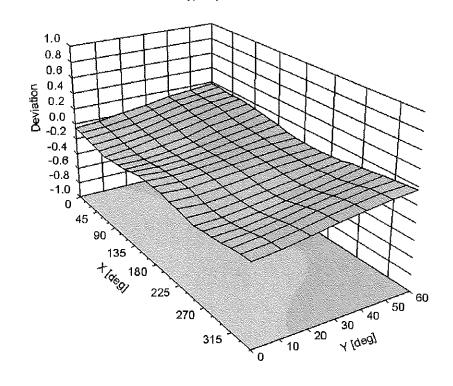
May 15, 2014 ES3DV3-SN:3263


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

ES3DV3-SN:3263

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3263

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-111.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

PC Test

Certificate No: ES3-3319_Apr14

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3319

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6
Calibration procedure for dosimetric E-field probes

00.1 57714

Calibration date:

April 17, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: ES3-3319_Apr14

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Claudio Leubler

Claudio Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 21, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF **DCP**

sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

Polarization 9

φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

i.e., 9 = 0 is normal to probe axis

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3319_Apr14

Page 2 of 14

April 17, 2014

Probe ES3DV3

SN:3319

Manufactured:

January 10, 2012

Repaired:

April 11, 2014

Calibrated:

April 17, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A	1.11	1.08	1.15	± 10.1 %
DCP (mV) ^B	102.6	104.2	103.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	Х		· · · · · · · · · · · · · · · · · · ·	4.0	ļ	199.6	±3.5 %
-		Y	0.0	0.0	1.0	0.00	188.8	13.5 %
		Z	0.0	0.0	1.0		178.5	
10010-	SAR Validation (Square, 100ms, 10ms)		0.0	0.0	1.0	40.00	1	10.00
CAA	SAR Validation (Square, Tooms, Toms)	Х	3.31	63.3	12.9	10.00	42.6	±2.2 %
		Υ	5.10	68.0	14.1		38.8	
10011		Z	2.84	61.7	12.1		44.3	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.30	66.9	18.4	2.91	136.7	±0.5 %
		Υ	3.32	67.1	18.4		127.0	
		Z	3.45	68.0	19.1		145.1	***
10012- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	3.12	69.3	19.0	1.87	138.7	±0.7 %
		Υ	3.22	70.2	19.3		127.0	
		Z	3.40	71.3	19.9		146.4	
10021- DAB	GSM-FDD (TDMA, GMSK)	Х	25.66	99.7	28.3	9.39	139.0	±1.4 %
		Υ	16.30	92.5	25.7		141.7	
		Z	25.20	99.5	28.1		144.9	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	Х	25.81	100.0	28.5	9.57	128.3	±2.2 %
		Υ	13.99	89.5	24.6		129.0	
		Z	25.39	99.7	28.3		141.2	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	37.04	99.8	25.7	6.56	131.4	±2.2 %
		Υ	37.62	99.7	25.0		139.6	
		Z	38.36	99.8	25.3		145.5	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Х	48.04	99.6	23.8	4.80	144.6	±1.9 %
		Υ	29.62	94.2	22.1		129.3	
		Z	43.87	99.7	24.0		129.9	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	54.95	99.9	22.9	3.55	149.6	±1.7 %
		Υ	57.76	99.6	22.2		138.2	
		Z	54.27	99.8	22.7		137.3	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	44.58	99.9	21.1	1.16	134.6	±1.7 %
		Υ	96.74	98.9	18.8		149.0	
		Z	59.46	99.9	20.4		149.1	
10039- CAB	CDMA2000 (1xRTT, RC1)	Х	4.70	66.3	18.7	4.57	130.9	±0.9 %
		Υ	4.85	67.1	19.0		147.5	
		Z	4.88	67.3	19.3		147.2	

Certificate No: ES3-3319_Apr14

10081- CAB	CDMA2000 (1xRTT, RC3)	Х	3.90	65.8	18.4	3.97	130.0	±0.7 %
		Υ	4.00	66.5	18.6		140.8	
		Z	3.99	66.5	18.7		142.5	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	Х	4.64	66.7	18.6	3.98	143.1	±0.9 %
		Y	4.58	66.5	18.4		132.8	
		Z	4.60	66.7	18.6		131.9	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.32	67.1	19.5	5.67	125.8	±1.4 %
		Υ	6.41	67.4	19.5		138.4	
		Z	6.51	67.9	19.9		143.6	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.48	67.7	20.0	5.80	148.0	±1,4 %
		Υ	6.28	66.9	19.4		135.8	
		Z	6.39	67.4	19.8		141.0	
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	6.17	67.2	19.8	5.75	141.0	±1.4 %
		Υ	5.94	66.3	19.1		132,2	
	47777	Z	6.08	67.0	19.6		137.9	
10114- CAA	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	10.35	69.2	21.5	8.10	133.6	±2.2 %
		Υ	9.93	68.1	20.7		124.5	
10115		Z	10.29	69.2	21.5		131.9	
10117- CAA	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.42	69.4	21.6	8.07	140.6	±2.2 %
		Υ	9.93	68.1	20.7		125.5	
40454	1.75 700 (00 50)	Z	10.28	69.1	21.5		132.6	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	11.18	78.2	27.5	9.28	143.6	±3.3 %
		Υ	9.33	73.0	24.5		124.3	
404E4	LITE EDD (OO ED) A SOU DD 40 MIL	Z	10.45	76.4	26.6		132.7	
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.16	67.2	19.8	5.75	145.7	±1.4 %
		Y	5.96	66.4	19.1		133.0	
40400	LITE EDD (OO EDMA SON DD 45 MI)	Z	6.08	66.9	19.6		138.6	
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.32	66.6	19.4	5.82	126.2	±1.4 %
		Y	6.40	66.9	19.4		137.3	
10169-	LTE EDD (SO EDMA 4 BB 20 MU-	Z	6.51	67.4	19.8	F 70	143.8	14001
CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.12	67.3	20.0	5.73	147.9	±1.2 %
		Y	4.90	66.4	19.4		134.4	
10172-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	Z	5.07	67.2	20.0	9.21	141.5 128.7	±3.3 %
CAB	QPSK)		9.44	80.0	28.6	9.21		I3.3 %
		Y	8.63	77.8	27.1		143.9	
10175-	LTE-FDD (SC-FDMA, 1 RB, 10 MHz,	Z	10.62	83.7	30.3	E 70	148.2	14 4 0/
CAB	QPSK)	X	5.04	66.9	19.8	5.72	140.4	±1.4 %
		Y	4.92	66.6	19.5		133.7	
10101	LITE EDD (SO EDMA 4 DD 45 MU-	Z	5.01	66.9	19.8	E 70	134.9	14 4 07
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	5.05	67.0	19.9	5.72	140.6	±1.4 %
		Y	4.90	66.5	19.4		132.4	
	<u></u>	Z	4.97	66.7	19.7		134.1	

10193- CAA	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	Х	9.98	68.8	21.4	8.09	131.1	±2.5 %
		Υ	10.00	68.8	21.2		145.5	
		Z	10.14	69.4	21.7		144.7	
10196- CAA	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	9.99	68.9	21.5	8.10	132.0	±2.7 %
		Υ	10.05	69.0	21.3		148.1	
		Z	10.16	69.5	21.8		145.8	
10219- CAA	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	Х	9.88	68.8	21.4	8.03	131.3	±2.5 %
		Υ	9.96	69.0	21.3		147.8	
		Z	10.03	69.3	21.6		144.7	
10222- CAA	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	Х	10.34	69.3	21.6	8.06	137.1	±2.2 %
		Υ	9.93	68.2	20.8		127.8	
		Z	10.07	68.6	21.2		125.1	
10225- CAB	UMTS-FDD (HSPA+)	X	6.97	66.8	19.4	5.97	133.6	±1.4 %
		Υ	6.90	66.7	19.2		129.7	
		Z	7.14	67.5	19.8		147.4	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	9.18	79.3	28.2	9.21	128.1	±3.5 %
		Υ	8.54	77.6	27.0		144.1	
		Z	9.99	81.9	29.4		141.7	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	9.65	75,1	26.1	9.24	126.1	±3.5 %
		Υ	9.34	74.2	25.3		141.3	
		Z.	10.46	77.6	27.3		144.1	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	10.46	76.2	26.5	9.30	133.6	±3.5 %
		Υ	9.23	72.7	24.4		122.8	
		Z	9.90	74.8	25.7		123.8	
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	6.04	67.1	19.0	4.87	149.9	±1.2 %
		Y	6.02	67.1	18.9		142.8	
		Z	6.00	67.1	19.0		141.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	4.22	65.6	18.1	3.96	131.0	±0.9 %
		Y	4.49	66.9	18.6		144.3	
1000:	ADMINISTRAÇÃO	Z	4.55	67.3	19.1		147.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	3.74	67.2	18.9	3.46	145.6	±0.5 %
		Y	3.66	66.8	18.5		136.7	
40000	ODIMAGES BOS COSC - 11 - 1	Z	3.71	67.2	18.9		136.5	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.65	67.0	18.7	3.39	147.2	±0.7 %
		Y	3.61	66.8	18.4		139.6	
10005	L TE EDD (OG ED)	Z	3.64	67.1	18.8		139.6	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.37	67.3	19.8	5.81	140.5	±1.4 %
		Υ	6.24	66.8	19.3		134.0	
1004:		Z	6.33	67.2	19.8		134.8	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	7.00	68.0	20.2	6.06	146.8	±1.7 %
		Υ	6.82	67.4	19.7		140.3	
		Ζ	6.90	67.8	20.1		141.4	

10315- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	Х	2.85	68.5	18.8	1.71	129,5	±0.5 %
		Y	3.09	70.0	19.2		146.1	
		Z	3.15	70.6	19.8		146.8	•
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.73	67.9	18.7	3.76	137.5	±0.5 %
		Y	4.77	68.3	18.7		126.5	
		Z	4.77	68.1	18.8		128.1	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.55	67.6	18.6	3.77	132.0	±0.7 %
		Y	4.89	69.1	19.1		148.8	
		Z	4.90	69.1	19.3		148.0	•

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 8 and 9).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.48	6.48	6.48	0.28	2.09	± 12.0 %
835	41.5	0.90	6.27	6.27	6.27	0.34	1.72	± 12.0 %
1750	40.1	1.37	5.24	5.24	5.24	0.80	1.14	± 12.0 %
1900	40.0	1.40	5.05	5.05	5.05	0.72	1.24	± 12.0 %
2450	39.2	1.80	4.45	4.45	4.45	0.77	1.23	± 12.0 %
2600	39.0	1.96	4.29	4.29	4.29	0.80	1.27	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

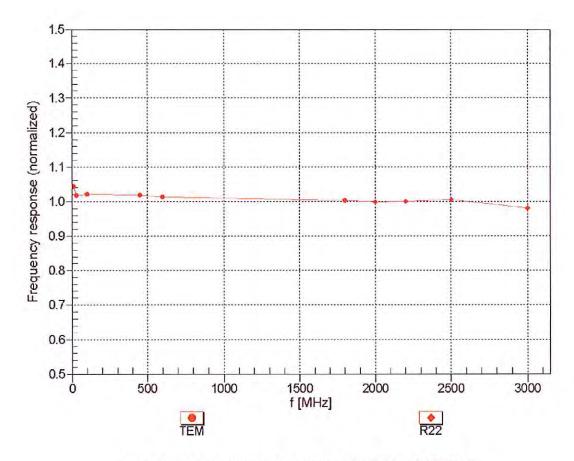
Certificate No: ES3-3319_Apr14

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.25	6.25	6.25	0.39	1.65	± 12.0 %
835	55.2	0.97	6.18	6.18	6.18	0.56	1.37	± 12.0 %
1750	53.4	1.49	4.85	4.85	4.85	0.57	1.46	± 12.0 %
1900	53.3	1.52	4.67	4.67	4.67	0.53	1.58	± 12.0 %
2450	52.7	1.95	4.24	4.24	4.24	0.74	1.10	± 12.0 %
2600	52.5	2.16	4.05	4.05	4.05	0.80	1.02	± 12.0 %

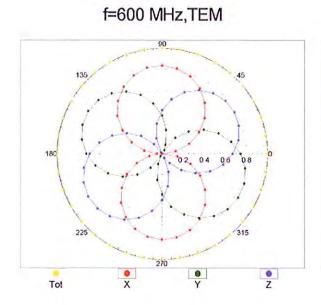
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

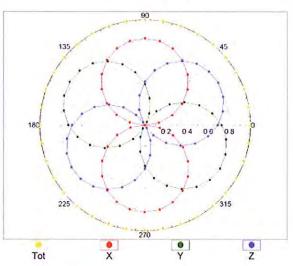

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target lissue parameters.

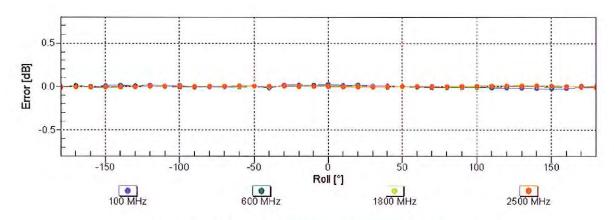
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

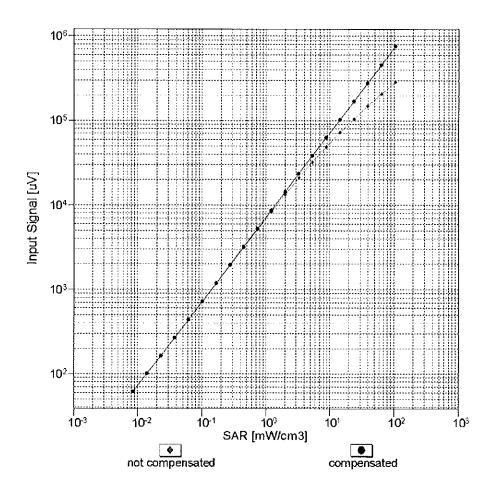
ES3DV3-SN:3319 April 17, 2014

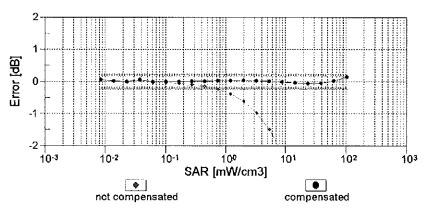

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

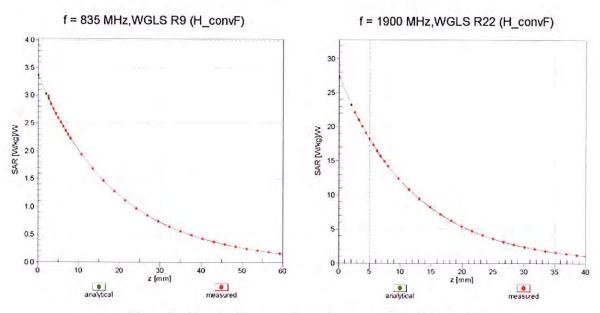

ES3DV3- SN:3319 April 17, 2014

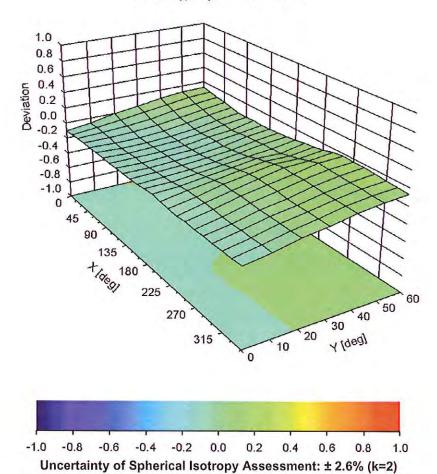
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


f=1800 MHz,R22



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-119.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

PC Test

Certificate No: D835V2-4d119_Apr14

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d119

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

UCV 4/25/4

Calibration date:

April 07, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seif Illy
Approved by:	Katja Pokovic	Technical Manager	20111

Issued: April 9, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8. 7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.22 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.97 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.34 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.15 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d119_Apr14 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 1.6 jΩ
Return Loss	- 34.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3 Ω - 4.5 jΩ
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d119_Apr14

DASY5 Validation Report for Head TSL

Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;

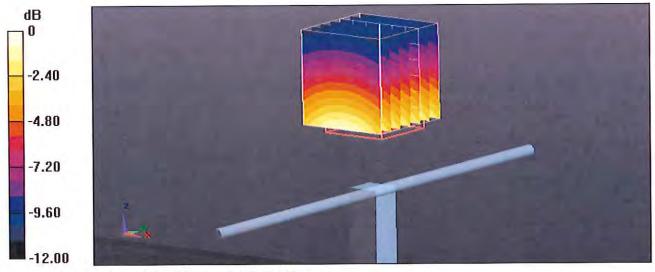
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

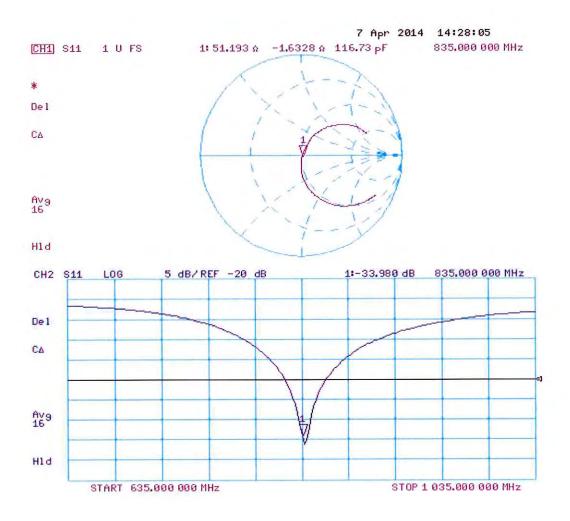
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.289 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.59 W/kg


SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.02 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;

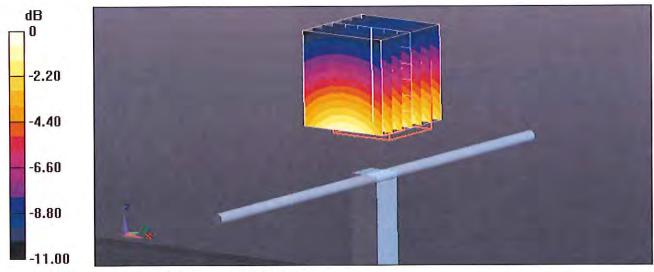
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

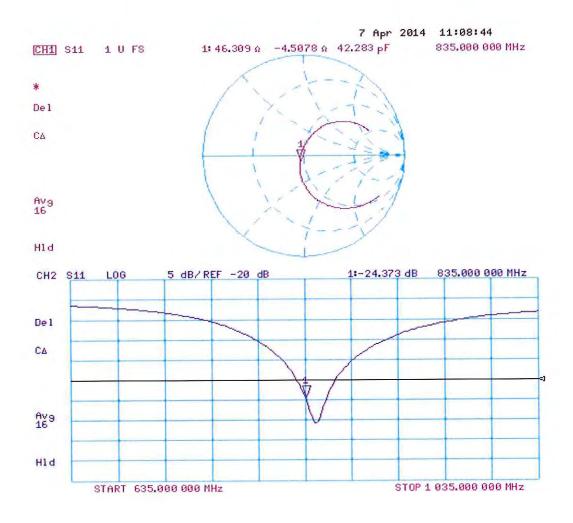
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.594 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.61 W/kg


SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d141_Apr14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d141

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

April 09, 2014

10×1/14

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	m m

Issued: April 9, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d141_Apr14

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d141 Apr14 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivit y	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω + 5.5 jΩ
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.8~\Omega + 6.3~\mathrm{j}\Omega$
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D1900V2-5d141_Apr14 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 09.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;

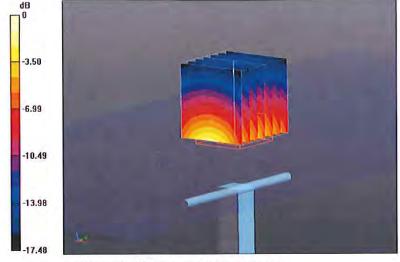
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

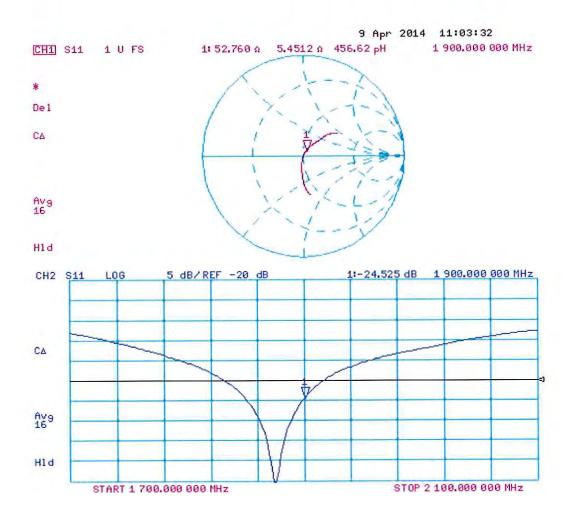
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.080 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 18.2 W/kg


SAR(1 g) = 9.91 W/kg; SAR(10 g) = 5.17 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ S/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;

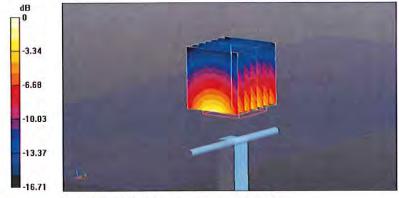
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

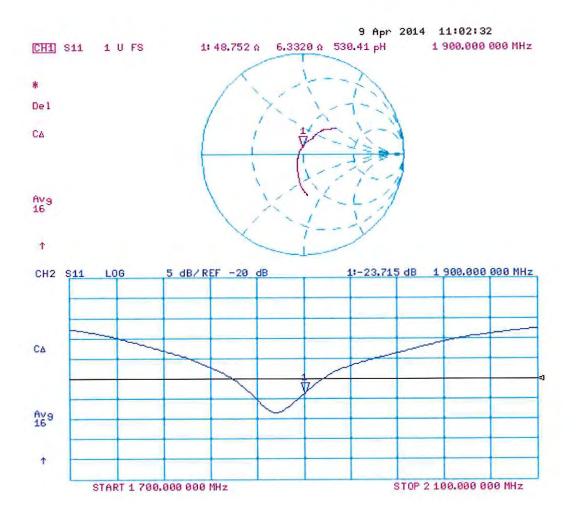
Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.820 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Certificate No: D2450V2-797_Jan14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 21, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

<i>></i> "	Cal Date (Certificate No.)	Scheduled Calibration
iB37480704 .	09-Oct-13 (No. 217-01827)	Oct-14
S37292783	09-Oct-13 (No. 217-01827)	Oct-14
IY41092317	09-Oct-13 (No. 217-01828)	Oct-14
N: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
N: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
N: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
N: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
O #	Check Date (in house)	Scheduled Check
00005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
IS37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	B37480704 S37292783 Y41092317 N: 5058 (20k) N: 5047.3 / 06327 N: 3205 N: 601	937480704 09-Oct-13 (No. 217-01827) 937292783 09-Oct-13 (No. 217-01827) 941092317 09-Oct-13 (No. 217-01828) 95 5058 (20k) 04-Apr-13 (No. 217-01736) 95 5047.3 / 06327 04-Apr-13 (No. 217-01739) 97 3205 30-Dec-13 (No. ES3-3205_Dec13) 98 601 25-Apr-13 (No. DAE4-601_Apr13) 98 Check Date (in house) 98 00005 04-Aug-99 (in house check Oct-13)

Page 1 of 8

Calibrated by:

Name

Function

Israe El-Naoug

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 21, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,v,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	·
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 3.2 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.0 \Omega + 4.9 j\Omega$
Return Loss	- 26.2 dB

General Antenna Parameters and Design

111111	
Flootrical Dolay (one divention)	a ded
Electrical Delay (one direction)	1.151 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

DASY5 Validation Report for Head TSL

Date: 21.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

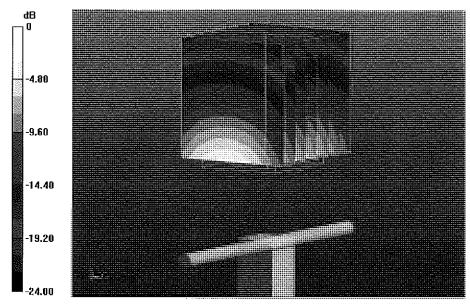
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

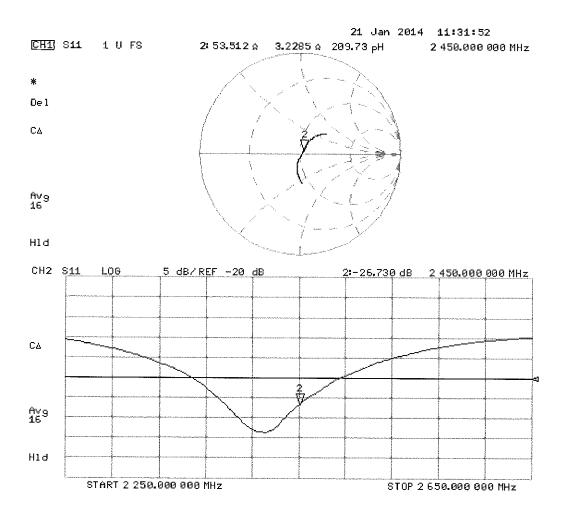
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.151 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.5 W/kg


SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (measured) = 16.9 W/kg

0 dB = 16.9 W/kg = 12.28 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

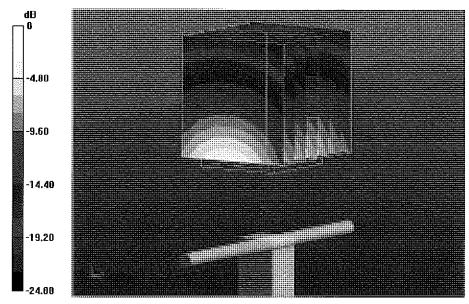
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

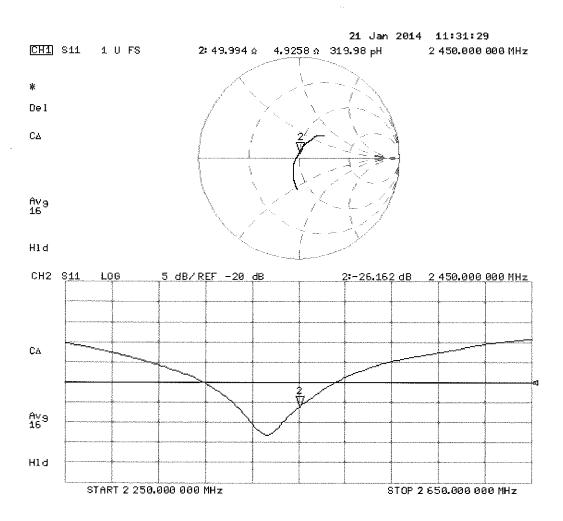
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.709 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.4 W/kg


SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.86 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dBW/kg

Impedance Measurement Plot for Body TSL

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue Verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Table D-I Composition of the Tissue Equivalent Matter

Tomposition of the Floods Equivalent matter												
Frequency (MHz)	835	835	1900	1900	2450	2450						
Tissue	Head	Body	Head	Body	Head	Body						
Ingredients (% by weight)												
Bactericide	0.1	0.1										
DGBE			44.92	29.44		26.7						
HEC	1	1			Saa naga 2							
NaCl	1.45	0.94	0.18	0.39	See page 2	0.1						
Sucrose	57	44.9										
Water	40.45	53.06	54.9	70.17		73.2						

FCC ID: A3LSMR750C	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
08/20/14 - 08/26/14	Portable Wrist Device			Page 1 of 2

2 Composition / Information on ingredients

The Item is composed of the following ingredients:

H2O Water, 52 – 75%

C8H18O3 Diethylene glycol monobutyl ether (DGBE), 25 – 48%

(CAS-No. 112-34-5, EC-No. 203-961-6, EC-index-No. 603-096-00-8)

Relevant for safety; Refer to the respective Safety Data Sheet*.

NaCl Sodium Chloride, <1.0%

Figure 15-1 Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

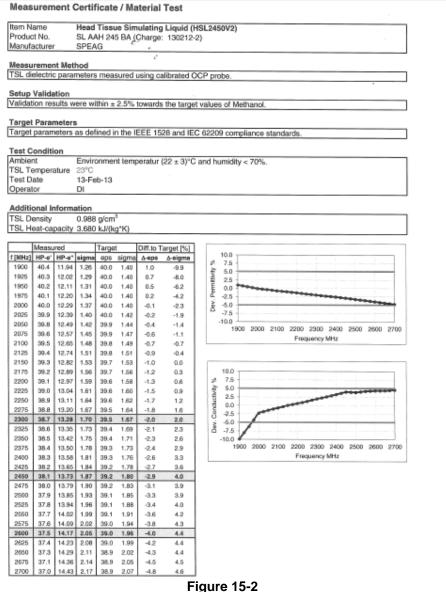


Figure 15-2
2.4 GHz Head Tissue Equivalent Matter

FCC ID: A3LSMR750C	PCTEST'	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
08/20/14 - 08/26/14	Portable Wrist Device			Page 2 of 2

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 v01 and IEEE 1528-2003. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-I SAR System Validation Summary

SAR						COND.	PERM.	CW VALIDATION			MOD. VALIDATION				
	TEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	AL. POINT	(σ)	(ε _τ)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
	K	835	6/23/2014	3287	ES3DV3	835	Head	0.906	40.24	PASS	PASS	PASS	GMSK	PASS	N/A
	Ε	1900	6/30/2014	3914	EX3DV4	1900	Head	1.408	40.17	PASS	PASS	PASS	GMSK	PASS	N/A
	G	2450	3/6/2014	3258	ES3DV3	2450	Head	1.736	38.36	PASS	PASS	PASS	OFDM/TDD	N/A	PASS

Table E-II
SAR System Validation Summary – Extremity

Orth Cycloni Vandation Cammary Extremity														
							COND.	PERM.		CW VALIDATION	N	MOD. VALIDATION		
SAR SYSTEM#	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE CAL. POINT		(σ)	(ε _r)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
D	835	8/11/2014	3263	ES3DV3	835	Body	1.000	53.26	PASS	PASS	PASS	GMSK	PASS	N/A
Н	1900	7/10/2014	3319	EX3DV3	1900	Body	1.562	53.41	PASS	PASS	PASS	GMSK	PASS	N/A
G	2450	3/5/2014	3258	ES3DV3	2450	Body	2.044	51.30	PASS	PASS	PASS	OFDM/TDD	N/A	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

FCC ID: A3LSMR750C	PCTEST NGCHLIAGO LABORATDAY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
08/20/14 - 08/26/14	Portable Wrist Device			Page 1 of 1