7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea Date of Testing: 08/17/15-09/18/15 Test Site/Location:

PCTEST Lab, Columbia, MD, USA **Document Serial No.:**

0Y1508201570-R1.A3L

FCC ID: A3LSMG928T

APPLICANT: SAMSUNG ELECTRONICS, CO. LTD.

DUT Type: Portable Handset

Application Type: Class II Permissive change

FCC Rule Part(s):CFR §2.1093Model(s):SM-G928TOriginal Grant Date:07/16/2015

Permissive Change(s): Adding Wireless Charging Battery Cover

Equipment	Equipment Band & Mode	Tx Frequency	SAR			
Class		TXTTEQUENCY	1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)	10 gm Phablet (W/kg)
PCE	GSWGPRS/EDGE 850	824.20 - 848.80 MHz				
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz				
PCE	UMTS 850	826.40 - 846.60 MHz				
PCE	UMTS 1750	1712.4 - 1752.5 MHz				
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.14	0.24	0.55	2.92
PCE	LTE Band 12	699.7 - 715.3 MHz				
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz				
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz				
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz				
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.23	< 0.1	0.10	
NII	U-NII-1	5180 - 5240 MHz				
NII	U-NII-2A	5260 - 5320 MHz	0.45	< 0.1	.04	0.52
NII	U-NII-2C	5500 - 5720 MHz	0.45	< 0.1	< 0.1 < 0.1	0.52
NII	U-NII-3	5745 - 5825 MHz				
DSS/DTS	Bluetooth	2402 - 2480 MHz		N	/A	

Note: This revised Test Report (S/N: 0Y1508201570-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

Note: The table above shows the maximum SAR data for the device evaluated with the additional accessory only and may not represent the maximum SAR values for other use conditions without the accessory. Please refer to RF Exposure Technical Report S/N: 0Y1506101142-R1.A3L for original compliance evaluation.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.4 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: A3LSMG928T	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 4 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 1 of 24

TABLE OF CONTENTS

1	DEVICE UNDER TEST	3
2	INTRODUCTION	5
3	DOSIMETRIC ASSESSMENT	6
4	DEFINITION OF REFERENCE POINTS	7
5	TEST CONFIGURATION POSITIONS FOR HANDSETS	8
6	RF EXPOSURE LIMITS	11
7	SYSTEM VERIFICATION	12
8	SAR DATA SUMMARY	14
9	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	17
10	SAR MEASUREMENT VARIABILITY	18
11	EQUIPMENT LIST	19
12	MEASUREMENT UNCERTAINTIES	20
13	CONCLUSION	22
14	REFERENCES	23

FCC ID: A3LSMG928T	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 2 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 2 of 24

1.1 **Device Overview**

		1
Band & Mode	Operating Modes	Tx Frequency
GSWGPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSWGPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.5 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
ANT+	Data	2402 - 2480 MHz
MST	Data	1 - 8.3 kHz

Note: This permissive change is to reflect the addition of the wireless charging battery cover only. There are no changes made to the host device - all transmission modes/bands, output power levels, antenna locations, and simultaneous transmission scenarios remain identical to the original certification.

1.2 **Wireless Charging Battery Cover**

This DUT may be used with an optional wireless charging battery cover that is used on the back of the device. Per FCC KDB Publication 648474 D04v01r02 and April 2014 TCB Workshop slides, SAR with the additional wireless charging cover was measured for the configuration with the highest reported SAR (amongst all modes) for each frequency band and each exposure condition. SAR tests were additionally performed for any test configurations in the original equipment authorization with 1g SAR >1.2 W/kg or 10g SAR > 3.0 W/kg. In addition, SAR measurements without the accessory were repeated to confirm the host test samples produced same range of SAR as in the original filing.

1.3 **SAR Evaluation Exclusion**

Per FCC Guidance and FCC KDB Publication 680106 D01, RF exposure for the portable wireless charging operations due to the cover was evaluated using MPE to confirm numerical SAR evaluation exclusion. Since the field strength levels were < 25% of the MPE limit ~ 5 cm, no numerical SAR analysis was required.

1.4 **Guidance Applied**

- IEEE 1528-2003
- FCC KDB Publication 941225 D01v03, D05v02r03, D05Av01, D06v02 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01V02r01 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05r02 (General SAR Guidance)

FCC ID: A3LSMG928T	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 3 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 3 01 24

- FCC KDB Publication 865664 D01v01r03, D02v01r01 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D03-D04 (Phablet Procedures, Wireless Charging Cover)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- April 2014 TCB Workshop Notes (Wireless Charging Cover)

1.5 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

Mode	Serial Number
GSM/GPRS/EDGE 850	95B11
GSWGPRS/EDGE 1900	95B11
UMTS 850	95BE8
UMTS 1750	94D94, 95B11
UMTS 1900	95BE8, 95BDC
LTE Band 12	95C05
LTE Band 5 (Cell)	95C05
LTE Band 4 (AWS)	95C05
LTE Band 2 (PCS)	95C05
2.4 GHz WLAN	95BE4, 95C04
5 GHz WLAN	95BE4

FCC ID: A3LSMG928T	PCTEST' ***ORIENTED EADORATORY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 4 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 4 of 24

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

= mass density of the tissue-simulating material (kg/m³)

Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMG928T	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo E of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 5 of 24

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 3-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

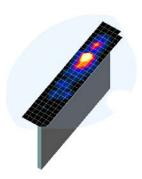


Figure 1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01*

				Maximum Zoom Scan Spatial Resolution (mm)		
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	Gi	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMG928T	PCTEST	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga C of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Page 6 of 24

4 DEFINITION OF REFERENCE POINTS

4.1 EAR REFERENCE POINT

Figure 3 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 2. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

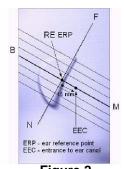


Figure 2
Close-Up Side view
of ERP

4.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 4). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 3 Front, back and side view of SAM Twin Phantom

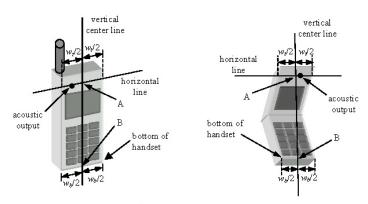


Figure 4
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMG928T	PCTEST'	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 7 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Page 7 of 24

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

5.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 5 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6).

5.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6).

FCC ID: A3LSMG928T	PCTEST SHOULD BE SEED AND THE STATE OF THE S	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 0 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Page 8 of 24

Figure 6 Front, Side and Top View of Ear/15° Tilt Position

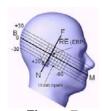


Figure 7 Side view w/ relevant markings

5.4 **Body-Worn Accessory Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 8). Per FCC KDB Publication 648474 D04v01. Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such

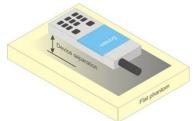


Figure 8 Sample Body-Worn Diagram

configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.5 **Extremity Exposure Configurations**

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v05 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v05, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of

FCC ID: A3LSMG928T	D: A3LSMG928T	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 9 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 9 01 24

handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

5.6 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02 where SAR test considerations for handsets $(L \times W \ge 9 \text{ cm } \times 5 \text{ cm})$ are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

5.7 **Additional Test Positions due to Proximity Conditions**

This device uses a sensor to reduce output powers in phablet (hand-held) use conditions.

When the sensor detects a user is touching the device on or near to the antenna the device reduces the maximum allowed output power However, the proximity sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, an additional exposure condition is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level.

FCC KDB 616217 D04 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional exposure conditions. The smallest separation distance determined by the sensor triggering and sensor coverage for each applicable edge, minus 1 mm, was used as the test separation distance for SAR testing.

The proximity sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions.

5.8 **Phablet Configurations**

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC minitablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04 v01r01DR04 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode scaled to the maximum output power (including tolerance) is 1-g SAR > 1.2 W/kg.

FCC ID: A3LSMG928T	A3LSMG928T	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 10 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 10 01 24

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS											
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)									
Peak Spatial Average SAR Head	1.6	8.0									
Whole Body SAR	0.08	0.4									
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20									

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMG928T	A3LSMG928T	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 11 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 11 of 24

7 SYSTEM VERIFICATION

7.1 Tissue Verification

Table 7-1
Measured Tissue Properties

			Wicasure	u lissue r	operties				
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	%devε
			700	0.860	41.491	0.889	42.201	-3.26%	-1.68%
8/20/2015	750H	21.8	710	0.871	41.264	0.890	42.149	-2.13%	-2.10%
0/20/2013	73011	21.0	740	0.895	40.944	0.893	41.994	0.22%	-2.50%
			755	0.910	40.688	0.894	41.916	1.79%	-2.93%
			820	0.905	42.292	0.899	41.578	0.67%	1.72%
8/20/2015	835H	22.5	835	0.920	42.100	0.900	41.500	2.22%	1.45%
			850	0.935	41.916	0.916	41.500	2.07%	1.00%
			1710	1.341	40.341	1.348	40.142	-0.52%	0.50%
8/17/2015	1750H	22.2	1750	1.380	40.189	1.371	40.079	0.66%	0.27%
			1790	1.429	40.024	1.394	40.016	2.51%	0.02%
			1850	1.379	40.031	1.400	40.000	-1.50%	0.08%
8/20/2015	1900H	23.2	1880	1.408	39.897	1.400	40.000	0.57%	-0.26%
			1910	1.439	39.816	1.400	40.000	2.79%	-0.46%
			2400	1.819	38.628	1.756	39.289	3.59%	-1.68%
8/22/2015	2400H	23.4	2450	1.874	38.403	1.800	39.200	4.11%	-2.03%
			2500	1.932	38.197	1.855	39.136	4.15%	-2.40%
09/18/2015	5200H-5800H	22.2	5500	4.728	34.887	4.963	35.643	-4.74%	-2.12%
			700	0.918	55.858	0.959	55.726	-4.28%	0.24%
8/20/2015	750B	00.0	710	0.928	55.731	0.960	55.687	-3.33%	0.08%
8/20/2015	/308	22.3	740	0.955	55.367	0.963	55.570	-0.83%	-0.37%
			755	0.971	55.315	0.964	55.512	0.73%	-0.35%
			820	0.997	52.904	0.969	55.258	2.89%	-4.26%
8/20/2015	835B	23.0	835	1.010	52.693	0.970	55.200	4.12%	-4.54%
			850	1.029	52.519	0.988	55.154	4.15%	-4.78%
			1710	1.433	52.690	1.463	53.537	-2.05%	-1.58%
8/17/2015	1750B	22.2	1750	1.479	52.542	1.488	53.432	-0.60%	-1.67%
			1790	1.526	52.399	1.514	53.326	0.79%	-1.74%
			1710	1.476	52.094	1.463	53.537	0.89%	-2.70%
8/26/2015	1750B	21.8	1750	1.521	51.948	1.488	53.432	2.22%	-2.78%
			1790	1.564	51.770	1.514	53.326	3.30%	-2.92%
			1850	1.510	52.455	1.520	53.300	-0.66%	-1.59%
8/19/2015	1900B	22.0	1880	1.543	52.352	1.520	53.300	1.51%	-1.78%
			1910	1.579	52.258	1.520	53.300	3.88%	-1.95%
			2400	1.960	51.584	1.902	52.767	3.05%	-2.24%
8/22/2015	2400B	21.8	2450	2.026	51.366	1.950	52.700	3.90%	-2.53%
			2500	2.096	51.168	2.021	52.636	3.71%	-2.79%
0/04/2045	ESOOD ESCAD	22.0	5785	5.968	46.114	5.982	48.220	-0.23%	-4.37%
8/24/2015	5200B-5800B	23.0	5800	6.023	46.178	6.000	48.200	0.38%	-4.20%
00/44/0045	E200D 50005	24.4	5300	5.386	47.039	5.416	48.879	-0.55%	-3.76%
09/14/2015	5200B-5800B	21.4	5320	5.456	46.980	5.439	48.851	0.31%	-3.83%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMG928T	PCTEST - INCIDENTAL DAD AND THE COLUMN TO THE COLUMN TH	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 12 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Page 12 of 24

7.2 **Test System Verification**

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 7-2

	System Verification Results – 1g														
						system Ve									
			-		TA	RGET & M	EASURE)			-				
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)			
В	750	HEAD	08/20/2015	24.6	22.7	0.200	1046	3334	1.640	8.040	8.200	1.99%			
J	835	HEAD	08/20/2015	22.0	22.5	0.200	4d119	3319	1.800	9.380	9.000	-4.05%			
К	1750	HEAD	08/17/2015	23.0	22.2	0.100	1051	3288	3.680	36.200	36.800	1.66%			
J	1900	HEAD	08/20/2015	21.8	22.3	0.100	5d141	3319	3.940	39.900	39.400	-1.25%			
J	2450	HEAD	08/22/2015	22.0	22.5	0.100	882	3319	5.200	52.300	52.000	-0.57%			
D	5500	HEAD	09/18/2015	23.5	22.2	0.050	1057	7357	4.200	84.300	84.000	-0.36%			
E	750	BODY	08/20/2015	23.0	22.3	0.200	1003	3332	1.720	8.460	8.600	1.65%			
В	835	BODY	08/20/2015	23.9	23.2	0.200	4d132	3334	1.970	9.140	9.850	7.77%			
1	1750	BODY	08/17/2015	23.3	22.0	0.100	1051	3213	3.710	37.100	37.100	0.00%			
К	1900	BODY	08/19/2015	23.0	22.0	0.100	5d141	3288	3.900	40.000	39.000	-2.50%			
G	2450	BODY	08/22/2015	21.9	21.8	0.100	882	3318	5.380	50.700	53.800	6.11%			
Α	5800	BODY	08/24/2015	23.2	23.0	0.050	1191	3914	3.620	78.000	72.400	-7.18%			

Table 7-3 System Verification Results - 10a

_		System vermuation results – rog														
	System Verification TARGET & MEASURED															
ş	SAR System # Tissue Frequency (MHz) Tissue Date: Amb. Temp (°C) Temp Temp Temp Temp Temp Temp Temp Temp												Deviation _{10g} (%)			
	O	1750	BODY	08/26/2015	23.7	21.7	0.100	1008	3333	2.090	20.400	20.900	2.45%			
Ī	K	1900	BODY	08/19/2015	23.0	22.0	0.100	5d141	3288	2.040	21.200	20.400	-3.77%			
ſ	Α	5300	BODY	09/14/2015	23.5	21.7	0.050	1120	3914	1.090	21.100	21.800	3.32%			

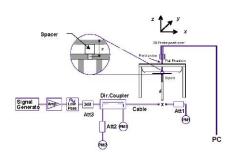


Figure 9 **System Verification Setup Diagram**

Figure 10 **System Verification Setup Photo**

FCC ID: A3LSMG928T	PCTEST SECULIARIES LABORATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 12 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Page 13 of 24

8.1 Standalone Head SAR Data

Table 8-1 PCE Head SAR

								MEA	SURE	MENT	RESUL	TS									
F	FREQUENCY MHz Ch.		Mode/Band	Service/ Modulation	LTE Bandwidth [MHz]		Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	RB Size	RB Offset	Device Serial Number	Duty Cycle	Accessory SAR (1g)	Scaling Factor	Accessroy Scaled SAR (1g)		Re-Verified Scaled SAR	
MHz					[2]	[dBm]		[ub]								(W/kg)		(W/kg)	W/kg	W/kg	
836.60	190	Mid	GSM 850	GSM	N/A	33.5	33.49	-0.04	N/A	Right	Cheek	N/A	N/A	95B11	1:8.3	0.112	1.002	0.112	0.208	0.199	A1
1880.00	9400	Mid	UMTS 1900	RMC	N/A	24.5	23.24	0.08	N/A	Left	Cheek	N/A	N/A	95BE8	1:1	0.046	1.337	0.062	0.143	0.132	A2
707.50	23095	Mid	LTE Band 12	QPSK	10	24.8	24.50	0.00	0	Right	Cheek	1	0	95C05	1:1	0.086	1.072	0.092	0.137	0.131	A3
1732.50 20175 Mid LTE Band 4 (AWS) QPSK 20 24.5 23.80 0.00 0									0	Left	Cheek	1	50	95C05	1:1	0.120	1.175	0.141	0.186	0.179	A4
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population															Head .6 W/kg (m/ eraged over 1					

Table 8-2 DTS Head SAR Data

									MEASU	JREMEI	NT RESU	ILTS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Power	Conducted Power [dBm]	Power Drift [dB]	Side		Antenna Config.	Device Serial Number	Data Rate (Mbps)	Duty Cycle (%)	Accessory SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty	Accessory Scaled SAR (1g)	Original Scaled SAR	Re-Verified Scaled SAR	Plot #
MHz	Ch.				[dBm]	[dbm]	[ub]				Number	(MDPS)		(W/kg)	(FOW ell)	Cycle)	(W/kg)	W/kg	W/kg	
2462	11	802.11b	DSSS	22	14.5	14.12	0.10	Right	Cheek	1	95BE4	1	99.7	0.206	1.091	1.003	0.226	0.426	0.429	A5
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Head						
	Spatial Peak							1.6 W/kg (mW/g)												
	Uncontrolled Exposure/General Population							averaged over 1 gram												

Table 8-3 NII Head SAR Data

											// \li \ _									
									MEASU	REME	NT RESUL	TS								
FREQU	Mode Service Bandwidth Allowed Pov					Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Duty Cycle (%)	Accessory SAR (1g)	ractor	Scaling Factor (Duty Cycle)	Accessory Scaled SAR (1g)	Original Scaled SAR	Re-Verified Scaled SAR	Plot #
MHz	Ch.				Power (abin)	[dbm]								(W/kg)	(Power)		(W/kg)	W/kg	W/kg	
5500	100	802.11a	OFDM	20	10.5	9.53	0.18	Right	Tilt	2	95BE4	6	99.4	0.361	1.250	1.006	0.454	0.488	0.434	A6
		ANSI /	IEEE C95.	1 1992 - SA	AFETY LIMIT									Hea	d					
			Spa	tial Peak										1.6 W/kg	(mW/g)					
		Uncontro	lled Expo	sure/Gene	ral Populatio	n								averaged ov	er 1 gram					

8.2 Standalone Body-Worn SAR Data

Table 8-4 PCE Body-Worn SAR Data

								ME	ASURI	EMENT	RESU	LTS									
FRE	EQUENCY		Mode	Service/ Modulation	LTE Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducte d Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	RB Size	RB Offset	Spacing	Side	Duty Cycle	Accessory SAR (1g)	Scaling Factor	Accessroy Scaled SAR (1g)		Re-Verified Scaled SAR	
MHz	CI	h.			` '											(W/kg)		(W/kg)	W/kg	W/kg	
1732.40	1412	Mid	UMTS 1750	RMC	N/A	24.5	23.44	-0.09	N/A	94D94	N/A	N/A	15 mm	back	1:1	0.190	1.276	0.242	1.054	1.125	A7
1880.00	9400	Mid	UMTS 1900	RMC	N/A	24.5	23.24	0.04	N/A	95BDC	N/A	N/A	15 mm	back	1:1	0.081	1.337	0.108	0.694	0.746	A8
707.50	23095	Mid	LTE Band 12	QPSK	10	24.8	24.50	0.08	0	95C05	1	0	15 mm	back	1:1	0.079	1.072	0.085	0.324	0.317	A9
836.50	20525	Mid	LTE Band 5 (Cell)	QPSK	10	24.8	24.48	0.00	0	95C05	1	0	15 mm	back	1:1	0.060	1.076	0.065	0.413	0.383	A10
			ANSI / IEE	E C95.1 1992 Spatial Po Exposure/G	eak											Body .6 W/kg (mV eraged over 1	-				

FCC ID: A3LSMG928T	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 44 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 14 of 24

Table 8-5 **DTS Body-Worn SAR Data**

									<u> </u>											
								N	MEASUR	EMENT	RESUL	.TS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Accessory SAR (1g)	Scaling Factor (Power)	Scaling Factor	Accessory Scaled SAR (1g)	Original Scaled SAR	Re-Verified Scaled SAR	Plot #
MHz	Ch.				[dBm]	[aBm]				Num ber			(%)	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	W/kg	W/kg	
2437	6	802.11b	DSSS	22	17.5	17.48	-0.07	10 mm	2	95C04	1	back	99.7	0.040	1.005	1.003	0.040	0.226	0.219	A11
		ANSI /	IEEE C95	5.1 1992 - SA	AFETY LIMIT									В	ody					
			Sp	atial Peak										1.6 W/k	g (mW/g)					
		Uncontro	olled Exp	osure/Gene	ral Population									averaged	over 1 gran	n				

Table 8-6 NII Body-Worn SAR Data

									MEA	SUREME	NT RES	ULTS								
FRE	UENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Accessory SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Accessory Scaled SAR (1g)	Original Scaled SAR	Re-Verified Scaled SAR	Plot #
MHz	Ch.				rower (ubin)								(70)	(W/kg)	(. 0)		(W/kg)	W/kg	W/kg	
5785	157	802.11a	OFDM	20	13.5	12.72	0.12	10 mm	2	95BE4	6	back	99.4	0.009	1.197	1.006	0.011	0.042	0.039	A12
		AN	SI / IEEE CS	5.1 1992 - :	SAFETY LIMIT	-									Body					
				patial Pea											W/kg (mV					
		Unco	ntrolled Ex	posure/Ger	neral Populati	on								avera	iged over 1	gram				

8.3 **Standalone Wireless Router SAR Data**

Table 8-7 **PCE Hotspot SAR Data**

									MEAS	SUREM	ENT RE	SULT	s									
FRI	EQUENCY		Mode	Service/ Modulation	LTE Bandwidth	Maximum Allowed	Conducted Power	Drift	MPR [dB]	De vice Serial	# of GPRS Slots	RB Size	RB Offset	Spacing	Side	Duty Cycle	Accessory SAR (1g)	Scaling Factor	Accessroy Scaled SAR (1g)	Original Scaled SAR	Re- Verified Scaled	Plot#
MHz	CI	٦.			[MHz]	Power [dBm]	[dBm]	[dB]		Number						-	(W/kg)		(W/kg)	W/kg	W/kg	
1880.00	661	Mid	GSM 1900	GPRS	N/A	27.0	25.59	0.09	N/A	95B11	3	N/A	N/A	10 mm	front	1:2.76	0.399	1.384	0.552	1.074	1.002	A13
836.60	4183	Mid	UMTS 850	RMC	N/A	24.8	23.96	-0.01	N/A	95BE8	N/A	N/A	N/A	10 mm	back	1:1	0.075	1.213	0.091	0.655	0.662	A14
1732.40	1412	Mid	UMTS 1750	RMC	N/A	20.5	19.98	0.17	N/A	95B11	N/A	N/A	N/A	10 mm	back	1:1	0.079	1.127	0.089	0.884	0.753	A15
707.50	23095	Mid	LTE Band 12	QPSK	10	24.8	24.50	0.02	0	95C05	N/A	1	0	10 mm	front	1:1	0.399	1.072	0.428	0.623	0.566	A16
			ANSI / IEE	E C95.1 19	92 - SAFET	Y LIMIT																
				Spatial	Peak																	
			Uncontrolle	d Exposure	/General P																	

Table 8-8 **DTS Hotspot SAR Data**

							_													
								М	EASUR	EMENT	RESUL	.TS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate (Mbps)	Side	Duty Cycle (%)	Accessory SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Accessory Scaled SAR (1g)	Original	Re-Verified Scaled SAR	
MHz	Ch.				rower (abili)	[ubiii]				Number			(70)	(W/kg)	(FOWEI)		(W/kg)	W/kg	W/kg	
2437	6	802.11b	DSSS	22	17.5	17.48	-0.05	10 mm	2	95C04	1	top	99.7	0.101	1.005	1.003	0.102	0.255	0.238	A17
		ANSI /	IEEE C9	5.1 1992 -	SAFETY LIMIT									ı	Body					
			s	patial Pea	k									1.6 W/	kg (mW/g)					
		Uncontro	lled Exp	osure/Ger	neral Populati	on								averaged	d over 1 gram					

Table 8-9 **NII Hotspot SAR Data**

									MEAS	UREM	ENT RES	SULTS	5							
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle	Accessory SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Accessory Scaled SAF (1g)	Original Scaled SAR	Re-Verified Scaled SAR	Plot #
MHz	Ch.				Power [dBill]	[ubiii]				Number			(%)	(W/kg)	(Fower)		(W/kg)	W/kg	W/kg	
5785	157	802.11a	OFDM	20	13.5	12.72	0.12	10 mm	2	95BE4	6	front	99.4	0.037	1.197	1.006	0.044	0.103	0.102	A18
		ANSI /	IEEE C9	5.1 1992 -	SAFETY LIMIT										Body					
			s	patial Pea	k									1.6 V	V/kg (mW/g)					Î
		Uncontro	lled Exp	osure/Ger	neral Population	on								averag	ed over 1 grar	n				

FCC ID: A3LSMG928T	PETEST SHOULD LADORATELY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 45 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 15 of 24

Standalone Phablet SAR Data 8.4

Table 8-10 PCE Phablet SAR

							ı	MEASU	REME	NT RESU	ILTS										
FRE	QUENCY		Mode	Power Drift [dB]	MPR [dB]	Device Serial	RB Size	RB Offset	Spacing	Side	Duty Cycle	Accessory SAR (1g)	Scaling Factor	Accessroy Scaled SAR (1g)	Original Scaled SAR	Re- Verified Scaled	Plot #				
MHz	Ch				[MHz]	Power [dBm]	[dBm]			Number						(W/kg)		(W/kg)	W/kg	W/kg	<u> </u>
1732.40	1412	Mid	UMTS 1750	RMC	N/A	24.5	23.44	0.18	N/A	94D94	N/A	N/A	4 mm	front	1:1	2.290	1.276	2.922	3.024	3.228	A19
1732.40	1412	Mid	UMTS 1750	RMC	N/A	24.5	23.44	0.07	N/A	94D94	N/A	N/A	4 mm	front	1:1	2.070	1.276	2.641	N/A	N/A	
1860.00	18700	Low	LTE Band 2 (PCS)	QPSK	20	24.5	23.72	-0.16	0	95C05	1	50	4 mm	front	1:1	1.140	1.197	1.365	3.208	2.801	A20
			ANSI / IE	EE C95.1 19	992 - SAFET	Y LIMIT										Phable	t				
				Spatia	l Peak											4.0 W/kg (m	W/g)				
			Uncontrolle	d Exposure	e/General P	opulation									ave	raged over 1	0 grams				ľ

Blue entry represents variability data.

Table 8-11 NII Phablet SAR

									ME	ASURE	MENT F	ESUL	.TS							
FREQ	IENCY	Mode	Service	Bandwidth [MHz]	Allowed	Conducted Power	Power Drift [dB]	Spacing	Antenna Config.	Serial	Data Rate (Mbps)	Side	Cycle	SAR (10g)	Scaling Factor	Scaling Factor (Duty Cycle)	Accessory SAR (1g)	Original Scaled SAR	Re-Verified Scaled SAR	Plot #
MHz	Ch.			. ,	Power [dBm]	[dBm]	. ,			Number	,		(%)	(W/kg)	, , , ,	(. , ., .,	(W/kg)	W/kg	W/kg	
5320	64	802.11a	OFDM	20	13.5	13.11	0.02	0 mm	2	95BE4	6	front	99.4	0.471	1.094	1.006	0.518	0.555	0.480	A21
		ANS	/ IEEE	C95.1 1992	- SAFETY LIN	шт									Phablet					
				Spatial P	eak									4	.0 W/kg (mW/	g)				Î
		Uncont	rolled E	xposure/G	eneral Popul	ation								aver	aged over 10 g	rams				

8.5 **SAR Test Notes**

- The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, and FCC KDB Publication 447498 D01v05.
- 2. Liquid tissue depth was at least 15.0 cm for all frequencies.
- The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 5. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance. A separation distance of 10 mm was used for WLAN body-worn measurements because it is more conservative.
- 6. Per FCC KDB Publication 648474 D04v01, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 7. Per FCC KDB 865664 D01 v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg for 1 g SAR results and greater than 2.0 W/kg for 10 g SAR results. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 10 for variability analysis.
- 8. Per FCC KDB Publication 648474 D04v01r02 and April 2014 TCB Workshop slides, SAR with the additional wireless charging cover was measured for the configuration with the highest reported SAR (amongst all modes) for each frequency band and each exposure condition. SAR tests were additionally performed for any test configurations in the original equipment authorization with 1g SAR >1.2 W/kg or 10g SAR > 3.0 W/kg.
- 9. To confirm any SAR variation was solely due to additional wireless charging cover, the SAR results of thehost device were re-verified against the results in the original filing. There were no noticeable changes in the SAR distributions between the host measured with wireless charging accessory attached and without the charging accessory.

FCC ID: A3LSMG928T	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 16 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Fage 10 01 24

9 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

9.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n/ac and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

9.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg.

9.3 Simultaneous Transmission Analysis

All SAR results with the wireless charging cover attached were less than the results without the additional accessory. Therefore, no further analysis was required to determine that the SAR limit would not be exceeded for all possible simultaneous transmission scenarios with the accessory. Please see the original compliance report for complete simultaneous transmission analysis for the device without the accessory.

FCC ID: A3LSMG928T	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 17 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 17 of 24

10 SAR MEASUREMENT VARIABILITY

10.1 **Measurement Variability**

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissueequivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

Per FCC KDB Publication 865664 D01v01. SAR measurement variability was assessed since measured 1g SAR for some frequency band was above 0.8 W/kg and measured 10g SAR for some frequency band was above 2.0 W/kg.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) 10g Phablet SAR measurement variability analysis applies a factor of 2.5 to the procedures outlined above.

Table 10-2 Phablet SAR Measurement Variability Results

EXTREMITY VARIABILITY RESULTS													
Band	FREQUE	NCY	Mode	Service	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1732.40	1412	UMTS 1750	RMC	front	4 mm	2.290	2.070	1.11	N/A	N/A	N/A	N/A
	ANS	I / IEEE	C95.1 1992 - SAFE	TY LIMIT					Pha	blet			
Spatial Peak							4.0 W/kg	g (mW/g)					
	Uncon	trolled I	Exposure/General	Population				av	eraged ov	er 10 grams			

10.2 **Measurement Uncertainty**

The measured 1g SAR was <1.5 W/kg and 10g SAR was <3.75 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: A3LSMG928T	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 19 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 18 of 24

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8648D	(9kHz-4GHz) Signal Generator	3/15/2015	Annual	3/15/2016	3629U00687
Agilent	8753E 8753ES	(30kHz-6GHz) Network Analyzer	12/30/2014	Annual	12/30/2015 3/12/2016	JP38020182 MY40000670
Agilent Agilent	8753ES 8753ES	S-Parameter Network Analyzer Network Analyzer	3/12/2015 3/20/2015	Annual Annual	3/12/2016	MY40000670 MY40001472
Agilent	8753ES 8753ES	S-Parameter Network Analyzer	1/20/2015	Annual	1/20/2016	US39170122
Agilent	8/53ES F4438C		3/13/2015	Annual	3/13/2016	MY42082385
Agilent	E4438C	ESG Vector Signal Generator ESG Vector Signal Generator	3/13/2015	Annual	3/13/2016	MY420825659
Agilent	E5515C		11/20/2014	Annual	11/20/2015	GB42361078
		Wireless Communications Test Set				GB42361078 GB43304278
Agilent Agilent	E5515C E8257D	Wireless Communications Test Set	5/22/2015 3/15/2015	Annual Annual	5/22/2016 3/15/2016	MY45470194
	N5182A	(250kHz-20GHz) Signal Generator		Annual	10/27/2015	MY45470194 MY47420603
Agilent	N5182A N9020A	MXG Vector Signal Generator	10/27/2014	Annual	10/27/2015	US46470561
Agilent Amplifier Research	15S1G6	MXA Signal Analyzer Amplifier	10/27/2014 CBT	Annuai N/A	10/2//2015 CRT	433971
Amplifier Research	1551G6 1551G6	Amplifier Amplifier	CBT	N/A N/A	CBT	433971
Anritsu	MA24106A	USB Power Sensor	5/29/2015	Annual	5/29/2016	1231535
	MA24106A MA24106A		, .,		5/29/2016	1231535
Anritsu Anritsu	MA24106A MA24106A	USB Power Sensor	5/29/2015 5/29/2015	Annual Annual	5/29/2016	1231538
	MA24106A MA24106A	USB Power Sensor USB Power Sensor	5/29/2015		5/29/2016	1244512
Anritsu Anritsu	MA24106A MA2411B	Pulse Power Sensor	8/3/2015	Annual Annual	8/3/2016	1126066
			0) 0) 2020		0, 0, 2020	
Anritsu	MA2411B	Pulse Power Sensor	11/17/2014	Annual	11/17/2015	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/13/2015	Annual	3/13/2016	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/13/2014	Annual	11/13/2015	1339018
Anritsu	ML2496A	Power Meter	3/13/2015	Annual	3/13/2016	1306009
Anritsu	ML2496A	Power Meter	3/13/2015	Annual	3/13/2016	1351001
Anritsu	MT8820C	Radio Communication Analyzer	7/24/2015	Annual	7/24/2016	6200901190
Anritsu	MT8820C	Radio Communication Analyzer	9/19/2014	Annual	9/19/2015	6201144418
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
Control Company	4040	Digital Thermometer	3/18/2015	Biennial	3/18/2017	150194895
Control Company	4040	Digital Thermometer	3/18/2015	Biennial	3/18/2017	150194896
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053029
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053036
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264162
Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264165
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Pasternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Pasternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Pasternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	6/3/2015	Annual	6/3/2016	109892
Rohde & Schwarz	CMU200	Base Station Simulator	12/4/2014	Annual	12/4/2015	833855/0010
Rohde & Schwarz	CMW500	Radio Communication Tester	10/3/2014	Annual	10/3/2015	100976
Rohde & Schwarz	CMW500		4/22/2015	Annual	4/22/2016	101699
	NC-100	Radio Communication Tester				
Seekonk		Torque Wrench	3/18/2014	Biennial	3/18/2016	22313
SPEAG	D1750V2	1750 MHz SAR Dipole	4/15/2015	Annual	4/15/2016	1051
SPEAG	D1765V2	1765 MHz SAR Dipole	5/13/2015	Annual	5/13/2016	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	4/14/2015	Annual	4/14/2016	5d141
SPEAG SPEAG	D2450V2 D5GHzV2	2450 MHz SAR Dipole	2/18/2015	Annual Annual	2/18/2016 1/21/2016	882 1057
SPEAG SPEAG	D5GHzV2 D5GHzV2	5 GHz SAR Dipole	-,,			1057 1120
		5 GHz SAR Dipole	2/17/2015	Annual	2/17/2016	
SPEAG	D5GHzV2	5 GHz SAR Dipole	9/25/2014	Annual	9/25/2015	1191
SPEAG	D750V3	750 MHz Dipole	1/16/2015	Annual	1/16/2016	1003
SPEAG	D750V3	750 MHz Dipole	2/19/2015	Annual	2/19/2016	1046
SPEAG	D835V2	835 MHz SAR Dipole	4/13/2015	Annual	4/13/2016	4d119
SPEAG	D835V2	835 MHz SAR Dipole	1/16/2015	Annual	1/16/2016	4d132
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2015	Annual	1/14/2016	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2014	Annual	9/17/2015	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/31/2014	Annual	10/31/2015	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/13/2015	Annual	3/13/2016	1334
0.00			9/18/2014	Annual	9/18/2015	1364
SPEAG	DAE4	Dasy Data Acquisition Electronics				1368
SPEAG SPEAG	DAE4	Dasy Data Acquisition Electronics	3/13/2015	Annual	3/13/2016	
SPEAG SPEAG SPEAG	DAE4 DAE4		3/13/2015 4/20/2015	Annual Annual	4/20/2016	1407
SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/13/2015 4/20/2015 10/23/2014	Annual Annual	4/20/2016 10/23/2015	1408
SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/13/2015 4/20/2015 10/23/2014 12/12/2014	Annual	4/20/2016 10/23/2015 12/12/2015	1408 1415
SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/13/2015 4/20/2015 10/23/2014	Annual Annual	4/20/2016 10/23/2015	1408
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/13/2015 4/20/2015 10/23/2014 12/12/2014	Annual Annual Annual	4/20/2016 10/23/2015 12/12/2015	1408 1415
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAK-3.5	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dielectric Assessment Kit	3/13/2015 4/20/2015 10/23/2014 12/12/2014 5/12/2015	Annual Annual Annual Annual	4/20/2016 10/23/2015 12/12/2015 5/12/2016	1408 1415 1070
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAK-3.5 DAK-3.5	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dielectric Assessment Kit Dielectric Assessment Kit	3/13/2015 4/20/2015 10/23/2014 12/12/2014 5/12/2015 10/21/2014	Annual Annual Annual Annual Annual	4/20/2016 10/23/2015 12/12/2015 5/12/2016 10/21/2015	1408 1415 1070 1091
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAK-3.5 DAK-3.5 ES3DV3	Dasy Data Acquisition Electronics Dielectric Assessment Kit Dielectric Assessment Kit SAR Probe	3/13/2015 4/20/2015 10/23/2014 12/12/2014 5/12/2015 10/21/2014 1/20/2015	Annual Annual Annual Annual Annual Annual Annual	4/20/2016 10/23/2015 12/12/2015 5/12/2016 10/21/2015 1/20/2016	1408 1415 1070 1091 3213
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAE4 DAE4 DAE5 DAE5 DAK-3.5 DAK-3.5 ES3DV3 ES3DV3 ES3DV3	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Delectric Assessment Ntt Dielectric Assessment Ntt Sak Probe SAR Probe SAR Probe	3/13/2015 4/20/2015 10/23/2014 12/12/2014 5/12/2015 10/21/2014 1/20/2015 9/24/2014 1/23/2015	Annual	4/20/2016 10/23/2015 12/12/2015 5/12/2016 10/21/2015 1/20/2016 9/24/2015 1/23/2016	1408 1415 1070 1091 3213 3288 3318
SPEAG	DAE4 DAE4 DAE4 DAE4 DAE5 DAK-3.5 DAK-3.5 ES3DV3 ES3DV3 ES3DV3 ES3DV3	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dispose Data Acquisition Electronics Dispose Dispose Data Acquisition Electronics Dispose Disp	3/13/2015 4/20/2015 10/23/2014 12/12/2014 5/12/2015 10/21/2015 10/21/2014 1/20/2015 9/24/2014 1/23/2015 3/19/2015	Annual	4/20/2016 10/23/2015 12/12/2015 5/12/2016 10/21/2016 1/20/2016 9/24/2015 1/23/2016 3/19/2016	1408 1415 1070 1091 3213 3288 3318 3319
SPEAG	DAE4 DAE4 DAE4 DAE4 DAK-3-5 DAK-3-5 DAK-3-5 ES30V3 ES30V3 ES30V3 ES30V3 ES30V3 ES30V3	Dasy Data Acquisition Electronics Dielectric Assessment Kit Dielectric Assessment Kit SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	3/13/2015 4/20/2015 10/23/2014 12/12/2014 5/12/2015 10/21/2014 1/20/2015 9/24/2014 1/23/2015 3/19/2015 9/18/2014	Annual	4/20/2016 10/23/2015 12/12/2015 5/12/2016 10/21/2015 1/20/2016 9/24/2015 1/23/2016 3/19/2016 9/18/2015	1408 1415 1070 1091 3213 3288 3318 3319 3332
SPEAG	DAE4 DAE4 DAE4 DAE4 DAE4 DAE5 DAE5 DAE5 DAE5 DAE5 ES3DV3 ES3DV3 ES3DV3 ES3DV3 ES3DV3 ES3DV3 ES3DV3 ES3DV3 ES3DV3	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dispectific Assessment Kit Dielectric Assessment Kit Dielectric Assessment Kit SAR Probe	3/13/2015 4/20/2015 10/23/2014 12/12/2014 5/12/2015 10/21/2014 1/20/2015 1/20/2015 9/24/2014 1/23/2015 3/19/2015 9/18/2014 10/24/2014	Annual	4/20/2016 10/23/2015 12/12/2015 5/12/2016 10/21/2015 1/20/2016 9/24/2015 1/23/2016 9/18/2015 10/24/2015	1408 1415 1070 1091 3213 3288 3318 3319 3332 3333
SPEAG	DAE4 DAE4 DAE4 DAE4 DAK-3-5 DAK-3-5 DAK-3-5 ES30V3 ES30V3 ES30V3 ES30V3 ES30V3 ES30V3	Dasy Data Acquisition Electronics Dielectric Assessment Kit Dielectric Assessment Kit SAR Probe SAR Probe SAR Probe SAR Probe SAR Probe	3/13/2015 4/20/2015 10/23/2014 12/12/2014 5/12/2015 10/21/2014 1/20/2015 9/24/2014 1/23/2015 3/19/2015 9/18/2014	Annual	4/20/2016 10/23/2015 12/12/2015 5/12/2016 10/21/2015 1/20/2016 9/24/2015 1/23/2016 3/19/2016 9/18/2015	1408 1415 1070 1091 3213 3288 3318 3319 3332

Note:

- CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- Each equipment item was used solely within its respective calibration period.

FCC ID: A3LSMG928T	PETEST SHOULD LADORATELY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 10 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 19 of 24

© 2015 PCTEST Engineering Laboratory, Inc.

12

MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

a	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		c _i	c _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.0	Ν	1	1.0	1.0	6.0	6.0	∞
Axial Is otropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemis hperical Is otropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	oc
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	oc
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	oc
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	œ
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	oc
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	×
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	-x
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	-x
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS			•	12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMG928T	PCTEST'	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 20 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Page 20 of 24

Applicable for frequencies up to 6 GHz.

a	b	С	d	e=	f	g	h =	i=	k
d	D	C	u		'	g			, K
				f(d,k)			c x f/e	c x g/e	
Uncertainty	1528	Tol.	Prob.		c _i	c _i	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
							(± %)	(± %)	\vdash
Measurement System	F 2.1			1	1.0	1.0			
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemis hperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	00
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ζ	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	oc
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Ν	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	oc
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	Ν	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMG928T	PCTEST SHOULD LABORATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 21 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Page 21 of 24

13 CONCLUSION

13.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMG928T	PCTEST SECULIARIES LABORATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 22 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		Page 22 of 24

14 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMG928T	PCTEST SHOULD LABORATORY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 23 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset		raye 23 01 24

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication248227 D01V02r01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMG928T	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 24 of 24
0Y1508201570-R1.A3L	08/17/15- 09/18/15	Portable Handset	Page 24 01 24

APPENDIX A: SAR TEST DATA

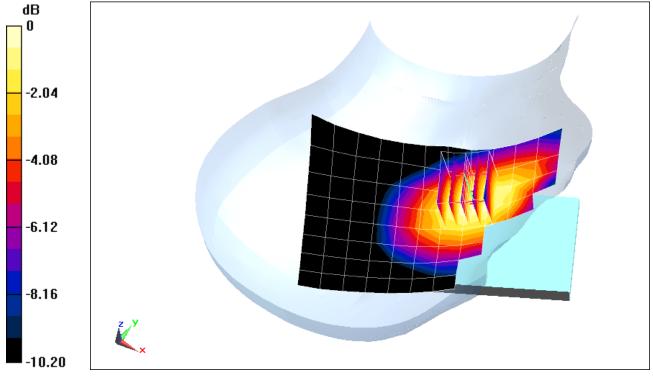
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95B11

Communication System: UID 0, GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.922 \text{ S/m}; \ \epsilon_r = 42.08; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-20-2015; Ambient Temp: 22.0°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(6.41, 6.41, 6.41); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GSM 850, Right Head, Cheek, Mid.ch, Wireless Charging Battery Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.40 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.144 W/kg

SAR(1 g) = 0.112 W/kg

0 dB = 0.123 W/kg = -9.10 dBW/kg

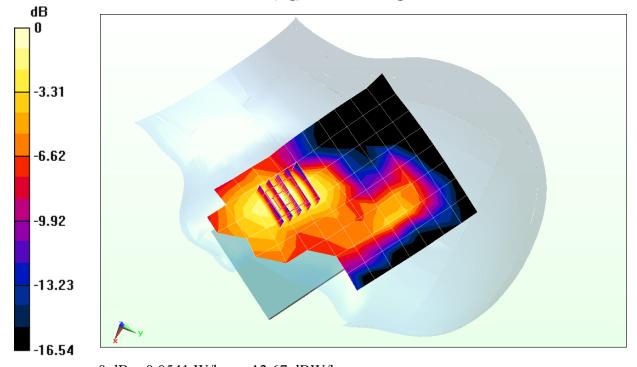
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95BE8

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.408 \text{ S/m}$; $\epsilon_r = 39.897$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-20-2015; Ambient Temp: 21.8°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3319; ConvF(5.1, 5.1, 5.1); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch, Wireless Charging Battery Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.001 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.0700 W/kg

SAR (1 g) = 0.0455 W/kg

0 dB = 0.0541 W/kg = -12.67 dBW/kg

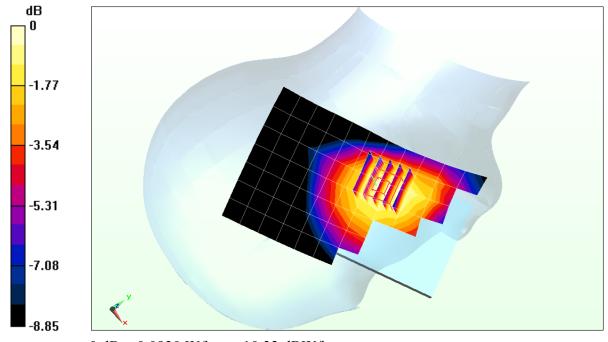
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95C05

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.868 \text{ S/m}; \ \epsilon_r = 41.321; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-20-2015; Ambient Temp: 24.6°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3334; ConvF(6.51, 6.51, 6.51); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: Sub Twin Sam v5.0; Type: QD000P40CD; Serial: TP:1626
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Wireless Charging Battery Cover


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.62 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR (1 g) = 0.086 W/kg

0 dB = 0.0930 W/kg = -10.32 dBW/kg

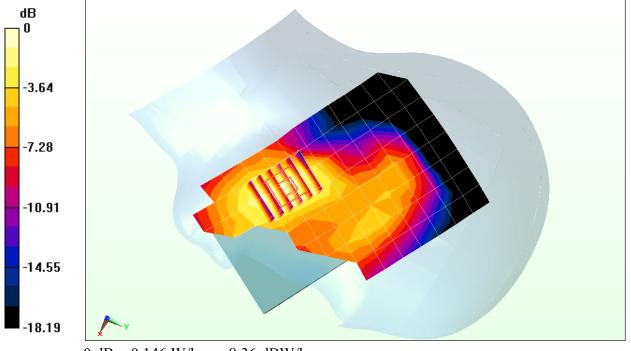
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95C05

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.363$ S/m; $\varepsilon_r = 40.255$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 08-17-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3288; ConvF(5.38, 5.38, 5.38); Calibrated: 9/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 9/18/2014
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset, Wireless Charging Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.10 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR (1 g) = 0.120 W/kg

0 dB = 0.146 W/kg = -8.36 dBW/kg

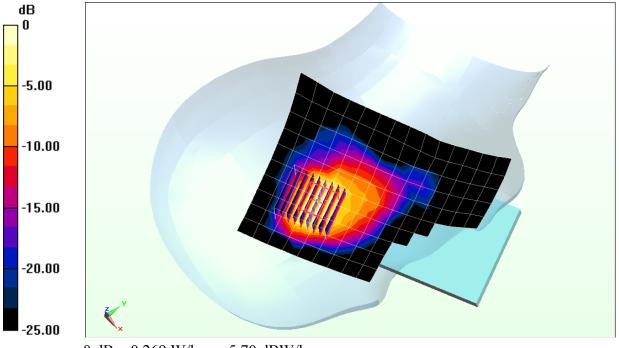
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95BE4

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.888 \text{ S/m}; \ \epsilon_r = 38.354; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-22-2015; Ambient Temp: 22.0°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(4.55, 4.55, 4.55); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 11, 1 Mbps, Antenna 1, Wireless Charging Battery Cover


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.728 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.460 W/kg

SAR (1 g) = 0.206 W/kg

0 dB = 0.269 W/kg = -5.70 dBW/kg

DUT: A3LSMG928T; Type: Portable Handset; Serial: 95BE4

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used:

f = 5500 MHz; σ = 4.728 S/m; ϵ_r = 34.887; ρ = 1000 kg/m³ Phantom section: Right Section

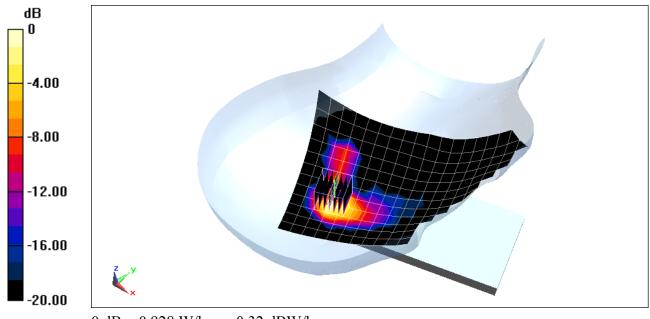
Test Date: 09-18-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7357; ConvF(4.7, 4.7, 4.7); Calibrated: 4/23/2015;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/13/2015

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Right Head, Tilt Ch 100, 6 Mbps, Antenna 2, Wireless Charging Battery Cover

Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 10.28 V/m; Power Drift = 0.1: dB Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.361 W/kg

0 dB = 0.928 W/kg = -0.32 dBW/kg

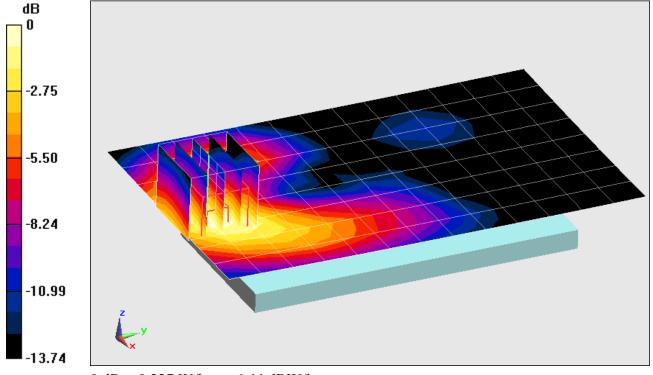
DUT: A3LSMG928T; Type: Portable Handset; Serial: 94D94

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.459 \text{ S/m}; \ \epsilon_r = 52.607; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-17-2015; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3213; ConvF(4.93, 4.93, 4.93); Calibrated: 1/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Body SAR, Back side, Mid.ch, Wireless Charging Battery Cover


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.83 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.299 W/kg

SAR(1 g) = 0.190 W/kg

DUT: A3LSMG928T; Type: Portable Handset; Serial: 95BDC

Communication System: UID 0, UMTS; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used:

f = 1880 MHz; σ = 1.543 S/m; ϵ_r = 52.352; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.5 cm

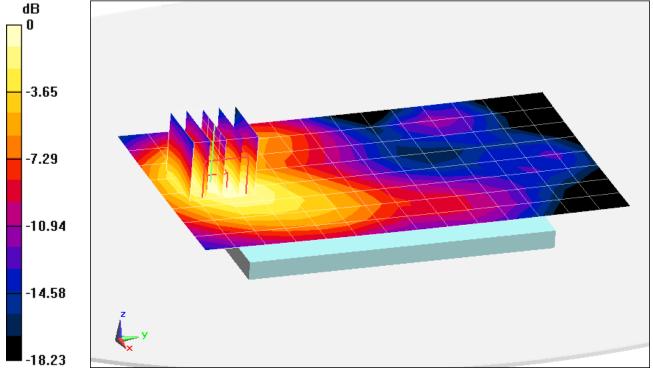
Test Date: 08-19-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/24/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 9/18/2014 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch, Wireless Charging Battery Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.575 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.081 W/kg

0 dB = 0.0968 W/kg = -10.14 dBW/kg

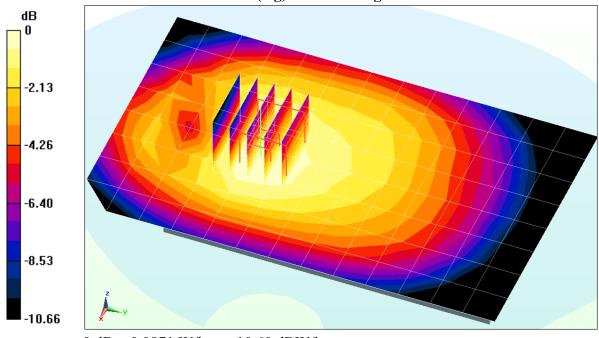
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95C05

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.925$ S/m; $\varepsilon_r = 55.763$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-20-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3332; ConvF(6.24, 6.24, 6.24); Calibrated: 9/18/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2014
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Wireless Charging Battery Cover


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.577 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.100 W/kg

SAR (1 g) = 0.079 W/kg

0 dB = 0.0871 W/kg = -10.60 dBW/kg

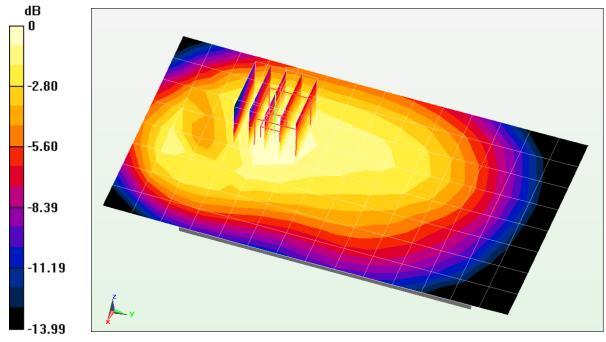
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95C05

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 850 Body; Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 1.012$ S/m; $\varepsilon_r = 52.676$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-20-2015; Ambient Temp: 23.9°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3334; ConvF(6.14, 6.14, 6.14); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Wireless Charging Battery Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.991 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.0800 W/kg

SAR (1 g) = 0.060 W/kg

0 dB = 0.0664 W/kg = -11.78 dBW/kg

DUT: A3LSMG928T; Type: Portable Handset; Serial: 95C04

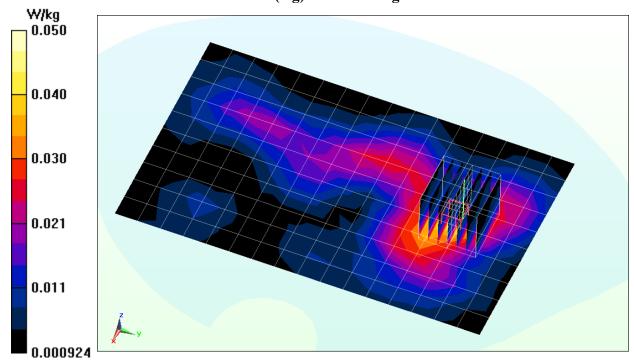
Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.009 \text{ S/m}; \ \epsilon_r = 51.423; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-22-2015; Ambient Temp: 21.9°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3318; ConvF(4.37, 4.37, 4.37); Calibrated: 1/23/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/14/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 06, 1 Mbps, Back Side, Antenna 2, Wireless Charging Battery Cover


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.639 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.0700 W/kg

SAR (1 g) = 0.040 W/kg

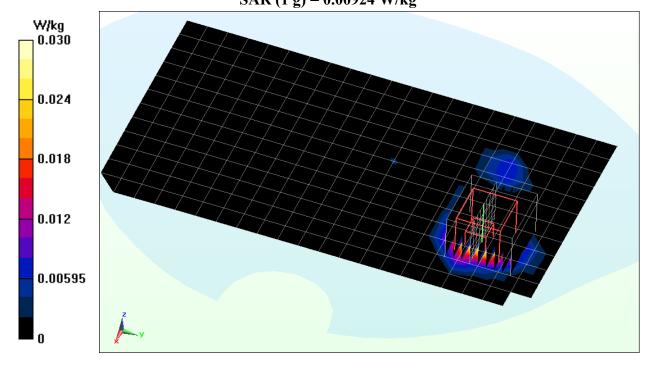
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95BE4

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: f = 5785 MHz; $\sigma = 5.968$ S/m; $\varepsilon_r = 46.114$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-24-2015; Ambient Temp: 23.2°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3914; ConvF(4.01, 4.01, 4.01); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-3, 20 MHz Bandwidth, Body SAR, Ch 157, 6 Mbps, Back Side, Antenna 2, Wireless Charging Battery Cover


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 1.161 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR (1 g) = 0.00924 W/kg

DUT: A3LSMG928T; Type: Portable Handset; Serial: 95B11

Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76

Medium: 1900 Body Medium parameters used:

f = 1880 MHz; σ = 1.543 S/m; $ε_r$ = 52.352; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-19-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

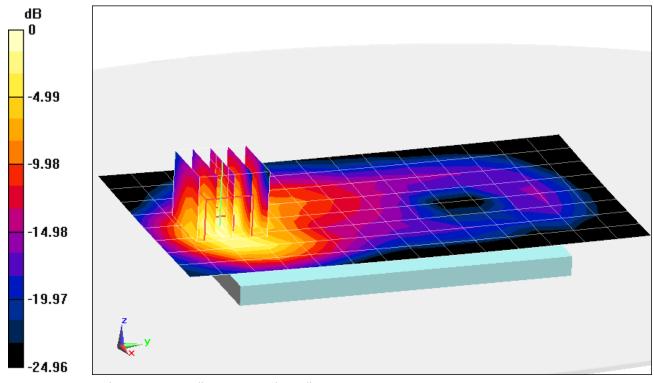
Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/24/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 9/18/2014

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Front side, Mid.ch, 3 Tx Slots, Wireless Charging Battery Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.96 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.751 W/kg

SAR(1 g) = 0.399 W/kg

0 dB = 0.537 W/kg = -2.70 dBW/kg

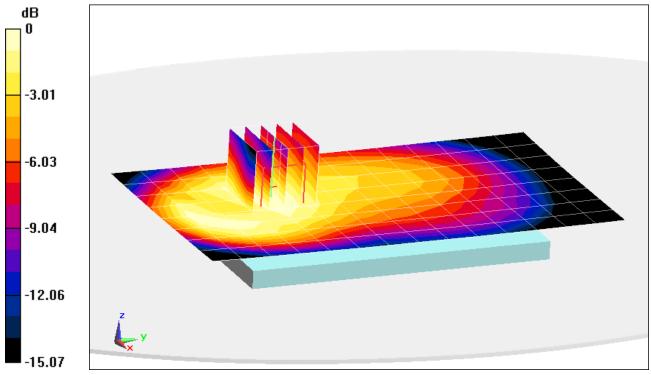
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95BE8

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 850 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 1.012 \text{ S/m}; \ \epsilon_r = 52.674; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-20-2015; Ambient Temp: 23.9°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3334; ConvF(6.14, 6.14, 6.14); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Back side, Mid.ch, Wireless Charging Battery Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.010 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.107 W/kg

SAR(1 g) = 0.075 W/kg

0 dB = 0.0839 W/kg = -10.76 dBW/kg

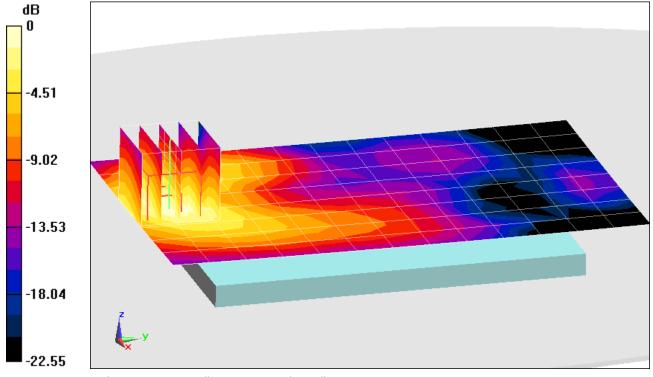
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95B11

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.459 \text{ S/m}; \ \epsilon_r = 52.607; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-17-2015; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3213; ConvF(4.93, 4.93, 4.93); Calibrated: 1/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Body SAR, Back side, Mid.ch, Wireless Charging Battery Cover


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.536 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.079 W/kg

0 dB = 0.0953 W/kg = -10.21 dBW/kg

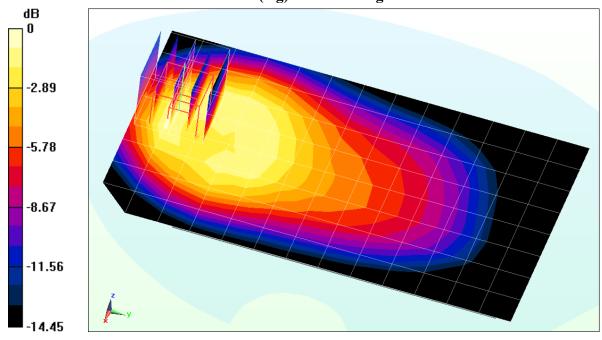
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95C05

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.925$ S/m; $\varepsilon_r = 55.763$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-20-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3332; ConvF(6.24, 6.24, 6.24); Calibrated: 9/18/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2014
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Front side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Wireless Charging Battery Cover


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.13 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.685 W/kg

SAR (1 g) = 0.399 W/kg

0 dB = 0.466 W/kg = -3.32 dBW/kg

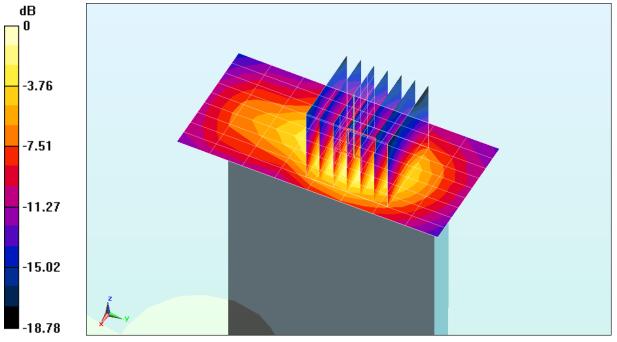
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95C04

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.009 \text{ S/m}; \ \epsilon_r = 51.423; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-22-2015; Ambient Temp: 21.9°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3318; ConvF(4.37, 4.37, 4.37); Calibrated: 1/23/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/14/2015
Phantom: SAM Front; Type: SAM; Serial: 1686
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 06, 1 Mbps, Top Edge, Antenna 2, Wireless Charging Battery Cover


Area Scan (10x9x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.545 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.198 W/kg

SAR (1 g) = 0.101 W/kg

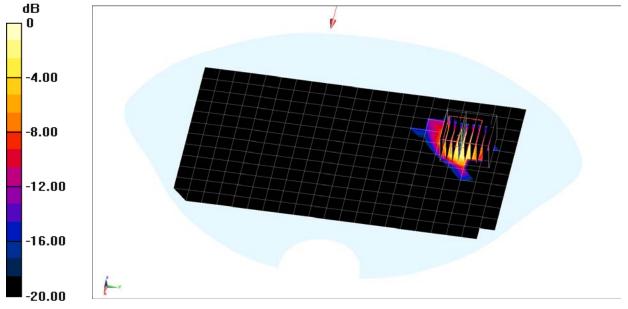
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95BE4

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5785 MHz; $\sigma = 5.968$ S/m; $\varepsilon_r = 46.114$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-24-2015; Ambient Temp: 23.2°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3914; ConvF(4.01, 4.01, 4.01); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-3, 20 MHz Bandwidth, Body SAR, Ch 157, 6 Mbps, Front Side, Antenna 2, Wireless Charging Battery Cover


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 2.054 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.259 W/kg

SAR (1 g) = 0.037 W/kg

0 dB = 0.123 W/kg = -9.10 dBW/kg

DUT: A3LSMG928T; Type: Portable Handset; Serial: 94D94

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: 1750 Body Medium parameters used:

f = 1732.4 MHz; σ = 1.501 S/m; $ε_r$ = 52.012; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.4 cm

Test Date: 08-26-2015; Ambient Temp: 23.7°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3333; ConvF(4.89, 4.89, 4.89); Calibrated: 10/24/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 10/23/2014

Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Phablet SAR, Front side, Mid ch, Wireless Charging Battery Cover


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.305 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 10.2 W/kg

SAR(10 g) = 2.29 W/kg

0 dB = 6.64 W/kg = 8.22 dBW/kg

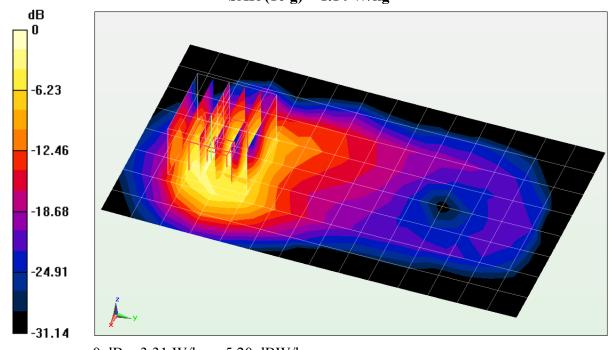
DUT: A3LSMG928T; Type: Portable Handset; Serial: 95C05

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.521$ S/m; $\varepsilon_r = 52.421$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.4 cm

Test Date: 08-19-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 9/18/2014
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Phablet SAR, Front side, Low.ch, QPSK, 20 MHz Bandwidth, 1 RB, 50 RB Offset, Wireless Charging Battery Cover


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 42.40 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 5.26 W/kg

SAR (10 g) = 1.14 W/kg

0 dB = 3.31 W/kg = 5.20 dBW/kg

DUT: A3LSMG928T; Type: Portable Handset; Serial: 95BE4

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5320 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used:

f = 5320 MHz; σ = 5.456 S/m; ϵ_r = 46.98; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 0.0 cm

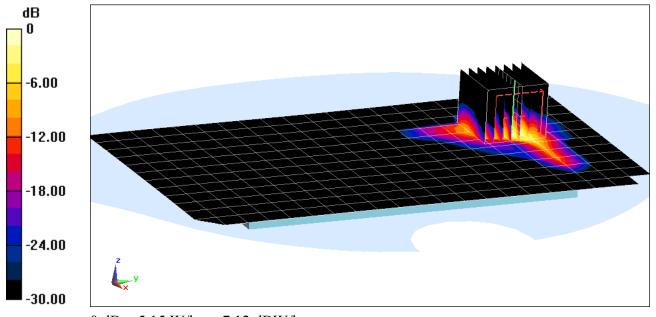
Test Date: 09-14-2015; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.33, 4.33, 4.33); Calibrated: 2/10/2015;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2, 20 MHz Bandwidth, Phablet SAR Ch 64, 6 Mbps, Front Side, Antenna 2, Wireless Charging Battery Cover


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm='I tcf gf 'Tc\q'306

Reference Value = 16.91 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 10.5 W/kg

SAR(10 g) = 0.471 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1046

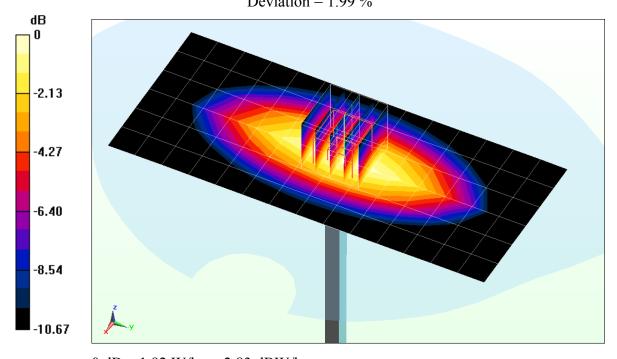
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.905$ S/m; $\epsilon_r = 40.773$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-20-2015; Ambient Temp: 24.6°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3334; ConvF(6.51, 6.51, 6.51); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 12/12/2014
Phantom: Sub Twin Sam v5.0; Type: QD000P40CD; Serial: TP:1626
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.45 W/kg

SAR (1 g) = 1.64 W/kg

Deviation = 1.99 %

0 dB = 1.92 W/kg = 2.83 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

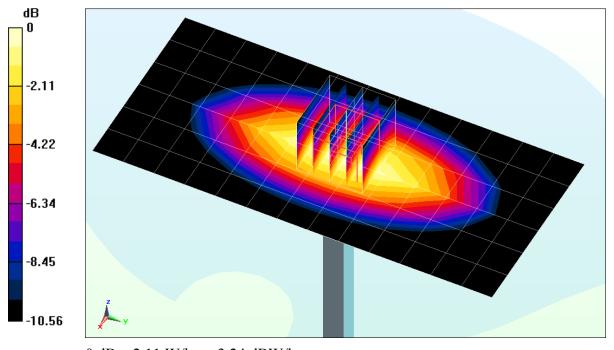
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-20-2015; Ambient Temp: 22.0°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(6.41, 6.41, 6.41); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.64 W/kg

SAR (1 g) = 1.8 W/kg

Deviation = -4.05 %

0 dB = 2.11 W/kg = 3.24 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

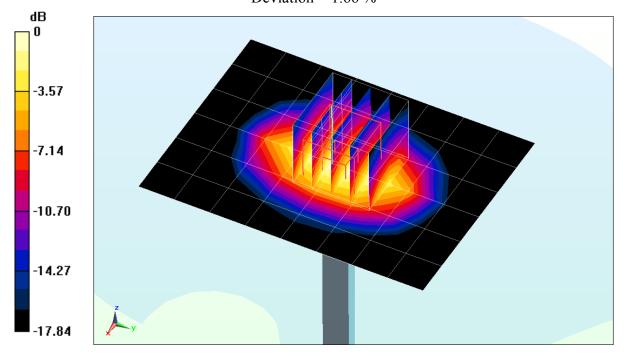
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 40.189$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-17-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3288; ConvF(5.38, 5.38, 5.38); Calibrated: 9/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 9/18/2014
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 6.69 W/kg

SAR (1 g) = 3.68 W/kg

Deviation = 1.66 %

0 dB = 4.60 W/kg = 6.63 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

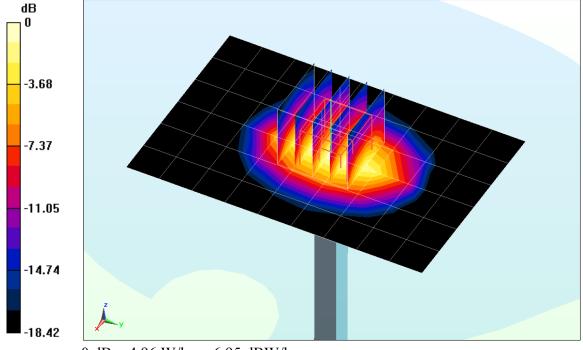
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.429 \text{ S/m}$; $\varepsilon_r = 39.843$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-20-2015; Ambient Temp: 21.8°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3319; ConvF(5.1, 5.1, 5.1); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 7.17 W/kg

SAR (1 g) = 3.94 W/kg

Deviation = -1.25%

0 dB = 4.96 W/kg = 6.95 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

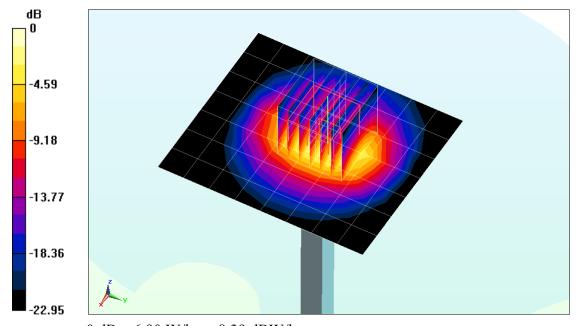
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.874$ S/m; $\epsilon_r = 38.403$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-22-2015; Ambient Temp: 22.0°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(4.55, 4.55, 4.55); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 10.9 W/kg

SAR (1 g) = 5.2 W/kg

Deviation = -0.57%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5 GHz Head Medium parameters used:

f = 5500 MHz; $\sigma = 4.728 \text{ S/m}$; $\varepsilon_r = 34.887$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-18-2015; Ambient Temp: 23.5°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7357; ConvF(4.7, 4.7, 4.7); Calibrated: 4/23/2015;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

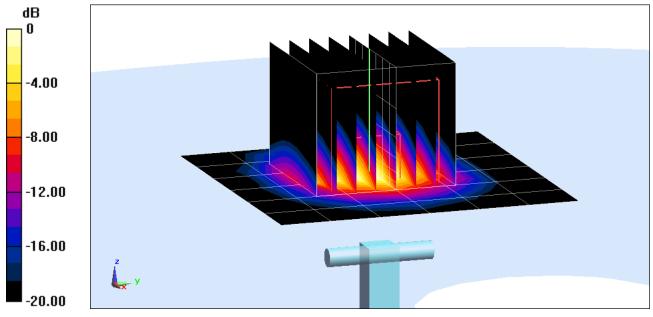
Electronics: DAE4 Sn1334; Calibrated: 3/13/2015

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5500 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 17 dBm (50 mW)

Peak SAR (extrapolated) = 18.0 W/kg

SAR(1 g) = 4.2 W/kg

Deviation = -0.36%

0 dB = 10.1 W/kg = 10.04 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.966$ S/m; $\varepsilon_r = 55.332$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

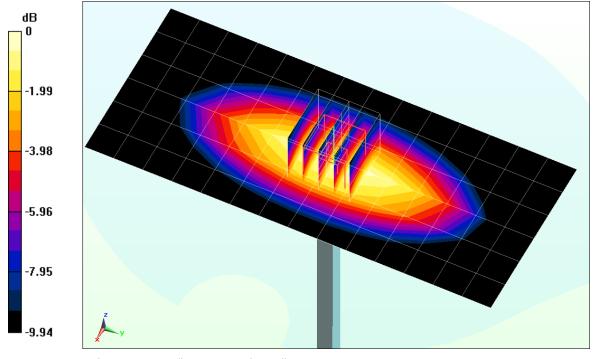
Test Date: 08-20-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3332; ConvF(6.24, 6.24, 6.24); Calibrated: 9/18/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2014
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.48 W/kg

SAR (1 g) = 1.72 W/kg

Deviation = 1.65%

0 dB = 2.00 W/kg = 3.01 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 850 Body; Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 52.693$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-20-2015; Ambient Temp: 23.9°C; Tissue Temp: 23.2°C

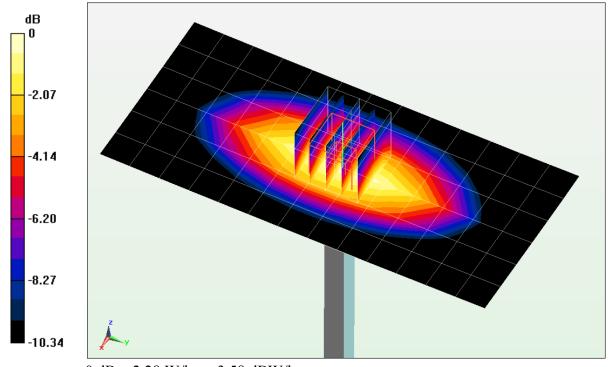
Probe: ES3DV3 - SN3334; ConvF(6.14, 6.14, 6.14); Calibrated: 12/16/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 12/12/2014

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1158

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 23.0 dBm (200 mW)

Peak SAR (extrapolated) = 2.88 W/kg

SAR (1 g) = 1.97 W/kg

Deviation = 7.77%

0 dB = 2.28 W/kg = 3.58 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: 1750 Body Medium parameters used:

f = 1750 MHz; σ = 1.479 S/m; $ε_r$ = 52.542; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-17-2015; Ambient Temp: 23.3°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3213; ConvF(4.93, 4.93, 4.93); Calibrated: 1/20/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection)

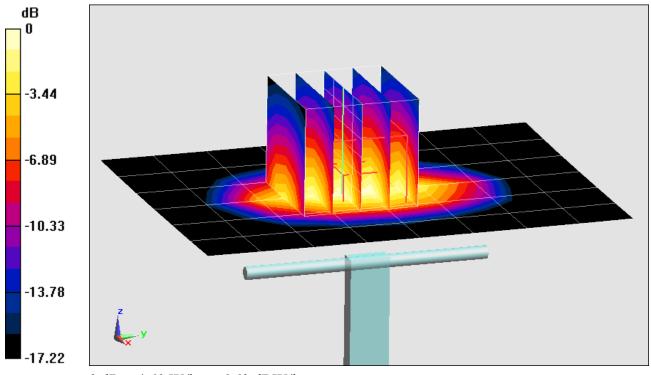
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015

Phantom: ELI Left v6.0; Type: QDOVA001BB; Serial: TP:1202

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 6.54 W/kg

SAR(1 g) = 3.71 W/kg

Deviation = 0.00%

0 dB = 4.60 W/kg = 6.63 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

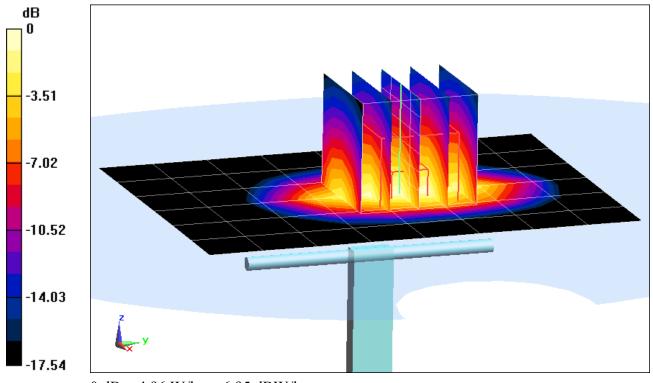
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.521 \text{ S/m}; \ \epsilon_r = 51.948; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-26-2015; Ambient Temp: 23.7°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3333; ConvF(4.89, 4.89, 4.89); Calibrated: 10/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 10/23/2014
Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 7.15 W/kg

SAR(10 g) = 2.09 W/kg

Deviation = 2.45%

0 dB = 4.96 W/kg = 6.95 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.567 \text{ S/m}$; $\varepsilon_r = 52.289$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

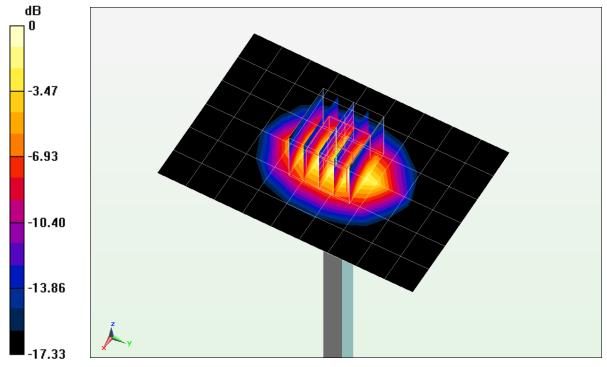
Test Date: 08-19-2015; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/24/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 9/18/2014
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 6.95 W/kg

SAR (1 g) = 3.9 W/kg; SAR (10 g) = 2.04 W/kg

Deviation (1 g) = -2.50%; Deviation (10 g) = -3.77%

0 dB = 4.93 W/kg = 6.93 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.026$ S/m; $\varepsilon_r = 51.366$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

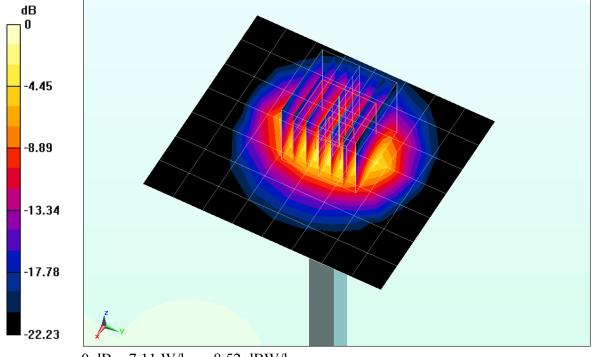
Test Date: 08-22-2015; Ambient Temp: 21.9°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3318; ConvF(4.37, 4.37, 4.37); Calibrated: 1/23/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/14/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 11.4 W/kg

SAR (1 g) = 5.38 W/kg

Deviation = 6.11%

0 dB = 7.11 W/kg = 8.52 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

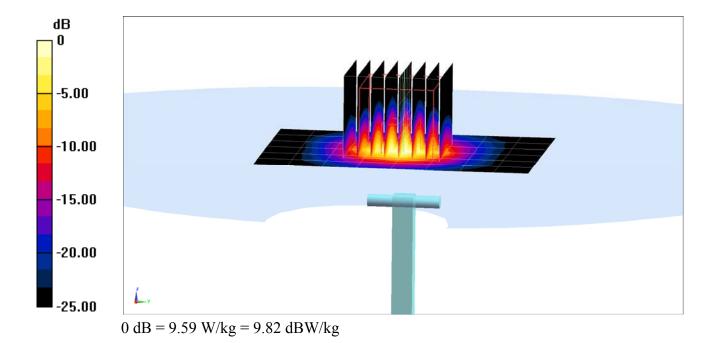
Communication System: UID 0, CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5300 MHz; $\sigma = 5.386$ S/m; $\varepsilon_r = 47.039$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-14-2015; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.33, 4.33, 4.33); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5300 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 17.0 dBm (50 mW)

Peak SAR (extrapolated) = 17.3 W/kg

SAR(10 g) = 1.09 W/kg

Deviation(10 g) = 3.32%

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1191

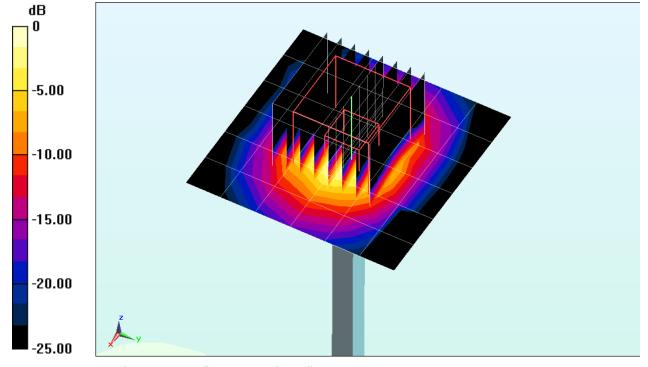
Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: f = 5800 MHz; $\sigma = 6.023$ S/m; $\varepsilon_r = 46.178$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-24-2015; Ambient Temp: 23.2°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3914; ConvF(4.01, 4.01, 4.01); Calibrated: 2/10/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/31/2014
Phantom: SAM Sub; Type: QD000P40CC; Serial: TP:1357

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5800 MHz System Verification


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 17.0 dBm (50 mW)

Peak SAR (extrapolated) = 16.2 W/kg

SAR (1 g) = 3.62 W/kg

Deviation = -7.18%

0 dB = 4.00 W/kg = 6.02 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D750V3-1003_Jan15

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1003

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

CC 2/3/15

Calibration date:

January 16, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	LID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15 Scheduled Check
Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	10 # 100005 US37390585 S4206	Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	In house check: Oct-16 In house check: Oct-15

Calibrated by:

Name Michael Weber Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 19, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1003_Jan15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

....

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.09 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.35 W/ k g
SAR for nominal Head TSL parameters	normalized to 1W	5.32 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.0 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.46 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.58 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1003_Jan15 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7 Ω - 1.4 jΩ
Return Loss	- 28.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω - 3.8 jΩ
Return Loss	- 27.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.043 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Certificate No: D750V3-1003_Jan15 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 41.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;

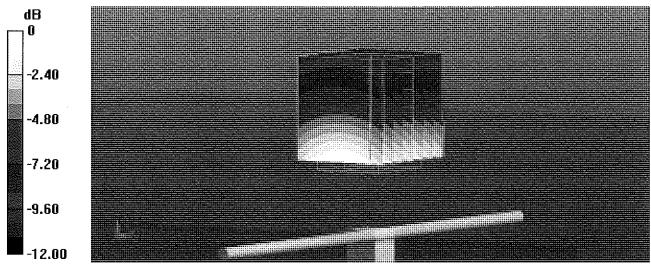
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

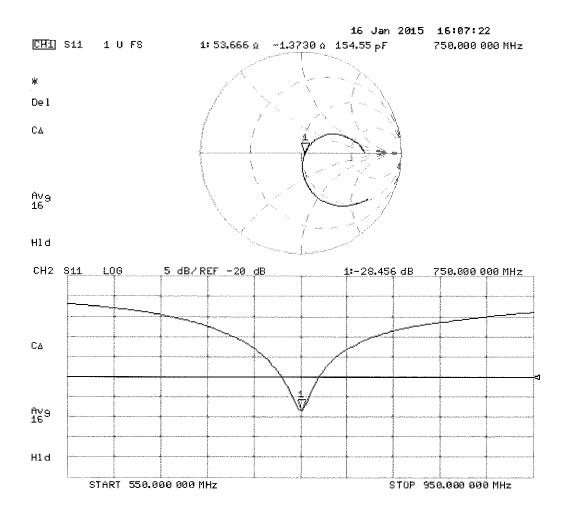
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.08 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.05 W/kg


SAR(1 g) = 2.06 W/kg; SAR(10 g) = 1.35 W/kg

Maximum value of SAR (measured) = 2.41 W/kg

0 dB = 2.41 W/kg = 3.82 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;

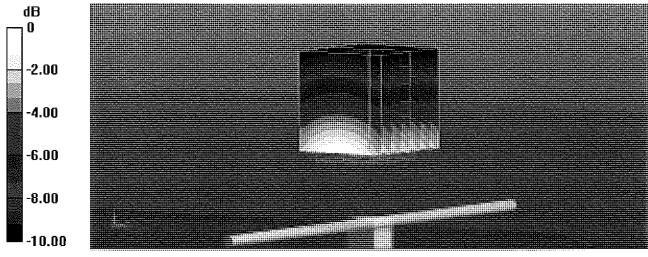
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

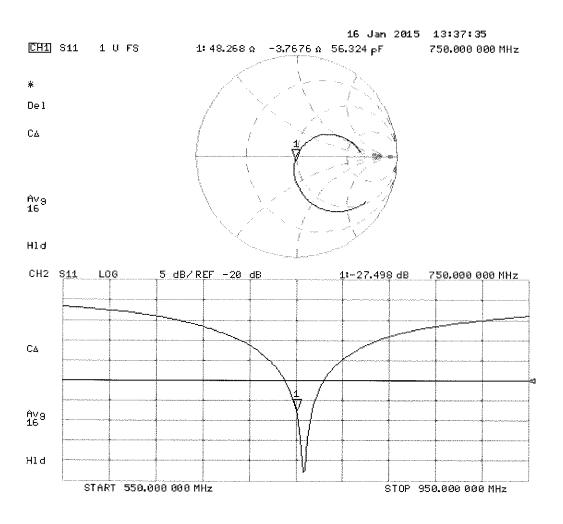
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.21 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.16 W/kg


SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (measured) = 2.52 W/kg

0 dB = 2.52 W/kg = 4.01 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D750V3-1046_Feb15

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1046

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BN V 316 120 15

Calibration date:

February 19, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-1 12=
		<u> </u>	

Issued: February 19, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: D750V3-1046_Feb15

Approved by:

Page 1 of 8

Technical Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D750V3-1046_Feb15

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.04 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.28 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.29 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.47 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1046_Feb15

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.8 Ω + 1.5 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω - 1.3 jΩ
Return Loss	- 34.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.038 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 02, 2011

Certificate No: D750V3-1046_Feb15

DASY5 Validation Report for Head TSL

Date: 18.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1046

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;

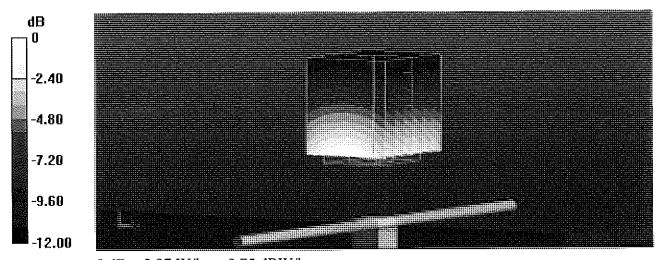
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

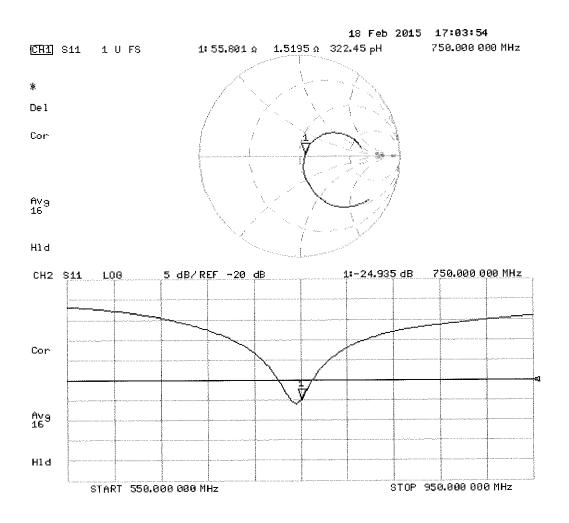
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.99 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.02 W/kg


SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.33 W/kg

Maximum value of SAR (measured) = 2.37 W/kg

0 dB = 2.37 W/kg = 3.75 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1046

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;

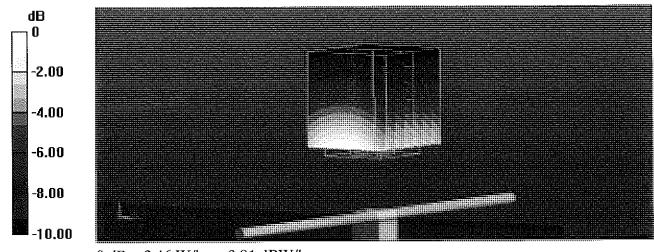
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

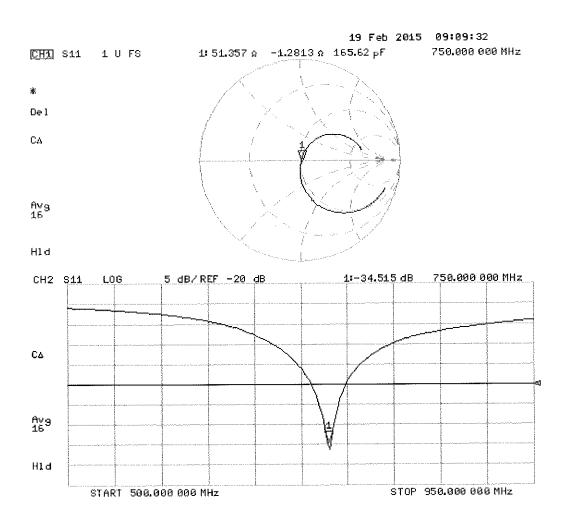
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.00 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.10 W/kg


SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.39 W/kg

Maximum value of SAR (measured) = 2.46 W/kg

0 dB = 2.46 W/kg = 3.91 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d119_Apr15

Object	D835V2 - SN:4d	119 prikana apartumunu arawa arawa	en e
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	RN ove 700 MHz 4/29
Calibration date:	April 13, 2015		
The measurements and the tince	rtainties with confidence potential the closed laborato	ional standards, which realize the physical un probability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°0	nd are part of the certificate.
Primary Standards	ID#	0.15	
Power meter EPM-442A	GB37480704	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02020)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Oct-14 (No. 217-02021)	Oct-15
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02131)	Mar-16
Reference Probe ES3DV3	SN: 3205	01-Apr-15 (No. 217-02134)	Mar-16
DAE4	SN: 601	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
	SN. 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Israe Elnaouq	Laboratory Technician	Moreen Chaeceef
Approved by:	Katja Pokovic	Technical Manager	Ally-
This calibration certificate shall no	ot be reproduced except in	full without written approval of the laboratory.	Issued: April 13, 2015

Certificate No: D835V2-4d119_Apr15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d119_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	VOZ.0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	with opacer
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.38 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.20 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.06 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d119_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω - 2.2 jΩ
Return Loss	- 33.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 4.9 ϳΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Flectrical Doloy (one dispetion)	
Electrical Delay (one direction)	1 000
	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d119_Apr15

DASY5 Validation Report for Head TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

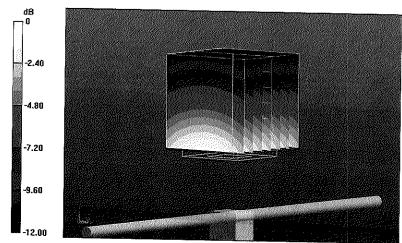
Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

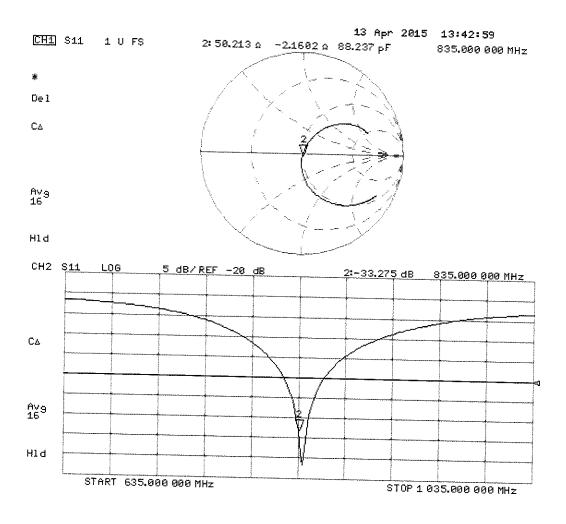
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.77 V/m P

Reference Value = 56.77 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.64 W/kg


SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

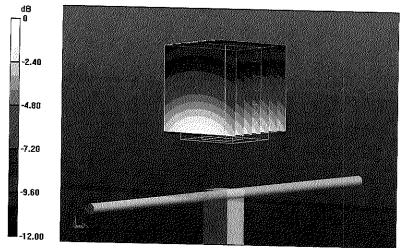
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

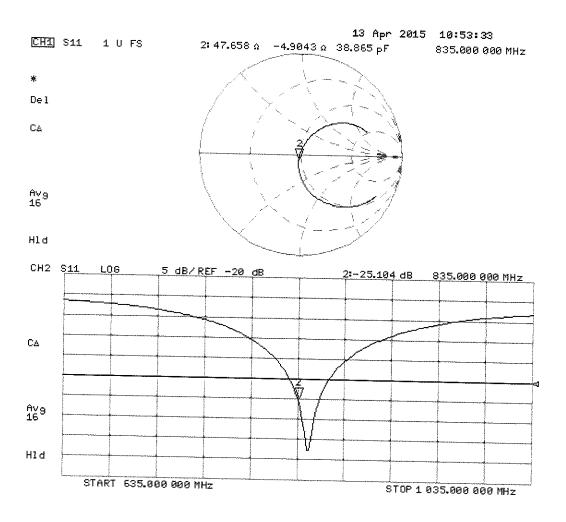
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.44 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.52 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D835V2-4d132_Jan15

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d132

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

2*1311*5

Calibration date:

January 16, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by: Name

Function

Laboratory Technician

Signature

Approved by:

Katja Pokovic

Michael Weber

Technical Manager

Issued: January 19, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d132_Jan15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.25 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.04 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.8 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.14 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.98 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 2.3 jΩ
Return Loss	- 30.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 4.3 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Certificate No: D835V2-4d132_Jan15 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 41.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

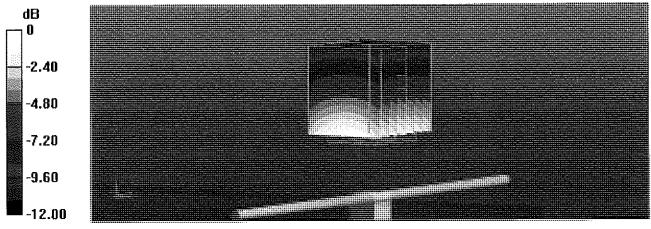
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

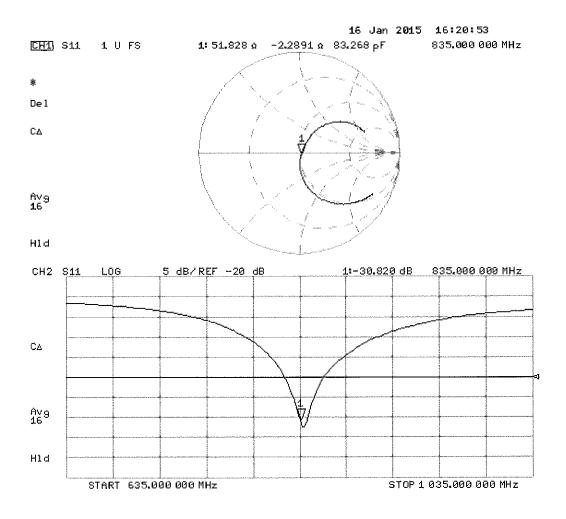
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.27 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.51 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

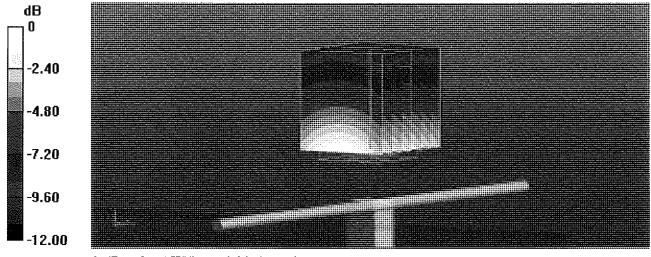
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

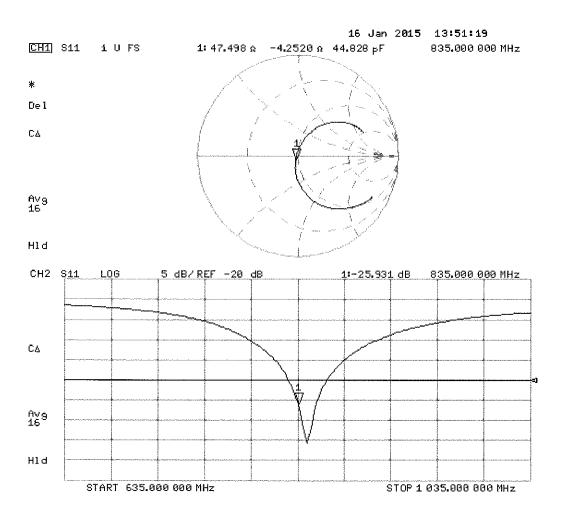
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.27 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.47 W/kg


SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.75 W/kg

0 dB = 2.75 W/kg = 4.39 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1750V2-1051 Apr15

CALIBRATION CERTIFICATE

Object D1750V2 - SN:1051

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

4/29/15

Calibration date:

April 15, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1.0-
Approved by:	Katja Pokovic	Technical Manager	

Issued: April 15, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1051_Apr15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1051_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	VJZ.0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	with Opacei
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	250 mW input power	4.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
	250 mW input power	9.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	250 mW input power	5.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1051_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω - 0.2 jΩ
Return Loss	- 37.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω + 0.3 jΩ
Return Loss	- 29.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
= comodi Belay (one difection)	1.221 ns
	1.221118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
Manadactared by	SPEAG
Manufactured on	Fobruary 10, 0040
	February 19, 2010

Certificate No: D1750V2-1051_Apr15

DASY5 Validation Report for Head TSL

Date: 15.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

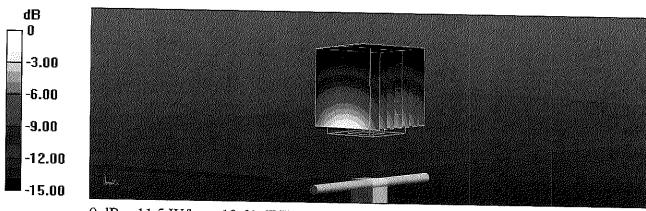
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

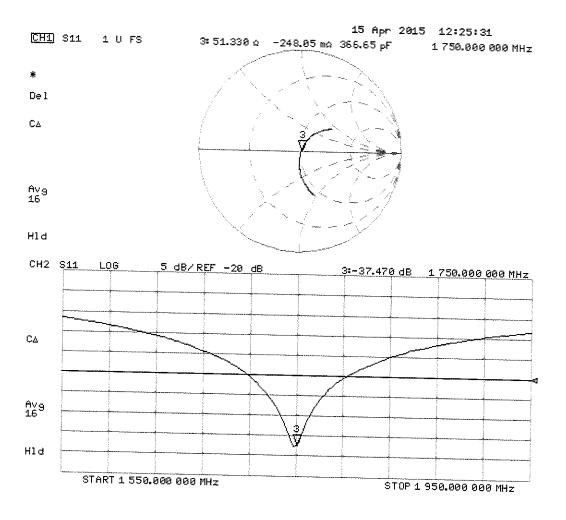
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.99 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 16.3 W/kg


SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.8 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

0 dB = 11.5 W/kg = 10.61 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

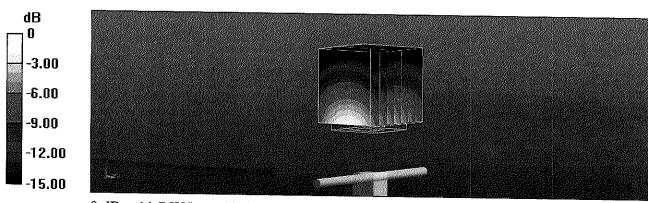
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

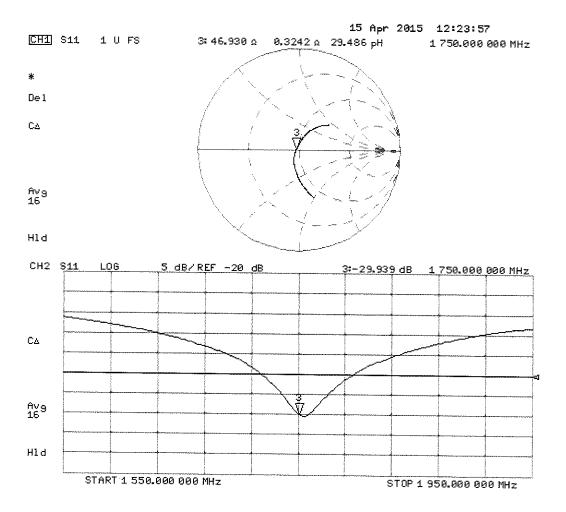
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.87 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.0 W/kg


SAR(1 g) = 9.32 W/kg; SAR(10 g) = 5.01 W/kg

Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.7 W/kg = 10.68 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1765V2-1008 May15

CALIBRATION CERTIFICATE Object D1765V2 - SN: 1008 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz 5/20/15 Calibration date: May 13, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 US37292783 Power sensor HP 8481A 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: May 15, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1765V2-1008_May15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1765V2-1008 May15

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.38 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.50 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 16.5 % (k=2)

Certificate No: D1765V2-1008_May15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5 Ω - 4.6 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8 Ω - 5.3 jΩ
Return Loss	- 22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 211 ne
· · · · · · · · · · · · · · · · · · ·	1.211 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Certificate No: D1765V2-1008_May15

DASY5 Validation Report for Head TSL

Date: 13.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

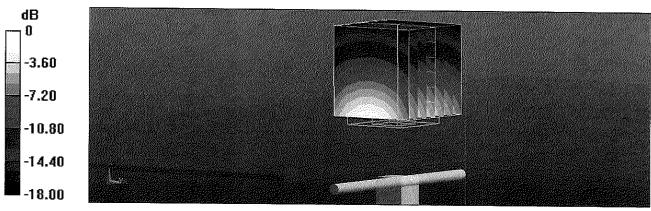
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

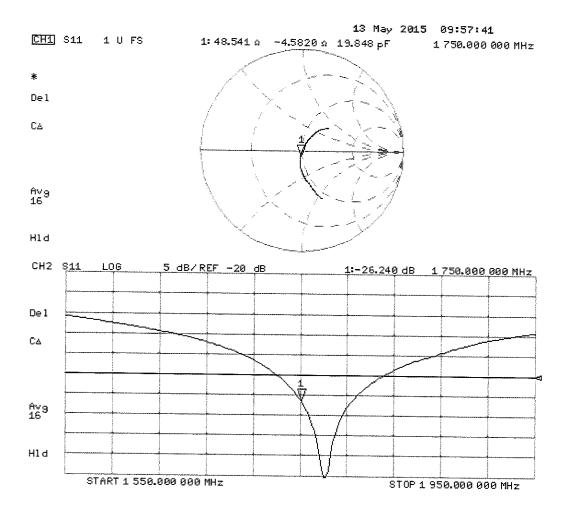
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.56 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.0 W/kg


SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5.02 W/kg

Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

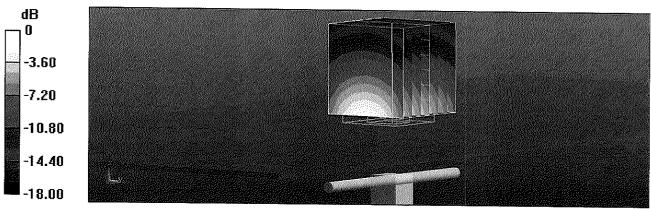
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

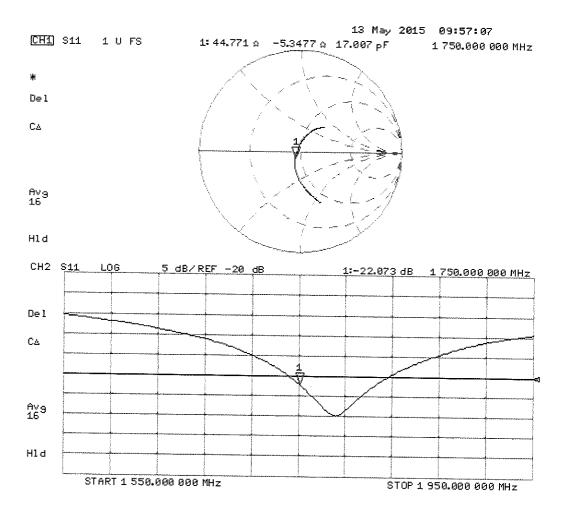
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.70 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 16.5 W/kg


SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.12 W/kg

Maximum value of SAR (measured) = 12.0 W/kg

0 dB = 12.0 W/kg = 10.79 dBW/kg

Impedance Measurement Plot for Body TSL

