

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 06/27/16 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1607041155-R1.A3L

FCC ID: A3LSMP580

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Portable Tablet Application Type: Certification
FCC Rule Part(s): CFR §2.1093

Model(s): SM-P580, SM-P580X

Equipment	Band & Mode	Tx Frequency	SAR
Class	Band a Mode	TXTTOquonoy	1 gm Body W/kg
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.98
NII	U-NII-1	5180 - 5240 MHz	N/A
NII	U-NII-2A	5260 - 5320 MHz	1.09
NII	U-NII-2C	5500 - 5720 MHz	1.01
NII	U-NII-3	5745 - 5825 MHz	0.93
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.10

Note: This revised Test Report (S/N: 0Y1607041155-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: A3LSMP580	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 1 1 0 5
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 1 of 25

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	INTROD	UCTION	6
3	DOSIME	TRIC ASSESSMENT	7
4	TEST CO	DNFIGURATION POSITIONS	8
5	RF EXPO	OSURE LIMITS	g
6	FCC ME	ASUREMENT PROCEDURES	10
7	RF CON	DUCTED POWERS	12
8	SYSTEM	VERIFICATION	15
9	SAR DA	ΓA SUMMARY	17
10	SAR ME	ASUREMENT VARIABILITY	20
11	EQUIPM	ENT LIST	21
12	MEASUF	REMENT UNCERTAINTIES	22
13	CONCLU	JSION	23
14	REFERE	NCES	24
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	IDIX G:	SENSOR TRIGGERING DATA SUMMARY	

FCC ID: A3LSMP580	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 2 of 25

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency	
2.4 GHz WLAN	Data	2412 - 2462 MHz	
U-NII-1	Data	5180 - 5240 MHz	
U-NII-2A	Data	5260 - 5320 MHz	
U-NII-2C	Data	5500 - 5720 MHz	
U-NII-3	Data	5745 - 5825 MHz	
Bluetooth	Data	2402 - 2480 MHz	
ANT+	Data	2402 - 2480 MHz	

1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Maximum Output Powers

Mode / Band	Modulated Average (dBm)	
	ch 1-11	
IFFF 902 11b /2 4 CU-)	Maximum	18.5
IEEE 802.11b (2.4 GHz)	Nominal	18.0
IFFE 902 11 ~ (2.4 CHz)	Maximum	17.5
IEEE 802.11g (2.4 GHz)	Nominal	17.0
IEEE 802.11n (2.4 GHz)	Maximum	15.5
1111 (2.4 GHZ)	Nominal	15.0

Mode / Band		Modulated Average (dBm)			
		20 MHz Bandwidth	40 MHz Bandwidth	80 MHz Bandwidth	
IEEE 802.11a (5 GHz)	Maximum	14.5			
1EEE 802.11a (5 GHZ)	Nominal	14.0			
IFFF 902 11 m /F CII-)	Maximum	14.5	12.5		
IEEE 802.11n (5 GHz)	Nominal	14.0	12.0		
IEEE 802.11ac (5 GHz)	Maximum	14.5	12.5	11.5	
	Nominal	14.0	12.0	11.0	

FCC ID: A3LSMP580	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 (05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 3 of 25
16 PCTEST Engineering Laboratory Inc	,			DE\/ 10 M

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M 05/16/2016

Mode / Band	Modulated Average (dBm)	
Divista atla	Maximum	10.0
Bluetooth	Nominal	9.5
Divista eth I F	Maximum	1.5
Bluetooth LE	Nominal	1.0

Reduced Output Powers

Mode / Band	Modulated Average (dBm)	
	ch 1-11	
JEEE 002 441- /2 4 CU-)	Maximum	15.5
IEEE 802.11b (2.4 GHz)	Nominal	15.0
IFFE 902 11~ (2.4 CH-)	Maximum	15.5
IEEE 802.11g (2.4 GHz)	Nominal	15.0
IEEE 802.11n (2.4 GHz)	Maximum	15.5
1EEE 802.1111 (2.4 GHZ)	Nominal	15.0

Mode / Band		Modulated Average (dBm)			
		20 MHz Bandwidth	40 MHz Bandwidth	80 MHz Bandwidth	
JEEE 003 44° (E CH-)	Maximum	11.5			
IEEE 802.11a (5 GHz)	Nominal	11.0			
IEEE 902 11n /E CH-)	Maximum	11.5	11.5		
IEEE 802.11n (5 GHz)	Nominal	11.0	11.0		
IEEE 802.11ac (5 GHz)	Maximum	11.5	11.5	11.5	
	Nominal	11.0	11.0	11.0	

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the location of the device antennas can be found in Appendix F. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filing.

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Top	Bottom	Right	Left
2.4 GHz WLAN	Yes	Yes	No	Yes	No
5 GHz WLAN	Yes	Yes	No	Yes	No
Bluetooth	Yes	Yes	No	No	No

Note: Per FCC KDB 616217 D04v01r01, particular DUT edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v06.

1.5 Simultaneous Transmission Capabilities

This device does not support any simultaneous transmission scenarios.

FCC ID: A3LSMP580	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 4
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 4 of 25

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported

1.7 Guidance Applied

- FCC KDB Publication 616217 D04v01r02 (SAR for laptop and tablets)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. Power level was configured for testing via software only available to the manufacturer (end user cannot control power level) per KDB 616217.

	Reduced Serial Number	Max Serial Number
2.4 GHz WLAN	00072	08000
5 GHz WLAN	08000	08000
Bluetooth	-	00072

FCC ID: A3LSMP580	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 5 of 25

2 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMP580	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 6 of 25

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

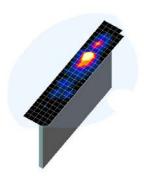


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMP580	SNG INSERSED LASONATERY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	est Dates:	DUT Type:	D 7 (05
0Y1607041155-R1.A3L 06	6/27/16	Portable Tablet	Page 7 of 25

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

4 **TEST CONFIGURATION POSITIONS**

4.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

4.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

4.3 **Proximity Sensor Considerations**

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a nonreduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

	FCC ID: A3LSMP580	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	D 0 (05
	0Y1607041155-R1.A3L	06/27/16	Portable Tablet	Page 8 of 25
٦1	6 DCTEST Engineering Laboratory Inc.			DEV/ 10 M

© 2016 PCTEST Engineering Laboratory, Inc.

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMP580	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -4 05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 9 of 25

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M

6 FCC MEASUREMENT PROCEDURES

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

6.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

6.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

6.2.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

FCC ID: A3LSMP580	<u> PCTEST</u>	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	David 10 of 05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet	Page 10 of 25
16 DCTECT Engineering Laboratory Inc.			DEV/ 10 M

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

6.2.5 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

6.2.6 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 6.2.5).

6.2.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is $\leq 1.2 \text{ W/kg}$, no additional SAR tests for the subsequent test configurations are required.

FCC ID: A3LSMP580	PCTEST INGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 44 (05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 11 of 25

7 RF CONDUCTED POWERS

7.1 WLAN Conducted Powers

Table 7-1
2.4 GHz WLAN Maximum Average RF Power

Freq [MHz]	Channel	2.4GHz Conducted Power [dBm] IEEE Transmission Mo	
		802.11b	802.11g
2412	1	18.05	16.56
2437	6	17.52	17.30
2462	11	18.04	16.93

Table 7-2
2.4 GHz WLAN Reduced Average RF Power

		2.4GHz C	onducted Pov	ver [dBm]						
Freq [MHz]	Channel	IEEE Transmission Mode								
		802.11b	802.11g	802.11n						
2412	1	15.33	15.49	14.45						
2437	6	14.89	15.03	15.22						
2462	11	14.65	14.64	14.75						

Table 7-3
5 GHz WLAN Maximum Average RF Power

		5GHz (20MHz) Conducted	Power [dBm]
Freq [MHz]	Channel	IEEE 1	Transmission	Mode
		802.11a	802.11n	802.11ac
5180	36	13.58	14.44	14.36
5200	40	14.00	13.61	13.72
5220	44	13.95	13.98	14.13
5240	48	13.72	13.54	13.58
5260	52	13.63	14.42	14.32
5280	56	13.86	14.48	14.46
5300	60	13.79	14.49	14.46
5320	64	13.66	14.31	14.38
5500	100	13.60	14.18	14.11
5600	120	14.23	13.96	13.91
5620	124	14.37	13.99	14.05
5720	144	13.82	14.29	14.28
5745	149	14.18	13.98	14.10
5785	157	13.96	13.78	13.83
5825	165	13.53	14.05	14.05

FCC ID: A3LSMP580	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dags 10 of 05	
0Y1607041155-R1.A3L	06/27/16		Page 12 of 25		

© 2016 PCTEST Engineering Laboratory, Inc.

Table 7-4
5 GHz WLAN Reduced Average RF Power

5GHz (80MHz) Conducted Power [dBm]										
Freq [MHz]	Channel	IEEE Transmission Mode								
		802.11ac								
5210	42	11.26								
5290	58	11.47								
5530	106	10.45								
5610	122	11.21								
5690	138	10.24								
5775	155	10.84								

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

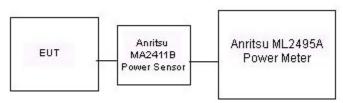


Figure 7-1
Power Measurement Setup for Bandwidths < 50 MHz

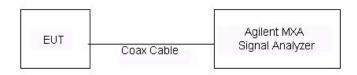


Figure 7-2
Power Measurement Setup for Bandwidths > 50 MHz

FCC ID: A3LSMP580	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 40 (05	
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 13 of 25	
16 PCTEST Engineering Laboratory Inc	,			DE\/ 10 M	

7.2 Bluetooth Conducted Powers

_	Data		Avg Cor Pov	nducted wer	
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]	
2402	1.0	0	9.09	8.111	
2441	1.0	39	9.77	9.475	
2480	1.0	78	8.26	6.697	
2402	2.0	0	5.63	3.655	
2441	2.0	39	6.30	4.269	
2480	2.0	78	4.77	2.997	
2402	3.0	0	5.72	3.732	
2441	2441 3.0		6.37	4.339	
2480	3.0	78	4.84	3.047	

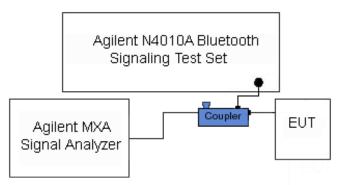


Figure 7-3
Power Measurement Setup

FCC ID: A3LSMP580	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 11 -105
0Y1607041155-R1.A3L	06/27/16	Portable Tablet	Page 14 of 25

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M 05/16/2016

8.1 **Tissue Verification**

Table 8-1 **Measured Tissue Properties**

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			2400	1.941	53.685	1.902	52.767	2.05%	1.74%
6/27/2016	2450B	22.4	2450	2.006	53.566	1.950	52.700	2.87%	1.64%
			2500	2.078	53.346	2.021	52.636	2.82%	1.35%
			5240	5.440	46.743	5.346	48.960	1.76%	-4.53%
			5260	5.475	46.675	5.369	48.933	1.97%	-4.61%
			5280	5.513	46.630	5.393	48.906	2.23%	-4.65%
			5300	5.545	46.808	5.416	48.879	2.38%	-4.24%
			5520	5.747	46.273	5.673	48.580	1.30%	-4.75%
06/27/2016	5200B-5800B	21.5	5540	5.827	46.310	5.696	48.553	2.30%	-4.62%
			5600	5.918	46.184	5.766	48.471	2.64%	-4.72%
			5620	5.907	46.157	5.790	48.444	2.02%	-4.72%
			5745	6.099	45.873	5.936	48.275	2.75%	-4.98%
			5765	6.112	45.961	5.959	48.248	2.57%	-4.74%
			5785	6.117	45.913	5.982	48.220	2.26%	-4.78%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMP580	ENGINEERED LABORATELY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager			
Document S/N:	Test Dates: DUT Type:					
0Y1607041155-R1.A3L	06/27/16	Portable Tablet	Page 15 of 25			

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

8.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 8-2 System Verification Results

	Cystem vermouton results												
System Verification TARGET & MEASURED													
SAR System #	Frequency Date:				Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)	
G	2450	BODY	06/27/2016	21.5	22.4	0.100	882	3334	5.140	49.400	51.400	4.05%	
D	5250	BODY	06/27/2016	22.6	23.0	0.050	1120	3914	3.760	75.600	75.200	-0.53%	
D	5600	BODY	06/27/2016	22.6	23.0	0.050	1120	3914	3.890	80.800	77.800	-3.71%	
D	5750	BODY	06/27/2016	22.6	23.0	0.050	1120	3914	3.690	76.500	73.800	-3.53%	

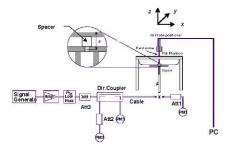


Figure 8-1
System Verification Setup Diagram

Figure 8-2
System Verification Setup Photo

FCC ID: A3LSMP580	PCTEST'	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager		
Document S/N:	cument S/N: Test Dates: DUT Type:					
0Y1607041155-R1.A3L	06/27/16		Page 16 of 25			

9 SAR DATA SUMMARY

9.1 Body SAR Data

Table 9-1 2.4 GHz Max WLAN Body SAR

	ME									RESUL	TS							
FREQU	FREQUENCY Mode Service	Bandwidth			Power Drift		Device Serial	Serial Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #		
MHz	Ch.		[M]	[MHz]	Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	18.5	18.05	0.01	7 mm	08000	1	back	99.0	0.810	0.675	1.109	1.011	0.757	
2412	1	802.11b	DSSS	22	18.5	18.05	0.07	4 mm	00080	1	top	99.0	0.297	0.243	1.109	1.011	0.272	
2412	1	802.11b	DSSS	22	18.5	18.05	-0.15	0 mm	00080	1	right	99.0	0.756	0.580	1.109	1.011	0.650	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population				Body 1.6 W/kg (mW/g) averaged over 1 gram													

Table 9-2 2.4 GHz Reduced WLAN Body SAR

							41 IZ 1 LV					<u>, </u>						
							N	EASURE	EMENT	RESULT	rs							
FREQU	ENCY	Mode	Service	Bandwidth		Conducted	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	15.5	15.33	-0.07	0 mm	00072	1	back	99.0	1.069	0.925	1.040	1.011	0.973	
2437	6	802.11b	DSSS	22	15.5	14.89	-0.04	0 mm	00072	1	back	99.0	0.787	0.754	1.151	1.011	0.877	
2412	1	802.11b	DSSS	22	15.5	15.33	-0.08	0 mm	00072	1	top	99.0	0.399	0.292	1.040	1.011	0.307	
2412	1	802.11b	DSSS	22	15.5	15.33	-0.10	0 mm	00072	1	back	99.0	1.022	0.929	1.040	1.011	0.977	A1
		ANSI /	IEEE C95.	.1 1992 - S/	AFETY LIMIT								В	ody				
			•	atial Peak									1.6 W/k	g (mW/g)				
		Uncontro	olled Expo	sure/Gene	ral Population	1							averaged	over 1 gram				

Blue entries indicate variability

FCC ID: A3LSMP580	INGINITARE LAPPATER, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 47 (05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet	Page 17 of 25

Table 9-3 **5 GHz Max WLAN Body SAR**

									ux III		. u , u .							
								M	EASUREME	NT RESULT	rs							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)			Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]	,	Number	(Mbps)		, -, (,	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5280	56	802.11a	OFDM	20	14.5	13.86	-0.07	7 mm	08000	6	back	96.9	0.628	0.318	1.159	1.032	0.380	
5300	60	802.11a	OFDM	20	14.5	13.79	-0.10	7 mm	08000	6	back	96.9	0.589	0.322	1.178	1.032	0.391	
5280	56	802.11a	OFDM	20	14.5	13.86	0.03	4 mm	08000	6	top	96.9	1.879	0.914	1.159	1.032	1.093	
5300	60	802.11a	OFDM	20	14.5	13.79	-0.21	4 mm	08000	6	top	96.9	1.626	0.852	1.178	1.032	1.036	
5280	56	802.11a	OFDM	20	14.5	13.86	-0.06	0 mm	08000	6	right	96.9	0.127	0.063	1.159	1.032	0.075	
5620	124	802.11a	OFDM	20	14.5	14.37	-0.01	7 mm	08000	6	back	96.9	0.938	0.366	1.030	1.032	0.389	
5600	120	802.11a	OFDM	20	14.5	14.23	-0.12	4 mm	08000	6	top	96.9	1.948	0.918	1.064	1.032	1.008	A2
5620	124	802.11a	OFDM	20	14.5	14.37	-0.15	4 mm	08000	6	top	96.9	1.781	0.830	1.030	1.032	0.882	
5620	124	802.11a	OFDM	20	14.5	14.37	-0.05	0 mm	08000	6	right	96.9	0.258	0.155	1.030	1.032	0.165	
5745	149	802.11a	OFDM	20	14.5	14.18	-0.16	7 mm	08000	6	back	96.9	0.782	0.363	1.076	1.032	0.403	
5745	149	802.11a	OFDM	20	14.5	14.18	-0.07	4 mm	08000	6	top	96.9	1.706	0.783	1.076	1.032	0.869	
5785	157	802.11a	OFDM	20	14.5	13.96	-0.12	4 mm	08000	6	top	96.9	1.756	0.795	1.132	1.032	0.929	
5745	149	802.11a	OFDM	20	14.5	14.18	0.15	0 mm	08000	6	right	96.9	0.221	0.135	1.076	1.032	0.150	
5280	56	802.11a	OFDM	20	14.5	13.86	-0.04	4 mm	08000	6	top	96.9	1.842	0.819	1.159	1.032	0.980	
5600	5600 120 802.11a OFDM 20 14.5 14.23 0.00				0.00	4 mm	00080	6	top	96.9	1.900	0.779	1.064	1.032	0.855			
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Body												
	Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) averaged over 1 gram												

Blue entries indicate variability

Table 9-4 5 GHz Reduced WLAN Body SAR

						12 110			.,	<u> </u>	<u> </u>							
							N	IEASURI	EMENT	RESUL [*]	rs							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5290	58	802.11ac	OFDM	80	11.5	11.47	-0.17	0 mm	00080	29.3	back	87.2	2.803	0.881	1.007	1.146	1.017	
5290	58	802.11ac	OFDM	80	11.5	11.47	0.06	0 mm	00080	29.3	top	87.2	2.005	0.913	1.007	1.146	1.054	
5610	122	802.11ac	OFDM	80	11.5	11.21	0.09	0 mm	00080	29.3	back	87.2	0.907	0.437	1.069	1.146	0.535	
5530	106	802.11ac	OFDM	80	11.5	10.45	0.14	0 mm	00080	29.3	top	87.2	1.432	0.671	1.274	1.146	0.980	
5610	122	802.11ac	OFDM	80	11.5	11.21	0.17	0 mm	00080	29.3	top	87.2	1.494	0.743	1.069	1.146	0.910	
5775	155	802.11ac	OFDM	80	11.5	10.84	0.18	0 mm	00080	29.3	back	87.2	1.138	0.521	1.164	1.146	0.695	
5775	155	802.11ac	OFDM	80	11.5	10.84	0.16	0 mm	00080	29.3	top	87.2	0.755	0.373	1.164	1.146	0.498	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											В	ody					
			•	atial Peak										g (mW/g)				
		Uncontro	lled Expo	sure/Gene	ral Population	n							averaged	over 1 gram				

Table 9-5 Bluetooth Body SAR

						Diueto	oui be	Juy 5	<u> </u>						
						MEASU	REMENT	RESU	LTS						
FREQU	JENCY	Mode	Service	Maxim um Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)		(W/kg)	1
2441	39	Bluetooth	FHSS	10.0	9.77	-0.11	0 mm	00072	1	back	1:1	0.099	1.054	0.104	A3
2441	39	Bluetooth	FHSS	10.0	9.77	0.08	0 mm	00072	1	top	1:1	0.029	1.054	0.031	
			Spatial I								1.6 W/	Body kg (mW/g)			
-		Bluetooth	FHSS C95.1 199 Spatial I	10.0 2 - SAFETY LI Peak	9.77 MIT				1		1:1 E 1.6 W/	0.029 Body			

FCC ID: A3LSMP580	PETEST.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	est Dates:	DUT Type:	D 40 (05
0Y1607041155-R1.A3L 06	6/27/16	Portable Tablet	Page 18 of 25

9.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02 and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 10 for variability analysis.
- 7. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v06 was applied to determine SAR test exclusion for adjacent edge configurations.

WLAN Notes:

- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
 operations, the highest measured maximum output power channel for DSSS was selected for SAR
 measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed
 powers and the highest reported DSSS SAR. See Section 6.2.4 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. See Section 6.2.5 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: A3LSMP580	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 10
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 19 of 25

10 SAR MEASUREMENT VARIABILITY

10.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 10-1
Body SAR Measurement Variability Results

			·	BODY VA	ARIABIL	ITY RES	SULTS							
Band	FREQUE	NCY	Mode	Service	Data Rate (Mbps)	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.			((W/kg)	(W/kg)		(W/kg)		(W/kg)	
2450	2412.00	1	802.11b, 22 MHz Bandwidth	DSSS	1	back	0 mm	0.925	0.929	1.00	N/A	N/A	N/A	N/A
5250	5280.00	56	802.11a, 20 MHz Bandwidth	OFDM	6	top	4 mm	0.914	0.819	1.12	N/A	N/A	N/A	N/A
5600	5600.00	120	802.11a, 20 MHz Bandwidth	OFDM	6	top	4 mm	0.918	0.779	1.18	N/A	N/A	N/A	N/A
			ANSI / IEEE C95.1 1992 - SAFET	Y LIMIT						Во	dy			
			Spatial Peak							1.6 W/kg	(mW/g)			
			Uncontrolled Exposure/General F	Population					а	veraged o	ver 1 gram			

10.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: A3LSMP580	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 (05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 20 of 25
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 20 c

11 EQUIPMENT LIST

Gigationics B3001A (0.05-1864t) Power Sensor 11/2/2015 Annual 11/2/2016 1833460	Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agient	Gigatronics	80701A	(0.05-18GHz) Power Sensor	11/4/2015	Annual	11/4/2016	1833460
Aglent	Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/2/2016	Annual	3/2/2017	MY45470194
SPEAG		8753E		3/2/2016	Annual	3/2/2017	JP38020182
SPEAG DSGHV2 S GHT SAR Dipple 2/25/2016 Annual 2/25/2017 1120	Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
SPEAG	SPEAG	D2450V2	2450 MHz SAR Dipole	2/18/2016	Annual	2/18/2017	882
MCL	Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
MCL	SPEAG	D5GHzV2	5 GHz SAR Dipole	2/25/2016	Annual	2/25/2017	
Amplifier CBT		BW-N6W5+	6dB Attenuator				1139
Narda	Amplifier Research		Amplifier	CBT	N/A	CBT	433978
Narda	· ·			CBT	N/A	CBT	9406
Pasternack	Narda			CBT	·	CBT	120
Pasternack	Rohde & Schwarz	CMU200	Base Station Simulator	12/2/2015	Annual	12/2/2016	833855/0010
SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2015 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 did Attenuator CBT N/A CBT N/A SPEAG DAK-12 Dielectric Assessment Kit 10MHz - 3GHz) 3/1/2016 Annual 5/10/2017 1070 Mittoryo CD-6*CSX Dielectric Assessment Kit 10MHz - 3GHz) 3/1/2016 Annual 3/1/2018 13264165 Control Company 4040 Digital Caliper 3/1/2016 Biennial 3/1/2018 13264165 Keysight 772D Dual Directional Coupler CBT N/A CBT MYS1280215 Aglient E4432B ESG Vector Signal Generator 3/2/2016 Annual 3/2/2017 MYA270002 Control Company 4333 Long Stem Thermometer 3/5/2015 Biennial 3/5/2017 1501405565 Mini-Circuits SLP-2400+ Low Pass F	Pasternack	PE2209-10	Bidirectional Coupler		N/A		N/A
SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272							
Mini-Circuits		DAE4					
SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAK-12 Dielectric Assessment Kit 10/MHz - 30/Hz) 3/1/2016 Biennial 3/1/2017 1102 Mitutoyo CD-6°CSK Digital Caliper 3/1/2016 Biennial 3/1/2018 13264165 Control Company 4040 Digital Timermometer 3/18/2015 Biennial 3/18/2017 150194986 Seysight 7720 Dual Directional Coupler CBT N/A CBT M/S2180215 Aglient E4438C ESG Vector Signal Generator 3/2/2016 Annual 3/2/2017 M/47270002 Aglient E4438C ESG Vector Signal Generator 3/5/2016 Annual 3/2/2017 M/47270002 Aglient E4438C ESG Decries Signal Generator 3/5/2016 Annual 3/2/2017 M/47270002 Aglient E4438C ESG Decries Signal Generator 3/5/2016 Annual 3/5/2017 S040053896 Control Company 4353 Long Stem Thermometer 3/5/2015 Biennial 3/5/2017 S040053896 MiniCircuits SUP-24000+ Low Pass Filter CBT N/A CBT R8979500903 MiniCircuits VUF-6000+ Low Pass Filter CBT N/A CBT N/A CBT N/A Aglient N/9200A M/A Signal Analyzer 11/5/2015 Annual 11/5/2016 M/4 CBT N/A Aglient N/9200A M/A Signal Analyzer 11/5/2015 Annual 3/5/2017 M/47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 3/5/2017 M/47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 3/5/2017 M/47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 3/5/2017 M/47420800 Annisu ML2995A Power Meter 10/16/2015 Biennial 10/16/2017 10/39008 Annisu ML2996A Power Meter 10/16/2015 Biennial 10/16/2017 10/39008 Annisu ML2996A Power Meter 3/5/2016 Annual 3/3/2017 24000 Annisu ML2996A Power Meter 3/5/2016 Annual 3/3/2017 24000 Annisu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Annisu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 3/39018 Annisu MA2496A Power Meter 3/5			, ,				
SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102				-			
Mitutoyo CD-6°CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 13264165 Control Company 4040 Digital Thermometer 3/18/2015 Biennial 3/18/2017 15014986 Keysight 772D Dual Directional Coupler CBT N/A CBT MY52180215 Agllent E44328 ESG-D Series Signal Generator 3/2/2016 Annual 3/5/2017 US4003386 Control Company 4353 Long Stem Thermometer 3/5/2015 Biennial 3/5/2017 150149565 MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT RN/A MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT N/A Agilent NSD2004 Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Agilent NSD20A MXA Signal Analyzer 11/5/2015 Annual 11/5/2016 Annual 3/5/2017 MY4720800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 <td></td> <td></td> <td></td> <td>- ' '</td> <td></td> <td></td> <td></td>				- ' '			
Control Company 4040 Digital Thermometer 3/18/2015 Biennial 3/18/2017 150194896 Keysight 772D Dual Directional Coupler CBT N/A CBT MY322001 MY47270002 Agilent E4438C ESG Vector Signal Generator 3/2/2016 Annual 3/2/2017 US4003896 Control Company 4353 Long Stem Thermometer 3/5/2015 Blennial 3/5/2017 US40003896 MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500903 MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A Agilent NS020A MMS Signal Analyzer 11/5/2015 Annual 11/5/2016 Us46470561 Agilent NS182A MKG Vector Signal Generator 3/5/2016 Annual 11/5/2010 Us46470561 Agilent NS182A MKG Vector Signal Generator 3/5/2016 Annual 11/5/2010 Us46470561 Agilent NS182A MKG Vector Signal Generator 3/5/2016<			,				
Keysight 772D Dual Directional Coupler CBT N/A CBT MY52180215 Aglient E4438C ESG Vector Signal Generator 3/2/2016 Annual 3/2/2017 MY47270002 Aglient E4432B ESG-D Series Signal Generator 3/5/2015 Annual 3/5/2017 MX0033896 Control Company 4353 Long Stem Thermometer 3/5/2015 Biennial 3/5/2017 150149565 MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT RVA MiniCircuits NLP-2950+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter CBT N/A CBT N/A Aglient NS020A MXM Signal Analyzer 11/5/2015 Annual 11/5/2016 Us46470561 Us4647	· · · · · · · · · · · · · · · · · · ·						
Agilent E4438C ESG Vector Signal Generator 3/2/2016 Annual 3/2/2017 MY47270002 Agilient E4432B ESG-D Series Signal Generator 3/5/2015 Binnial 3/5/2017 U540053896 Control Company 4353 Long Stem Thermometer 3/5/2015 Biennial 3/5/2017 150149565 Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500903 Mini-Circuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A Agilent N9020A MXA Signal Analyzer 11/5/2015 Annual 11/5/2016 US46470561 Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 11/5/2015 US46470561 Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 3/5/2017 W47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 3/5/2017 M47420800 Mini-Circuits BW-N20W5 Power Meter 10/16/2015		772D		CBT	N/A	CBT	MY52180215
Agilent EA432B ESG-D Series Signal Generator 3/5/2016 Annual 3/5/2017 US40053896 Control Company 4353 Long Stem Thermometer 3/5/2015 Biennial 3/5/2017 150149565 MiniCircuits SIP-2400+ Low Pass Filter CBT N/A CBT R8979500903 Mini-Circuits NLP-2950+ Low Pass Filter CBT N/A CBT N/A Agilent N9020A MXAS Signal Analyzer 11/5/2015 Annual 11/5/2016 US46470561 Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 3/5/2017 MY47420800 SPEAG DAKS-3-5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 Mini-Circuits BW-N20WS Power Attenuator CBT N/A CBT N/A CBT 10/16/2015 Annual 3/5/2016 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041		E4438C		3/2/2016	Annual	3/2/2017	MY47270002
Control Company 4353 Long Stem Thermometer 3/5/2015 Blennial 3/5/2017 150149565 Minicircuits SIP-2400+ Low Pass Filter CBT N/A CBT R8979500903 Mini-Circuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Agilent N9020A MXAS Signal Analyzer 11/5/2015 Annual 11/5/2016 US46470561 Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 3/5/2017 MY47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 104 Mini-Circuits BW-N20W5 Power Meter 10/16/2015 Biennial 10/16/2017 103000 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 <td></td> <td>E4432B</td> <td>ESG-D Series Signal Generator</td> <td>3/5/2016</td> <td>Annual</td> <td>3/5/2017</td> <td>US40053896</td>		E4432B	ESG-D Series Signal Generator	3/5/2016	Annual	3/5/2017	US40053896
MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500903 MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Agilent N9020A MXA Signal Analyzer 11/5/2015 Annual 11/5/2016 US46470561 Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 3/5/2017 MY47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 Mini-Circuits BW-N20W5 Power Meter 10/16/2015 Biennial 10/16/2017 1076 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2495A Power Meter 2/28/2016 Annual 3/3/2017 1070030 Anritsu ML2496A Power Meter 3/5/2016 Annual 3/5/2017 135		4353	,	· · · · · · · · · · · · · · · · · · ·	Biennial		
MiniCircuits VLF-6000+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Agilent N9020A MXA Signal Analyzer 11/5/2015 Annual 11/5/2016 US46470561 Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 3/5/2017 MY47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 Mini-Circuits BW-N20W5 Power Meter 10/16/2015 Biennial 10/16/2017 103900 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2438A Power Meter 3/3/2016 Annual 2/28/2017 1306009 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017		SLP-2400+	Low Pass Filter		N/A		R8979500903
Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Agilent N9020A MXA Signal Analyzer 11/5/2015 Annual 11/5/2016 US46470561 Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 3/5/2017 MY47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 3/19/2016 1041 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2496A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2496A Power Meter 3/3/2016 Annual 3/3/2017 1070030 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 53					·		
Agilent N9020A MXA Signal Analyzer 11/5/2015 Annual 11/5/2016 US46470561 Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 3/5/2017 MY47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2496A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2496A Power Meter 3/3/2016 Annual 3/3/2017 1070030 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364	Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	
Agilent N5182A MXG Vector Signal Generator 3/5/2016 Annual 3/5/2017 MY47420800 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2496A Power Meter 2/28/2016 Annual 2/28/2017 1306009 Anritsu ML2496A Power Meter 3/3/2016 Annual 3/3/2017 1351001 Anritsu MA2496A Power Meter 3/5/2016 Annual 3/3/2017 1351001 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 <td>Agilent</td> <td>N9020A</td> <td>MXA Signal Analyzer</td> <td>11/5/2015</td> <td>Annual</td> <td>11/5/2016</td> <td>US46470561</td>	Agilent	N9020A	MXA Signal Analyzer	11/5/2015	Annual	11/5/2016	US46470561
SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2496A Power Meter 2/28/2016 Annual 2/28/2017 1306009 Anritsu ML2496A Power Meter 3/3/2016 Annual 3/3/2017 1070030 Anritsu MA2481A Power Meter 3/5/2016 Annual 3/5/2017 1351001 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018		N5182A			Annual		MY47420800
Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2496A Power Meter 2/28/2016 Annual 2/28/2017 1306009 Anritsu ML2438A Power Meter 3/3/2016 Annual 3/3/2017 1070030 Anritsu ML2496A Power Meter 3/5/2016 Annual 3/3/2017 1351001 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 5318 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 1339018 SPEAG </td <td>SPEAG</td> <td>DAKS-3.5</td> <td>Portable Dielectric Assessment Kit</td> <td>8/19/2015</td> <td>Annual</td> <td>8/19/2016</td> <td>1041</td>	SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/19/2015	Annual	8/19/2016	1041
Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 Anritsu ML2496A Power Meter 2/28/2016 Annual 2/28/2017 1306009 Anritsu ML2438A Power Meter 3/3/2016 Annual 3/3/2017 1070030 Anritsu ML2496A Power Meter 3/5/2016 Annual 3/5/2017 1351001 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 5318 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 5318 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 11/17/2016 3334 COMTech	Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Anritsu ML2496A Power Meter 2/28/2016 Annual 2/28/2017 1306009 Anritsu ML2438A Power Meter 3/3/2016 Annual 3/3/2017 1070030 Anritsu ML2496A Power Meter 3/5/2016 Annual 3/5/2017 1351001 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 5318 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 11/17/2016 3334 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M15SA00-009 Agilent <t< td=""><td>Anritsu</td><td>ML2495A</td><td>Power Meter</td><td>10/16/2015</td><td>Biennial</td><td>10/16/2017</td><td>941001</td></t<>	Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Anritsu ML2438A Power Meter 3/3/2016 Annual 3/3/2017 1070030 Anritsu ML2496A Power Meter 3/5/2016 Annual 3/5/2017 1351001 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 5318 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 1339018 SPEAG EX3DV4 SAR Probe 11/17/2015 Annual 11/17/2016 3334 COMTech AR85739-5 Solid State Amplifier CBT N/A CBT MISSA00-009 Agilent 8753E5 S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pa	Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	1039008
Anritsu ML2496A Power Meter 3/5/2016 Annual 3/5/2017 1351001 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 5318 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG EX3DV4 SAR Probe 11/2/2016 Annual 2/22/2017 3914 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MIS5A00-009 Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 11/6/2017 N/A	Anritsu	ML2496A	Power Meter	2/28/2016	Annual	2/28/2017	1306009
Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 5318 Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 11/17/2016 3334 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M155A00-009 Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A	Anritsu	ML2438A	Power Meter	3/3/2016	Annual	3/3/2017	1070030
Anritsu MA2481A Power Sensor 3/3/2016 Annual 3/3/2017 2400 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M1S5A00-009 Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728	Anritsu	ML2496A	Power Meter	3/5/2016	Annual	3/5/2017	1351001
Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1207364 Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M1S5A00-009 Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 6/2/2017	Anritsu	MA2481A	Power Sensor	3/3/2016	Annual	3/3/2017	5318
Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2016 1339018 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M1S5A00-009 Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017	Anritsu	MA2481A	Power Sensor	3/3/2016	Annual	3/3/2017	2400
SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M1S5A00-009 Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 <	Anritsu	MA2411B	Pulse Power Sensor	12/7/2015	Annual	12/7/2016	1207364
SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M155A00-009 Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/	Anritsu	MA2411B	Pulse Power Sensor	12/7/2015	Annual	12/7/2016	1339018
COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M155A00-009 Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	SPEAG	ES3DV3	SAR Probe	11/17/2015	Annual	11/17/2016	3334
Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	SPEAG	EX3DV4	SAR Probe	2/22/2016	Annual	2/22/2017	3914
Agilent 8753ES S-Parameter Network Analyzer 3/3/2016 Annual 3/3/2017 US39170122 Pasternack NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	Agilent	8753ES		3/3/2016	Annual	3/3/2017	US39170122
Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/2018 160261728 Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	Pasternack	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2016 8650319 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1244512 Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	Control Company	4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261728
Anritsu MA24106A USB Power Sensor 6/2/2016 Annual 6/2/2017 1248508 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	Gigatronics	8651A	Universal Power Meter	11/4/2015	Annual	11/4/2016	8650319
SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513	Anritsu	MA24106A	USB Power Sensor	6/2/2016	Annual	6/2/2017	1244512
	Anritsu	MA24106A	USB Power Sensor	6/2/2016	Annual	6/2/2017	1248508
Agilant NA010A Wiseless Connectivity Test C-1 CDT N/A CDT COACCTOSA	SPEAG	DAKS_VNA R140	VNA for Portable DAK	8/16/2015	Annual	8/16/2016	80513
Agrierit N4010A Wireless Connectivity Test Set CBT N/A CBT GB461/0464	Agilent	N4010A	Wireless Connectivity Test Set	СВТ	N/A	CBT	GB46170464

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: A3LSMP580	PCTEST SOURCES AND ADDRESS OF THE SECOND SEC	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 (05
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 21 of 25
016 PCTEST Engineering Laboratory Inc				REV 18 M

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M 05/16/2016

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	Vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	×
Hemishperical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	× ×
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Linearity	0.3	N	1	1.0	1.0	0.3	0.3	×
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	×
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	8
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	×
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	8
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	×
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	×
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	×
Extrapolation, Interpolation $\&$ Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	×
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	×
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	× ×
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	×
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	× ×
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	×
Combined Standard Uncertainty (k=1)	1	RSS	I .			11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

FCC ID: A3LSMP580	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 00 -4 05	
0Y1607041155-R1.A3L	06/27/16	Portable Tablet	Page 22 of 25	

13 CONCLUSION

13.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMP580	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 00 (05	
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 23 of 25	

14 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMP580	PCTEST'	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		5 04 605	
0Y1607041155-R1.A3L	06/27/16	Portable Tablet		Page 24 of 25	

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

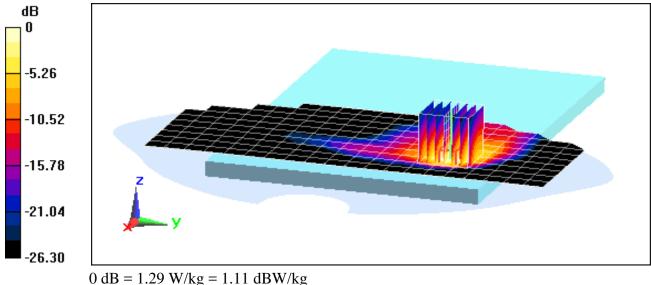
FCC ID: A3LSMP580	PCTEST"	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 25 of 25	
0Y1607041155-R1.A3L	06/27/16	Portable Tablet			

APPENDIX A: SAR TEST DATA

DUT: A3LSMP580; Type: Portable Tablet; Serial: 00072

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.957 \text{ S/m}; \ \varepsilon_r = 53.656; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-27-2016; Ambient Temp: 21.5°C; Tissue Temp: 22.4°C


Probe: ES3DV3 - SN3334; ConvF(4.45, 4.45, 4.45); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Back Side

Area Scan (11x21x1): Measurement grid: dx=12mm, dy=12mm **Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.57 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 2.73 W/kgSAR(1 g) = 0.929 W/kg

DUT: A3LSMP580; Type: Portable Tablet; Serial: 00080

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 5.918 \text{ S/m}; \ \epsilon_r = 46.184; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 0.4 cm

Test Date: 06-27-2016; Ambient Temp: 22.6°C; Tissue Temp: 23.0°C

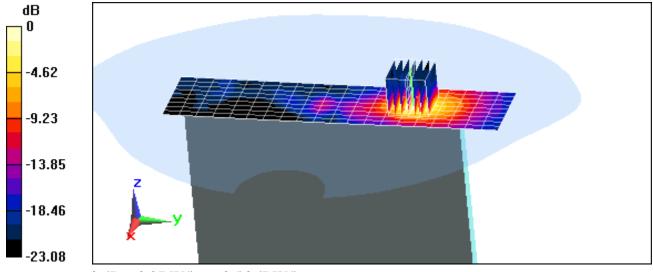
Probe: EX3DV4 - SN3914; ConvF(3.63, 3.63, 3.63); Calibrated: 2/22/2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/18/2016

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Body SAR, Ch 120, 6 Mbps, Top Edge


Area Scan (10x21x1): Measurement grid: dx=5mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 12.64 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 3.71 W/kg

SAR(1 g) = 0.918 W/kg

0 dB = 2.27 W/kg = 3.56 dBW/kg

DUT: A3LSMP580; Type: Portable Tablet; Serial: 00072

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 1.994 \text{ S/m}; \ \epsilon_r = 53.587; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

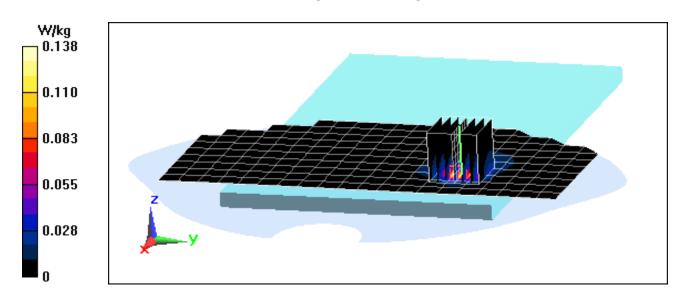
Test Date: 06-27-2016; Ambient Temp: 21.5°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3334; ConvF(4.45, 4.45, 4.45); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Back Side


Area Scan (11x21x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.330 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.317 W/kg

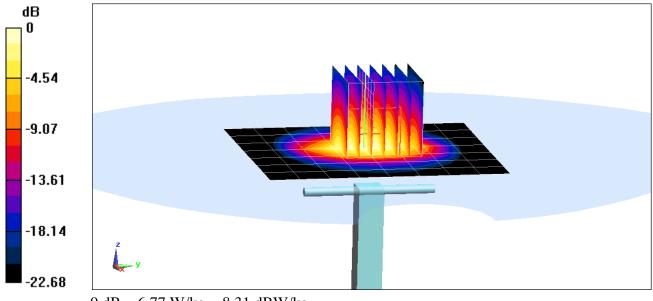
SAR(1 g) = 0.099 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.006 \text{ S/m}; \ \epsilon_r = 53.566; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-27-2016; Ambient Temp: 21.5°C; Tissue Temp: 22.4°C


Probe: ES3DV3 - SN3334; ConvF(4.45, 4.45, 4.45); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.7 W/kg SAR(1 g) = 5.14 W/kg Deviation(1 g) = 4.05%

0 dB = 6.77 W/kg = 8.31 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 5.458$ S/m; $\varepsilon_r = 46.709$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

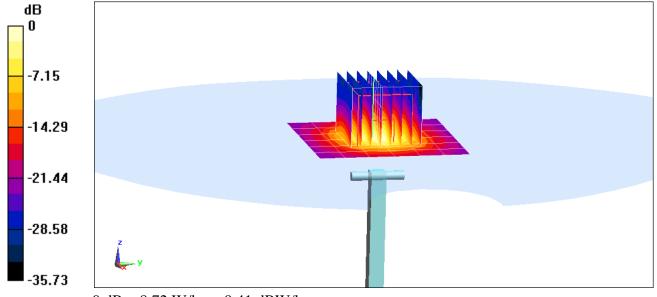
Test Date: 06-27-2016; Ambient Temp: 22.6°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3914; ConvF(4.32, 4.32, 4.32); Calibrated: 2/22/2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/18/2016

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.3 W/kg

SAR(1 g) = 3.76 W/kg Deviation(1 g) = -0.53%

0 dB = 8.72 W/kg = 9.41 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5600 MHz; $\sigma = 5.918$ S/m; $\varepsilon_r = 46.184$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

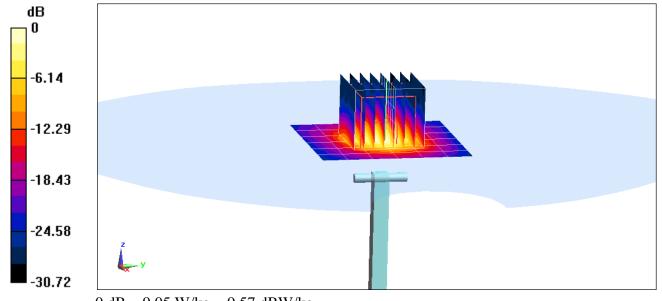
Test Date: 06-27-2016; Ambient Temp: 22.6°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3914; ConvF(3.63, 3.63, 3.63); Calibrated: 2/22/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/18/2016

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 3.89 W/kg

SAR(1 g) = 3.89 W/kg Deviation(1 g) = -3.71%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 6.102$ S/m; $\varepsilon_r = 45.895$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

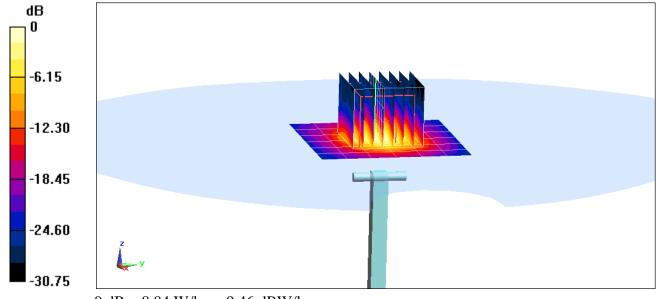
Test Date: 06-27-2016; Ambient Temp: 22.6°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3914; ConvF(3.86, 3.86, 3.86); Calibrated: 2/22/2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/18/2016

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.9 W/kg

SAR(1 g) = 3.69 W/kgDeviation(1 g) = -3.53%

0 dB = 8.84 W/kg = 9.46 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-882_Feb16

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 882

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 18, 2016

03/01/2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature (

Calibrated by:

Claudio Leubler

Function Laboratory Technician Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: February 19, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-882_Feb16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-882_Feb16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied,

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	50.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.92 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 1.0 jΩ
Return Loss	- 31.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 3.5 jΩ
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2011

DASY5 Validation Report for Head TSL

Date: 18.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 882

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;

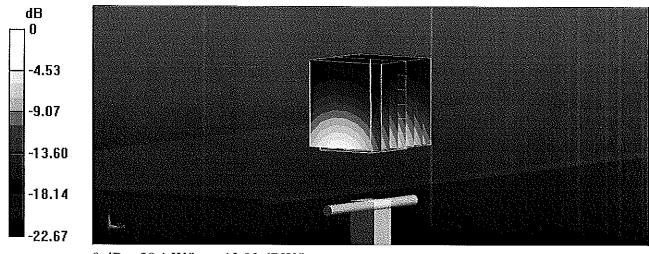
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

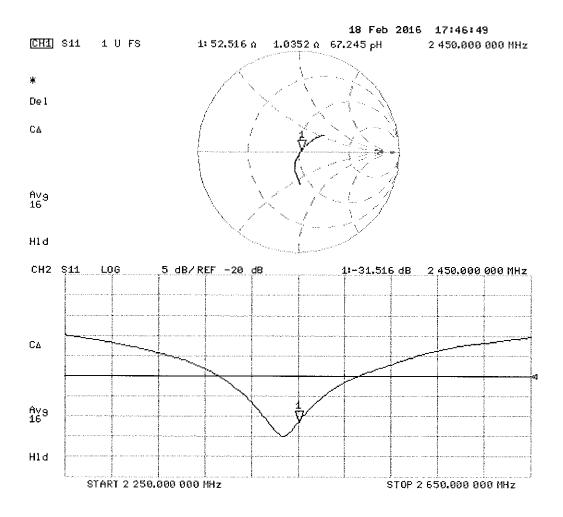
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.8 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 25.7 W/kg


SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.92 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 882

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2015;

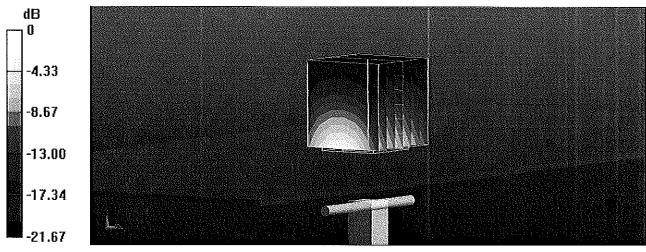
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

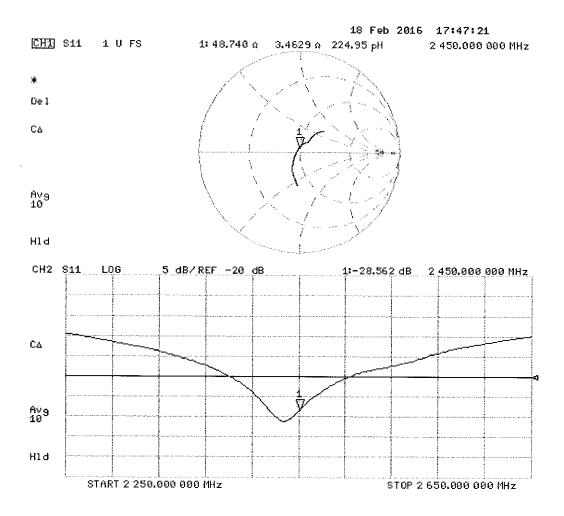
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.8 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 24.8 W/kg


SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.81 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

0 dB = 20.0 W/kg = 13.01 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

- Chies campianon cervice

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D5GHzV2-1120_Feb16

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1120

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

03/01/2016

Calibration date:

February 25, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 3503	31-Dec-15 (No. EX3-3503_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Name Jeton Kastrati Function Laboratory Technician Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: February 25, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1120_Feb16

Page 1 of 13

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1120_Feb16 Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.56 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.3 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	5.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.15 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	,
SAR measured	100 mW input power	7.71 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1120_Feb16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.8 Ω - 1.3 j Ω
Return Loss	- 30.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.8 Ω - 1.0 jΩ
Return Loss	- 23.8 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	53.5 Ω + 4.2 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.7 Ω - 0.6 jΩ
Return Loss	- 34.9 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.8 Ω + 2.2 jΩ
Return Loss	- 21.5 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	$53.9 \Omega + 6.1 j\Omega$			
Return Loss	- 23.1 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG			
Manufactured on	September 08, 2011			

Certificate No: D5GHzV2-1120_Feb16 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 25.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1120

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f=5250 MHz; $\sigma=4.56$ S/m; $\epsilon_r=34.8$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.91$ S/m; $\epsilon_r=34.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=5.07$ S/m; $\epsilon_r=34.1$; $\rho=1000$ kg/m 3

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.53, 5.53, 5.53); Calibrated: 31.12.2015, ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.95, 4.95, 4.95); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom Type: QD000P50AA
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.31 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 29.0 W/kg

SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

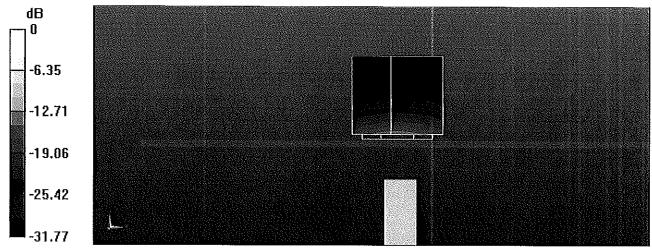
Reference Value = 73.36 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.4 W/kg

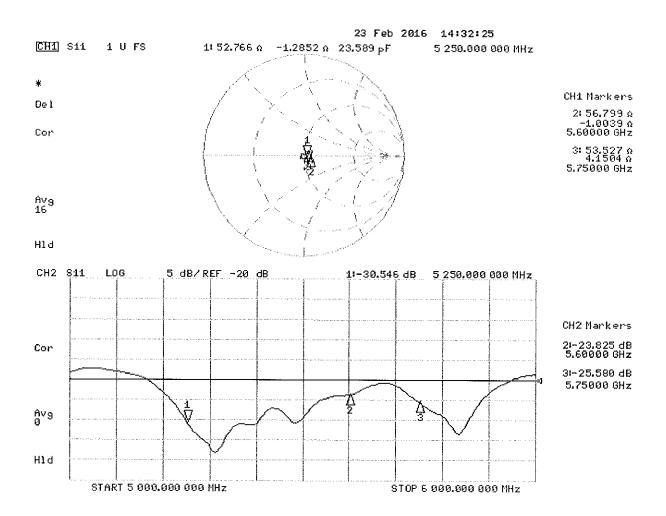
Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.09 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 32.5 W/kg


SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 17.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1120

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.46$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.15$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 31.12.2015, ConvF(4.35, 4.35, 4.35); Calibrated: 31.12.2015, ConvF(4.3, 4.3, 4.3); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

uist=1.4mm (oxox///Cube of Measurement grid: dx=4mm, dy=4mm, dz=1.4m

Reference Value = 66.97 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

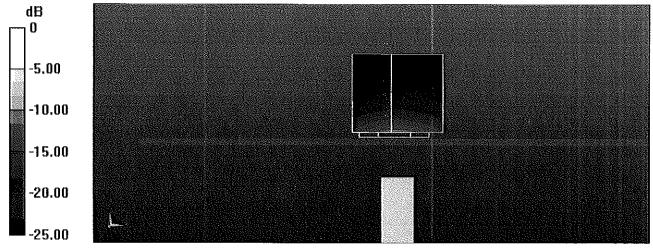
Reference Value = 67.65 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 20.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.41 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 33.1 W/kg

SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 3004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: ES3-3334_Nov15

C

CALIBRATION CERTIFICATE

Object ES3DV3 SN:3334

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

11/57A/12

Calibration date:

November 17, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	G841293874	01-Apr-16 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-18
Reference 3 dB Attenuator	SN: \$5054 (3a)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: \$5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	\$N; \$5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013 Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	al	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	U\$37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Name Function Signature

Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: November 17, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3334, Nov15 Page 1 of 13

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Katibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx.v.z sensitivity in free space

NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diade compression point

DCP diade compression point
CE crest factor (1/duty, cycle) (

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 8 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\theta = 0$ is normal to probe axis.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip
 (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3334_Nov15 Page 2 of 13

Probe ES3DV3

SN:3334

Manufactured: Calibrated:

January 24, 2012 November 17, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

E\$3DV3-SN:3334

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3334

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.03	1,03	0.99	± 10.1 %
DCP (mV)B	107.6	105.3	107.9	

Modulation Calibration Parameters

ÜID	Communication System Name		A	В	С	D	VR	Unç
	A		dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	192.1	±2.7 %
		Y	0.0	0.0	1.0		183.6	
40040		Z	0.0	0.0	1.0	:	183.3	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	х	2.27	60.1	10.2	10.00	38.6	±1.4 %
	****	Y	1.99	59.3	10.2	L	38.4	!
40		Z	5.38	67.8	12.9		37.2	:
10011- CAB	UMTS-FDD (WCDMA)	x	3.40	68.0	18.9	2.91	131.7	±0.5 %
		' Y		67.0	18.2		130.2	
		<u></u> z	3.41	68.3	19.1		148.5	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	2.93	68.9	18.7	1.87	132.9	±0.7 %
		Y	3.12	69.6	18.8	:	130.2	
		Z	3.24	71.1	19.7		128.2	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (D\$\$\$- OFDM, 6 Mbps)	×	10.90	70.3	23.0	9.46	133.5	±3.3 %
		Y	10.53	69.0	22.1		124.6	
		Z	11.14	71.2	23.6		147.1	
10021- DAB	GSM-FDD (TDMA, GMSK)	X	15.05	91.0	24.4	9.39	139.5	±1.9 %
•••		Y	10.1 1	85.5	23.3		131.9	
		Z	11.84	87.6	23.4		130.0	
10023- DAB	. GPRS-FDD (TDMA, GMSK, TN 0)	Х	10.42	84.9	22.6	9.57	131.5	±3.0 %
		İΥ	13.29	89.7	24.6	L	141.1	
		Z	14.17	90.2	24.2		148.7	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	. x	11.26	83.1	19.4	6.56	140.7	±1.9 %
		Υ	26.29	95.5	23.8	L	134.7	
		_ Z :	16.82	88.9	21.3		131.6	.,,,,,,
10027- DA B	GPRS-FOD (TDMA, GMSK, TN 0-1-2)	Х	64.74	99.9	22.2	4.80	13 1 .5	±2.2 %
		Υ	56.71	99.8	22.7		124.7	
		Z	63.10	99.9	22.2		124.1	
10028- DA B	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	62.11	99.6	21.6	3.55	146.1	±1.9 %
		Y	77.61	99.8	21.2		132.0	
		Z	72.33	99.7	2 1.2		133.3	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	96.24	92.7	15.9	1.1 6	137.2	±1.7 %
///www		Υ	95.69	93.1	16.2		129.5	
	14 44444	Ζ	98.67	94.1	16.4		149.7	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.14	66.8	19.2	5.67	126.2	±1.7 %
	7,000	Υ	6.21	66.8	19.1		139.9	
		Ζ	6.41	67.9	19.9		145.9	

10103-	LTE-TDD (SC-FDMA, 100% RB. 20							
CAB	MHz, QPSK)	X	10.07	75.4	25.8	9.29	138.2	±2.5 %
	:	Y	9.54	73.3	24.5	i "	130.5	
40400		Į Z	9.84	75,1	25.8		130.6	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.34	67.6	19.8	5.80	149.5	±1.4 %
<u> </u>		įΥ	6.13	66.6	19.1	T	132.1	·-
10117		Z	6.19	67.2	19.7	i "-	; 137.8	<u> </u>
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps. BPSK)	X	10.13	68.9	21.2	8.07	138.8	±2.7 %
i	,	T _Y	10.16	68.9	21.1	 	149.6	·
40354		Ž	9,96	68.7	21,1		127.1	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz. QPSK)	X	9.42	74.4	25.5	9.28	132.9	±3.0 %
		<u>Y</u>	9.50	74.0	25.0	;	143.7	
10154-	TE EDD (OO EDLI)	Z _	9.01	73.4	25.0	<u> </u>	126.5	
CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.03	67.1	19.6	5.75	145.5	±1.4 %
<u> </u>	···	<u> </u>	5.81	66.0	18.9	T*	128.9	
10160-	LIE EDD (DO EDAM	įΖ	5,91	66.8	19.5		j 135.1	
CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.19	66.5	19.2	5.82	126.7	±1.4 %
		Y	6.20	66.4	19.0	L	132.8	
10169-	LTE COD (CO CELLS (CD of the	Z	6.39	67.5	19.8		141.1	i
CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	5.05	67.6	20.0	5.73	! 146.8	±1.4 %
		Y	4.82	66.2	19.2		132.2	
10172-	LTE TOD (CO FOM)	Z	4.96	67.4	20.0		143.8	
CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	8.88	79.7	28.3	9.21	147.9	±3.0 %
	 	Υ	8.00	76.1	26.2		138.9	
10175-	LTE-FDD (SC-FDMA, 1 RB, 10 MHz.	<u>Z</u> .	8.39	78.5	27.8	<u> </u>	141.5	
CAC	QPSK)	X	4.99	67.3	19.9	5.72	140.7	±1.2 %
	- <u> </u>	Y	4.80	66.2	19.1		131.3	
10181-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz,	Z	4.90	67.1	19.8		136.1	i
CAB	. QPSK)	x !	4.99	67.3	19.9	5.72	145.4	±1.4 %
		' Y	4,81	66.2	19.2	*-	130.9	
10196-	IEEE 802.11n (HT Mixed, 6.5 Mbps,	_Z	4.89	67.1	19.8		136.0	
CAB	BPSK)	X	9.78	68.8	21.3	8.10	131.0	±2.5 %
	<u></u>	Y	9.73	68.4	21.0		140.7	
10225-	UMTS-FDD (HSPA+)	_Z	9.94	69.4	21.6		146.6	
CAB		x !	6.88	66.9	19.3	5.97	133.9	±1.7 %
		Y ;	6.96	67.1	19.3	·-·	144.8	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz.	Z	6.71	66.6	19.2		125.7	
CAB	QPSK)	×	9.00	80.2	28.5	9.21	148.2	±3.0 %
		_ <u>~</u> ~.	7.73	75.1	25.7		131.6	
10252-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	Z	8.27	78.2	27.7		136.1	
CAB	QPSK)	X	9.59	76.3	26.7	9.24	144.1	±2.7 %
	:	Y	8.74	72.9	24.5	,	133.4	
10267-	LTE-TOD (SC-FDMA, 100% RB, 10	2	9.14	75.2	26.1		136.9	~
CAB	MHz, QPSK)	X	9.25	73.9	25.3	9.30	124.8	±3.0 %
	 	Y !	9.40	73.7	24.9		142.1	
		_ Z	9.86	76.1	26.5	<u></u>	145.3	

ES3DV3- \$N;3334 November 17, 2015

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	4.38	66.9	18.7	3.96	133.3	±0.9 %
		Υ	4.44	66.9	18.6		148.2	
		Z	4.30	66.7	18.6		128.9	·····
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.68	67,3	18.7	3.46	145.8	±0.7 %
		Υ	3.58	66.6	18.2		136.3	
	111111	Z	3.62	67.3	18.8		139.4	
10292- AAB	CDMA2000, RC3, SQ32, Full Rate	X	3.73	68.0	19.1	3.39	147.5	±0.7 %
		Ϋ́	3.55	66.7	18.3		138.5	
		· Z	3.60	67.6	18.9		143.0	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	. X	6.30	67.4	19.7	5.81	141.4	±1,2 %
		: Y	6.11	66.5	19.1		130.3	
		Z	6.17	67.0	19.5		138.8	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.88	68.0	20.1	6.06	147.0	±1.7 %
		Υ	6.68	67.1	19.5		136.0	
		Ζ	6.75	67.7	20.0	T	141.6	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	х	9.97	68.8	21.4	8.37	126.9	±2.7 %
		Υ	10.07	68.9	21.4		143.6	
		Z	10.21	69.7	22.0	[: 147,4	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.77	68.5	18.8	3.76	134.9	±0.5 %
		Y	4.69	68.1	18.5	:	126.7	
		İΖ	4.74	68.8	18.9		129.4	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.72	68.7	18.8	3.77	132.9	±0.7 %
		Υ	4.78	68.9	18.9		147.4	
		Z	4.63	68.7	18.9		127.1	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	2.72	68.9	18.8	1.54	131.9	±0.5 %
		Υ	2.65	68.0	18.1		145,9	
		Z	2 .72	69.3	19.D		127.3	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	Х	9.81	68.6	21.2	8.23	131.6	±2.7 %
		Υ	9.90	68.7	21.2		144.1	
		z	9.97	69.3	21.7		146.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^k The uncertainties of Norm X.Y,Z do not affect th≑ E²-field uncertainty inside TSL (see Pages 7 and 8).
 ^g Numerical linearization parameter: uncertainty not required.
 ^g Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3334

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvFY	ConvF Z	Alpha ⁶	Depth ⁶ (mm)	Unc (k=2)
6	55.5	0.75	6.13	6.13	6.13	0.00	1.00	± 13.3 %
13	55.5	0.75	5.76	5.76	5.76	j 0.00	1.00	± 13.3 %
750	41.9	0.89	6.56	6.56	6.56	0.24	2.36	± 12.0 %
835	41.5	0.90	6.37	6.37	6.37	0.37	1.70	± 12.0 %
1750	40.1	1.37	5.39	5.39	5.39	0.58	1.32	± 12.0 %
1900	40.0	1,40	5.18	5.18	5.18	0.77	1.20	± 12.0 %
2300	39.5	1.67	4.85	4.85	4.85	0.71	1.28	± 12.0 %
2450	39.2	1.8 <u>0</u> j	4,58	4.58	4.58	0.79	1.17	± 12.0 %
2600	39.0	1.96	4.46	4.46	4.46	0.80	1.26	± 12.0 %

Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

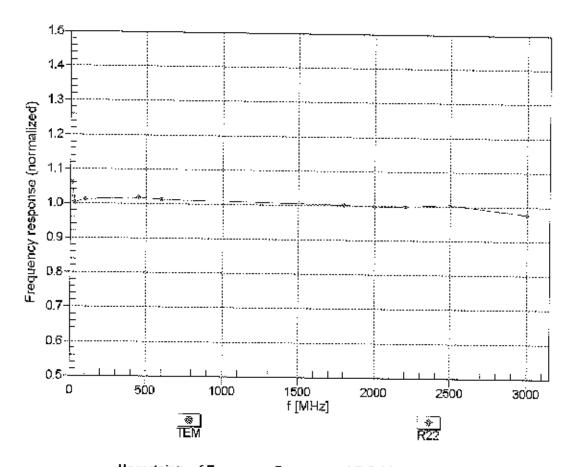
Alpha/Depth are determined during ca/ibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3334

Calibration Parameter Determined in Body Tissue Simulating Media

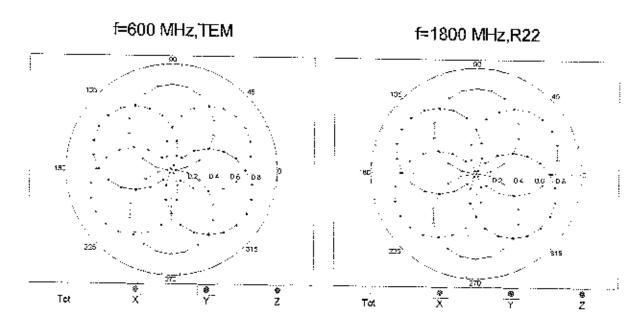
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ⁵ (mm)	Unc (k=2)
750	55.5	0.96	6.37	6.37	6.37	0.74	1.22	± 12.0 %
835	55.2	0.97	6.24	6.24	6.24	0.31	1.94	± 12.0 %
1750	53.4	1.49	5.03	5.03	5.03	0.50	1.57	± 12.0 %
1900	53.3	1.52	4.84	4.84	4.84	0.50	1,58	± 12.0 %
2300	52.9	1.81	4.61	4.61	4.61	0.74	1.23	± 12.0 %
2450	52.7	1.95	4.45	4.45	4.45	0.74	1.20	± 12.0 %
2600	52.5	2.16	4.29	4.29	4,29	0.80	1.20	± 12.0 %

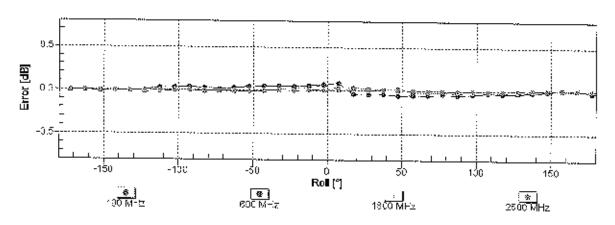
 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


⁶ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be retaxed to \pm 10% if figure compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters,

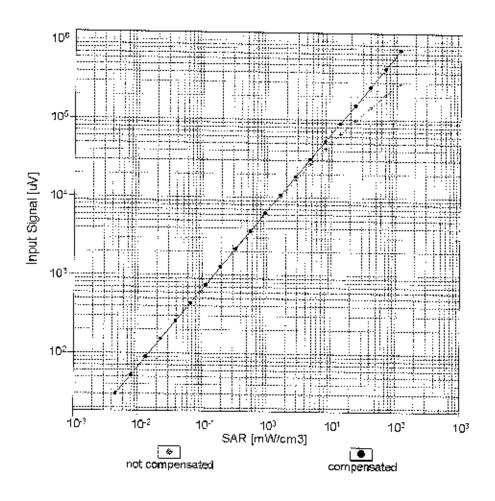
the ConvF uncertainty for indicated target tissue parameters,

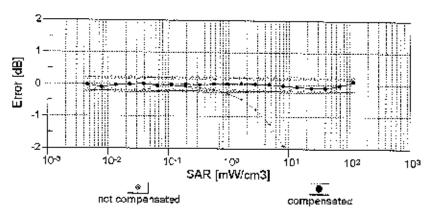
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


ES3DV3- \$N:3334 November 17, 2015

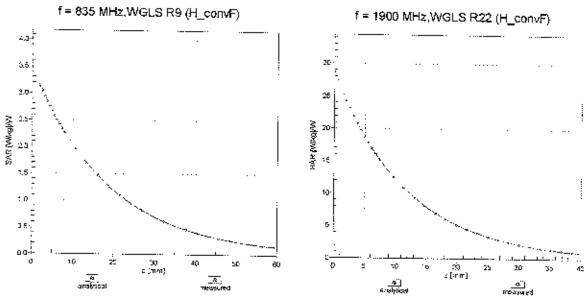

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

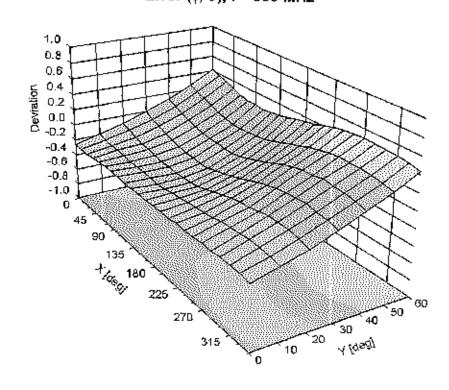
Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

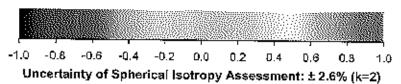

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , θ), f = 900 MHz

E\$3DV3-- \$N:3334

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3334

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	17.4
Mechanical Surface Detection Mode	.4
Optical Surface Detection Mode	enabled
	disabled
Probe Overall Length	337 mm
Probe Body Diameter	
Tip Length	10 mm
Tip Diameter	
Probe Tip to Sensor X Calibration Point	4 mm
	2 mm
Probe Tip to Sensor Y Calibration Point	į 2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Multilateral Agreement for the recognition of calibration

Certificate No: EX3-3914_Feb16

CALIBRATION CERTIFICATE

Object

Client

EX3DV4 - SN:3914

Calibration procedure(s)

PC Test

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

BN 03/01/2016

Calibration date:

February 22, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Name Function Signature
Calibrated by: Jeoth Kastrati Laboratory Technician

Approved by:

Certificate No: EX3-3914_Feb16

Katja Pokovic

Issued: February 22, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 11

Technical Manager

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization o

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

Certificate No: EX3-3914_Feb16

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

February 22, 2016 EX3DV4 - SN:3914

Probe EX3DV4

SN:3914

Manufactured: December 18, 2012 Calibrated: February 22, 2016

February 22, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

February 22, 2016 EX3DV4-SN:3914

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3914

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.48	0.42	0.46	± 10.1 %
DCP (mV) ^B	100.1	102.6	97.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	cw	Х	0.0	0.0	1.0	0.00	137.4	±2.7 %
		Y	0.0	0.0	1.0		139.7	
		Z	0.0	0.0	1.0		133.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	4.02	69.7	14.2	10.00	41.0	±0.9 %
		Υ	2,42	64.8	12.4		41.8	
		Z	2.11	63.9	12.8		44.9	
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	Х	10.26	68.5	21.3	8.68	127.9	±3.3 %
		Υ	10.16	68.6	21.4		127.8	
		Ζ	10.42	68.8	21.4		144.6	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.15	68.2	20.7	8.07	129.4	±3.3 %
		Υ	10.18	68.5	20.9		131.7	
		Z	10.42	68.8	20.9		148.3	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	10.13	68.8	21.1	8.10	146.4	±2.7 %
		Υ	9.80	68.3	20.9		126.3	
		Z	9.98	68.3	20.8		139.8	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Х	10.33	68.8	21.3	8.37	145.0	±2.7 %
		Υ	10.13	68.7	21.3		132.0	
-		Z	10.21	68.5	21.0		140.2	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	Х	10.67	68.4	21.1	8.60	125.8	±3.3 %
		Υ	10.92	69.3	21.6		140.7	
		Z	10.94	69.0	21.3		148.7	
10402- AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	Х	10.64	68.4	20.8	8.53	125.5	±3.3 %
		Υ	11.11	69.7	21.6		142.1	
		Z	10.93	69.0	21.1		149.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3914 February 22, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3914

Calibration Parameter Determined in Head Tissue Simulating Media

			_							
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)		
5250	35.9	4.71	5.07	5.07	5.07	0.35	1.80	± 13.1 %		
5600	35.5	5.07	4.66	4.66	4.66	0.40	1.80	± 13.1 %		
5750	35.4	5.22	4.74	4.74	4.74	0.40	1.80	± 13.1 %		

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

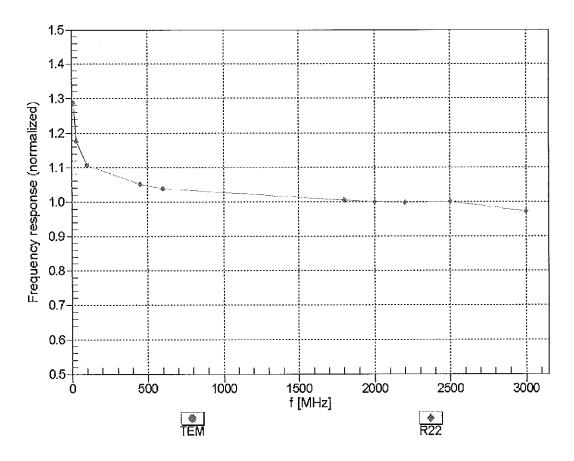
February 22, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3914

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k≃2)
750	55.5	0.96	9.57	9.57	9.57	0.47	0.85	± 12.0 %
835	55.2	0.97	9.44	9.44	9.44	0.47	0.85	± 12.0 %
1750	53.4	1.49	7.82	7.82	7.82	0.42	0.83	± 12.0 %
1900	53.3	1.52	7.50	7 <i>.</i> 50	7.50	0.45	0.80	± 12.0 %
2300	52.9	1.81	7.27	7.27	7.27	0.48	0.80	± 12.0 %
2450	52.7	1.95	7.22	7.22	7.22	0.46	0.80	± 12.0 %
2600	52.5	2.16	6.90	6.90	6.90	0.32	0.99	± 12.0 %
5250	48.9	5.36	4.32	4.32	4.32	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.63	3.63	3.63	0.60	1.90	± 13.1 %
5750	48.3	5.94	3.86	3.86	3.86	0.60	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

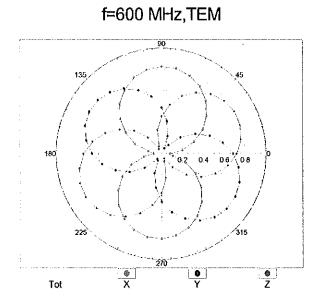

validity can be extended to \pm 110 MHz.

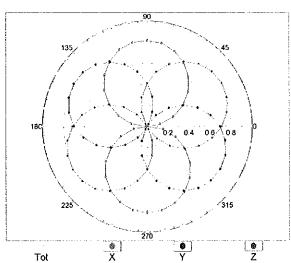
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

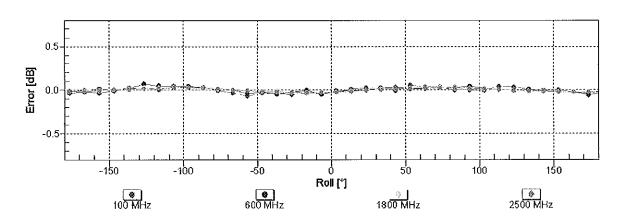
^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

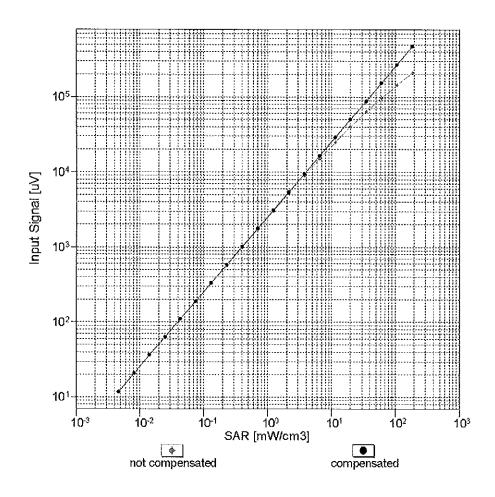


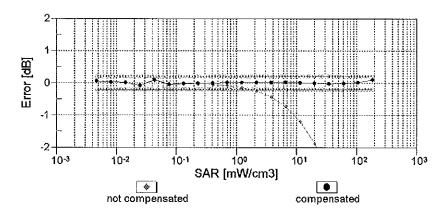

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

EX3DV4- SN:3914 February 22, 2016


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

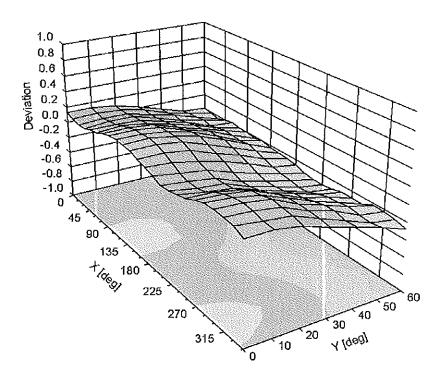
 (φ) , φ

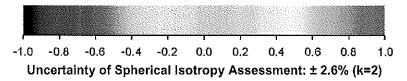



f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3914

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	133.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where *Y* is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Table D-I Composition of the Tissue Equivalent Matter

Frequency (MHz)	2450	5200-5800
Tissue	Body	Body
Ingredients (% by weight)		
DGBE	26.7	
NaCl	0.1	
Polysorbate (Tween) 80		20
Water	73.2	80

FCC ID: A3LSMP580	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
06/27/16	Portable Tablet			Page 1 of 1

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

> Table E-I **SAR System Validation Summary**

SAR	FREQ.		PROBE	PROBE							COND.	PERM.	CI	W VALIDATIO	V	M	OD. VALIDATIO	N
SYSTEM	[MHz]	DATE	SN	TYPE	PROBE C	AL. POINT	(σ)	(er)	SENSITIVITY	PROBE	PROBE	MOD.	DUTY	PAR				
#	[IVII IZ]		5	1112		(0)		(13)	OLIVOITIVITI	LINEARITY	ISOTROPY	TYPE	FACTOR	LAIT				
G	2450	12/4/2015	3334	ES3DV3	2450	Body	1.997	51.699	PASS	PASS	PASS	OFDM/TDD	PASS	PASS				
D	5250	3/1/2016	3914	EX3DV4	5250	Body	5.438	47.912	PASS	PASS	PASS	OFDM	N/A	PASS				
D	5600	3/1/2016	3914	EX3DV4	5600	Body	5.895	47.321	PASS	PASS	PASS	OFDM	N/A	PASS				
D	5750	3/1/2016	3914	EX3DV4	5750	Body	6.111	47.085	PASS	PASS	PASS	OFDM	N/A	PASS				

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: A3LSMP580	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
06/27/16	Portable Tablet			Page 1 of 1
016 PCTEST Engineering Laboratory	, Inc.			REV 18 M

APPENDIX G: SENSOR TRIGGERING DATA SUMMARY

A3LSMP580 Sensor Triggering Data Summary

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for all applicable sides and edges of the device. The measured output power at distances within \pm 5 mm of the triggering points (or until touching the phantom) is included for back side and each applicable edge per Step i) in Section 6.2 of the KDB. The technical descriptions in the filing contain the complete set of triggering data required by Section 6 of FCC KDB Publication 616217 D04v01r02.

To ensure all production units are compliant, it is necessary to test SAR at a distance 1 mm less than the smallest distance between the device and SAR phantom (determined from the sensor triggering tests according to FCC KDB 616217 D04v01r02) with the device at the maximum output power (without power reduction). These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom (at the reduced output power level).

The operational description contains information explaining how this device remains compliant in the event of a sensor malfunction.

FCC ID: A3LSMP580	FOTEST INCREMENT LABORATERY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
06/27/2016	Portable Tablet			Page 1 of 2

Back Side

Moving device toward the phantom:

	KDB 616217 6.2.f M easured Power [dBm]											
Distance[mm]	13	12	11	10	9	8	7	6	5	4	3	
802.11b (excl. ch.12-13)	18.30	18.12	18.22	18.15	18.31	15.20	15.10	15.34	15.45	15.37	15.14	
802.11g (excl. ch.12-13)	17.23	17.11	17.21	17.39	17.17	15.29	15.13	15.44	15.16	15.21	15.10	
802.11a	14.22	14.15	14.40	14.44	14.20	11.29	11.44	11.33	11.10	11.20	11.33	
802.11n/ac (5GHz, 20M Hz BW)	14.10	14.40	14.32	14.36	14.41	11.25	11.28	11.34	11.32	11.12	11.34	
802.11n/ac (5GHz, 40MHz BW)	12.24	12.43	12.29	12.28	12.16	11.24	11.19	11.20	11.42	11.16	11.15	

Moving device away from the phantom:

	KDB 616217 6.2.h Measured Power [dBm]											
Distance[mm]	13	12	11	10	9	8	7	6	5	4	3	
802.11b (excl. ch.12-13)	18.10	18.41	18.43	18.33	18.14	15.30	15.33	15.26	15.29	15.25	15.32	
802.11g (excl. ch.12-13)	17.44	17.44	17.15	17.31	17.40	15.20	15.26	15.32	15.29	15.33	15.29	
802.11a	14.17	14.16	14.13	14.22	14.19	11.37	11.40	11.35	11.27	11.31	11.35	
802.11n/ac (5GHz, 20M Hz BW)	14.33	14.25	14.10	14.17	14.31	11.15	11.40	11.19	11.35	11.35	11.34	
802.11n/ac (5GHz, 40MHz BW)	12.22	12.22	12.23	12.29	12.19	11.14	11.23	11.19	11.36	11.26	11.38	

Based on the most conservative measured triggering distance of 8 mm, additional SAR measurements were required at 7 mm from the back side.

Top Edge

Moving device toward the phantom:

KDB 616217 6.2.f Measured Power [dBm]											
Distance[mm]	10	9	8	7	6	5	4	3	2	1	0
802.11b (excl. ch.12-13)	18.11	18.19	18.34	18.43	18.10	15.27	15.43	15.44	15.43	15.29	15.11
802.11g (excl. ch.12-13)	17.35	17.13	17.41	17.17	17.14	15.20	15.36	15.26	15.26	15.32	15.43
802.11a	14.13	14.10	14.23	14.36	14.18	11.16	11.36	11.21	11.13	11.28	11.25
802.11n/ac (5GHz, 20M Hz BW)	14.12	14.10	14.29	14.27	14.24	11.45	11.26	11.40	11.38	11.28	11.16
802.11n/ac (5GHz, 40M Hz BW)	12.37	12.23	12.30	12.43	12.42	11.13	11.43	11.10	11.36	11.32	11.43

Moving device away from the phantom:

KDB 616217 6.2.h Measured Power [dBm]											
Distance[mm]	10	9	8	7	6	5	4	3	2	1	0
802.11b (excl. ch.12-13)	18.43	18.11	18.11	18.14	18.14	15.18	15.33	15.36	15.14	15.23	15.41
802.11g (excl. ch.12-13)	17.31	17.29	17.18	17.28	17.11	15.14	15.13	15.17	15.10	15.36	15.35
802.11a	14.32	14.40	14.27	14.15	14.33	11.10	11.16	11.25	11.31	11.41	11.39
802.11n/ac (5GHz, 20M Hz BW)	14.16	14.22	14.24	14.19	14.37	11.24	11.16	11.37	11.31	11.18	11.29
802.11n/ac (5GHz, 40M Hz BW)	12.30	12.13	12.34	12.22	12.16	11.17	11.40	11.16	11.41	11.39	11.37

Based on the most conservative measured triggering distance of 5 mm, additional SAR measurements were required at 4 mm from the top edge.

FCC ID: A3LSMP580	SECTEST SECURITIES INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
06/27/2016	Portable Tablet			Page 2 of 2