

Element Suwon

(#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea Tel. +82 31.660.7319 / Fax +82 31.660.7918 http://www.element.com

TEST REPORT PART 27 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea **Date of Testing:**

10/24/2022 - 11/04/2022

Test Site/Location:

Element Lab., Suwon,

Yongin-si, Gyeonggi-do, Korea

Test Report Serial No.:

8K22101401-01-R1.A3L

FCC ID: A3LRF4450T-71A

APPLICANT: Samsung Electronics Co., Ltd.

Application Type: Class II Permissive Change

Model: RF4450t-71A

EUT Type: RRU(RF4450t)

FCC Classification: Licensed Non-Broadcast Station Transmitter

FCC Rule Part(s): §27

Test Procedure(s): ANSI C63.26-2015, KDB 971168 D01 v03r01, KDB 662911 D01 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Prepared by Jonathan Jang Test Engineer Reviewed by Charles.Shin Technical Manager

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 1 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 1 of 47

TABLE OF CONTENTS

1.0	REV	ISION RECORD	4
2.0	INTE	RODUCTION	5
	2.1	Scope	5
	2.2	Element Test Location	5
	2.3	Test Facility / Accreditation	5
3.0	PRO	DUCT INFORMATION	6
	3.1	Equipment Description	6
	3.2	Device Capabilities	6
	3.3	Test Configuration	7
	3.4	EMI Suppression Device(s)/Modifications	7
4.0	DES	CRIPTION OF TESTS	8
	4.1	Measurement Procedure	8
	4.2	Radiated Emissions	9
	4.3	Measurement Software	9
5.0	MEA	SUREMENT UNCERTAINTY	10
6.0	TES	T EQUIPMENT CALIBRATION DATA	11
7.0	SAM	IPLE CALCULATIONS	12
8.0	TES	T RESULTS	13
	8.1	Summary	13
	8.2	Occupied Bandwidth	14
	8.3	Equivalent Isotropic Radiated Power (Power Spectral Density)	16
	8.4	Peak To Average Power Ratio	20
	8.5	Band Edge Emissions and Emission Mask at Antenna Terminal	22
	8.6	Spurious and Harmonic Emissions at Antenna Terminal	25
	8.7	Radiated spurious emission	35
9.0	CON	ICLUSION	44
10.0	APP	ENDIX. A	45
	10.1	Conducted Average Output Power	45

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 2 01 47

MEASUREMENT REPORT FCC Part 27

IVIOGE :	Tx Frequency	Total Conducted	Max		
	(MHz)	Max. Power (dBm)	Max. Power (W)	Emission Designator	Modulation
n71_1C_15M	617 to 652	53.53	225.55	14M1G7D	QPSK
	617 to 652	53.63	230.79	14M2W7D	QAM

5G NR n71 EUT Overview

Notes:

Total Power shown in the table above are the full conducted average output power that will appear on the Grant of Authorization.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 3 01 47

1.0 REVISION RECORD

Issue Number	Issued Date	Revision History
8K22101401-01.A3L	11/07/2022	Initial Issue
8K22101401-01-R1.A3L	11/09/2022	Revision due to updated test plot name

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	rage 4 of 47

2.0 INTRODUCTION

2.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

2.2 Element Test Location

These measurement tests were conducted at the Element Materials Technology Suwon. Ltd. facility located at (#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea.

2.3 Test Facility / Accreditation

Measurements were performed at Element Materials Technology Suwon Lab located in Yongin-si, Gyeonggi, Korea.

- Element Materials Technology Suwon is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation(A2LA) with Certificate number 2041.04 for Specific Absorption Rate (SAR), where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Materials Technology Suwon facility is accredited, designated, and recognized in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
 - Designation Number / CABID: KR0169
 - Test Firm Registration Number of FCC: 417945
 - Test Firm Registration Number of IC: 26168

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	raye J UI 47

3.0 PRODUCT INFORMATION

3.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung RRU(RF4450t) FCC ID: A3LRF4450T-71A**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27.

A class II permissive change on the original filing is being pursued to add channel Bandwidth without hardware modification.

3.2 Device Capabilities

This device supports the following conditional features and filter information:

EUT Type	RRU (RF4450t)						
Model Name	RF4450t-71A						
Test Device Serial No	S618614983	S618614983					
Device Capabilities:	5G NR	5G NR					
	Band	Tx (Downlink	x)	Rx (Uplink)			
Operating Band/Frequency Range:	n26:	864 MHz to 869	MHz	819 MHz to 824 MHz			
	n29:	718 MHz to 728	MHz	N/A			
	n71: 617 MHz to 652 MHz		663 MHz to 698 MHz				
Supported Modulation	5G NR : QPSK, 16QAM, 64QAM, 256QAM						
n71 Supported Number of Carriers and Channel Bandwidth	15 MHz bandwidth 1CC mode for 5G NR Band n71						
Multi-Band Supported Number of Carriers and Channel Bandwidth		s for n26 and n29 a andwidth 35 MHz	and n71 with up to	4CC aggregated of			
Mavinoura Outrout Bauca	n71		Total 240 W (60V	V/path x 4 port)			
Maximum Output Power	Multi-Band (n26, n29, n71)		Total 280 W (70W/path x 4 port)				
Number of Antenna ports	4TX Configuration						
Supported Configurations	Single carrier, Multi-carriers, Multi-band						
Input Voltage:	-48 VDC						
Antenna:	Antenna is not pr	ovided by manufac	ture				

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	rage 6 01 47

3.3 Test Configuration

The setup is as follows:

- a) The EUT ("RRU(RF4450t)") and a Cabinet Digital Unit (CDU) are each powered by -48V DC power supply.
- b) The CDU is connected to a test laptop via an ethernet cable acting as backhaul.
- c) CDU connects to the EUT through a fiber optic cable.
- d) An RF cable connects the signal analyzer and the EUT Ports for respective measurement.

The Cabinet Digital Unit (CDU) authorized under SDoC.

The EUT was tested per the guidance of ANSI C63.26-2015 and KDB 971168 D01 v03r01. See Section 8.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

The n29 duplex mode is SDL (Supplemental Downlink) designed exclusively for downlink. It cannot operate n29 alone, and operate with uplink of other bands.

The following information is about configurations of carrier frequency and output power per port declared by the manufacturer.

n71 Single Carrier Configuration	No. of	Total Carrier	Carrier Frequency Configuration (MHz)			Rated Power
	Carriers	Carriers Bandwidth (MHz)	Lowest	Middle	Highest	(W/path)
1C_15M	1	15	624.5	634.5	644.5	60

Tri-band	No. of	Total Carrier	Carrier Frequency Configuration (MHz)	Rated Power	
Operation Carrier Carriers	Bandwidth (MHz)	Middle	(W/path)		
n26_1C_5M+n29_1C_ 5M+n71_1C_5M	3	15 (5+5+5)	720.5+634.5+866.5	50 (20+20+10)	
n26_1C_5M+n29_2C_ 5M+5M+n71_1C_20M	4	35 (5+5+5+20)	723.5+725.5+634.5+866.5	70 (40+10+10+10)	

3.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 7 01 47

4.0 DESCRIPTION OF TESTS

4.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitter Used in Licensed Radio Service" (ANSI C63.26-2015) and the guidance provided in KDB 842590 D01 v01r01 were used in the measurement of the EUT.

Occupied Bandwidth:

KDB 971168 D01 v03r01 – Section 4.3 ANSI C63.26-2015 – Section 5.4.4

Conducted Power Measurement and EIRP and PSD

KDB 971168 D01 v03r01 – Section 5.3

KDB 971168 D01 v03r01 - Section 5.4

KDB 662911 D01 v02r01 - Section E)1) In-Band Power Measurements

ANSI C63.26-2015 - Section 5.2.5

ANSI C63.26-2015 - Section 5.2.4

Peak-to-Average Power Ratio:

KDB 971168 D01 v03r01 – Section 5.7 ANSI C63.26-2015 – Section 5.2.3.4

Channel Edge Emissions at Antenna Terminal

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

a) Absolute Emission Limits

iii) Measure and add 10 log(NANT) dB

ANSI C63.26-2015 - Section 5.7

Spurious and Harmonic Emissions at Antenna Terminal

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

a) Absolute Emission Limits

iii) Measure and add 10 log(N_{ANT}) dB

ANSI C63.26-2015 - Section 5.7

Radiated unwanted emission

KDB 971168 D01 v03r01 – Section 7 ANSI C63.26-2015 – Section 5.8

Frequency Stability / Temperature Variation

KDB 971168 D01 v03r01 – Section 9 ANSI C63.26-2015 – Section 5.6

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 6 01 47

4.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi- anechoic chamber which is shielded from any ambient interference.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. For frequencies above 1GHz, linearly polarized Vivaldi antennas were used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and Vivaldi antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the polarity of the receive antenna to produce the worst-case emissions

4.3 Measurement Software

Test item	Name	Version
Conducted Measurement	Node B automation	1.0

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	rage 9 01 47

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.37
Radiated Disturbance (<1GHz)	3.94
Radiated Disturbance (>1GHz)	4.75
Radiated Disturbance (>18GHz)	4.84

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 10 01 47

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurement antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacture	Model	Description	Cal Date	Cal interval	Cal Due	Serial Number
Rohde & Schwarz	FSW43	Signal Analyzer	07/05/2022	Annual	07/04/2023	101250
KEYSIGHT	N9030B	PXA Signal Analyzer	05/09/2022	Annual	05/08/2023	MY57142018
Rohde & Schwarz	ESW	EMI Test Receiver	07/04/2022	Annual	07/03/2023	101761
AC POWER KOREA	ACPD-60150	DC Power Supply	01/18/2022	Annual	01/17/2023	DC-1
SUKSAN TECHNOLOGY	SE-CT-10	Temperature Chamber	07/05/2022	Annual	07/04/2023	191021
Rohde & Schwarz	TS-SFUNIT-Rx	Shielded Filter Unit	03/02/2022	Annual	03/01/2023	102131
Schwarzbeck	VULB9162	Broadband TRILOG Antenna	07/13/2021	Biennial	07/12/2023	9162-217
Sunol sciences	DRH-118	Horn Antenna	07/14/2021	Biennial	07/13/2023	A102416-1
Schwarzbeck	BBHA 9170	Horn Antenna	01/27/2022	Biennial	01/26/2024	1037
Reachline	250W18NN-40	Attenuator	01/19/2022	Annual	01/18/2023	PK0289
Reachline	250W18NN-40	Attenuator	01/19/2022	Annual	01/18/2023	PK0290
Reachline	250W18NN-40	Attenuator	01/19/2022	Annual	01/18/2023	PK0292
Reachline	250W18NN-40	Attenuator	01/19/2022	Annual	01/18/2023	PK0293

Table 6-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. All testing was performed before the calibration due date.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	11/04/2022 RRU(RF4450t)	

7.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 14M1G7D

Occupied Bandwidth = 14.14 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 14M2W7D

Occupied Bandwidth = 14.17 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 12 01 47

8.0 TEST RESULTS

8.1 Summary

Company Name: <u>SAMSUNG Electronics Co., Ltd.</u>

FCC ID: <u>A3LRF4450T-71A</u>

FCC Classification: Licensed Non-Broadcast Station Transmitter

Mode(s): <u>5G NR</u>

FCC Part Section(s)	Test Description	Limit	Test Condition	Test Result	Reference
§ 2.1046	Conducted Average Output Power	N/A		PASS	Annex 1
§ 2.1049	Occupied Bandwidth	N/A		PASS	Section 8.2
§ 2.1046, § 27.50(c)	Equivalent Isotropic Radiated Power (Power Spectral Density)	< 1000 W/MHz	CONDUCTED	PASS	Section 8.3 (Note 4)
§ 2.1046,	Peak-to-average ratio	N/A		PASS	Section 8.4
§ 2.1051, § 27.53(g)	Band Edge Emissions and Emission Mask at Antenna Terminal	> 43 + log10(P[Watts]) at Band Edge and all out-of-		PASS	Section 8.5
§ 2.1051, § 27.53(g)	Spurious and Harmonic Emissions at Antenna Terminal	band emissions		PASS	Section 8.6
§ 2.1055 § 27.54	Frequency Stability	Fundamental emissions stay within authorized frequency block		N/A	(Note 5)
§ 2.1055, § 27.53(g)	Radiated unwanted emission	> 43 + log10(P[Watts]) at Band Edge and all out-of-band emissions	RADIATED	PASS	Section 8.8

Table 8-1. Summary of Rule part 27 Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) The maximum antenna gain is determined at the time of licensing depending on the geographical location of the base station
- 5) This is a variant report for channel bandwidth and modulation enabled by software without hardware change. The test item does not affect those operation. And it was performed in original report.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 13 01 47

8.2 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedures Used

KDB 971168 D01 v03r01 – Section 4.3 ANSI C63.26-2015 – Section 5.4.4

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2-7 were repeated after changing the RBW such that it would be within 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

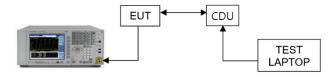
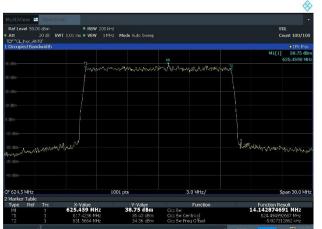


Figure 8-1. Test Instrument & Measurement Setup

Test Notes


None

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 14 01 47

Channel	Port		OBW	(MHz)	
Chamilei	Foit	QPSK	16QAM	64QAM	256QAM
	0	14.14	14.14	14.14	14.11
Low	1	14.10	14.15	14.11	14.08
Low	2	14.14	14.13	14.14	14.12
	3	14.09	14.13	14.07	14.10
	0	14.11	14.16	14.13	14.11
Middle	1	14.09	14.17	14.12	14.10
Wildale	2	14.12	14.13	14.11	14.12
	3	14.11	14.13	14.13	14.11
	0	14.12	14.12	14.10	14.07
I II ada	1	14.12	14.14	14.12	14.11
High	2	14.10	14.14	14.10	14.10
	3	14.12	14.16	14.10	14.11

Table 8-2. Occupied Bandwidth Summary Data (n71_1C_15M)

Plot 8-1. Occupied Bandwidth Plot (n71_1C_15M_QPSK - Low Channel, Port 0)

Plot 8-2. Occupied Bandwidth Plot (n71_1C_15M_16QAM - Mid Channel, Port 1)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 15 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 15 of 47

8.3 Equivalent Isotropic Radiated Power (Power Spectral Density)

Test Overview

A transmitter port of EUT is connected to the input of a signal analyzer. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedure Used

KDB 971168 D01 v03r01 – Section 5.2 KDB 662911 D01 v02r01 – Section E)1) In-Band Power Measurements ANSI C63.26-2015 – Section 5.2.4

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. Conducted average output power measurements are performed using the signal analyzer's "channel power mode" measurement capability for signals with continuous operation.
- 2. Set span to $2 \times$ to $3 \times$ the OBW.
- 3. Set RBW = set to reference bandwidth specified by the applicable regulatory requirement
- Set VBW ≥ 3 × RBW.
- 5. Set number of measurement points in sweep ≥ 2 × span / RBW.
- 6. Sweep time: auto-couple
- 7. Detector = power averaging (rms).
- 8. Set sweep trigger to "free run.".
- 9. The integration bandwidth was set equal to transmission bandwidth i.e. 20MHz for 2CC and 40MHz for 1CC measurements.
- 10. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over the on and off time of the transmitter, it can be necessary to increase the number of traces to be averaged above 100, or if using a manually configured sweep time, increase the sweep time.
- 11. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

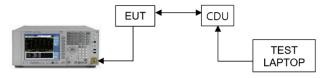


Figure 8-2. Test Instrument & Measurement Setup

Limit

N/A

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 16 01 47

Test Notes

- 1. Consider the following factors for MIMO:
 - The output power per each port is measured as dBm/MHz or dBm, the output powers are summed up in linear using the measure-and-sum technique defined in KDB 971168 D01 v03r01 Section E) 2).
- 2. The EIRP Limit is determined at the time of licensing depending on the geographical location of the base station.
- 3. The output power per port (dBm/MHz or dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO Conducted Power (mW). We convert this back to logarithmic scale for further output power calculations.
- 4. All transmit signals from different antennas are completely uncorrelated with each other. So the maximum output power shall be calculated based on the aggregate power conducted across all antennas.
- 5. Sample Calculation:

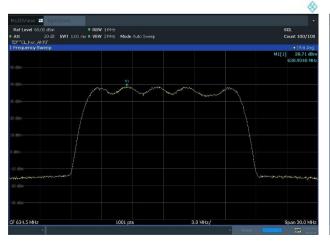
Let us assume the following numbers:

a) Total MIMO Conducted Power as 30327.60 milliWatts

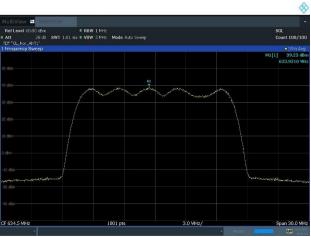
b)

Factors		Value	Unit
Summed MIMO Conducted Power (linear sum)		30327.60	mW/MHz
Summed MIMO Conducted Power (dBm)	= 10 * log (30327.60) =	44.82	dBm/MHz

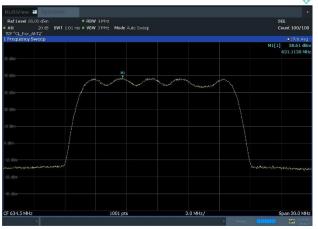
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 17 01 47

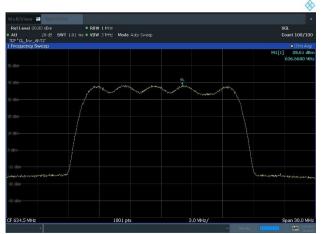


Channel	Dowt		PSD Power (dBm/MHz)			
Chamile	Port	QPSK	16QAM	64QAM	256QAM	
	0	37.39	38.18	36.60	36.78	
Low	1	37.41	37.75	36.37	36.58	
LOW	2	37.24	38.16	36.89	36.92	
	3	37.37	38.37	36.79	37.02	
Total MIMO PSD Po	ower (mW/MHz)	21745.06	25950.25	18567.81	19269.59	
Total MIMO PSD Po	ower (dBm/MHz)	43.37	44.14	42.69	42.85	
Channel	Port	QPSK	16QAM	64QAM	256QAM	
	0	37.27	38.71	37.46	37.49	
Middle	1	36.90	39.23	37.23	37.47	
Middle	2	37.40	38.61	37.52	37.45	
	3	37.16	38.61	37.36	37.40	
Total MIMO PSD Po	ower (mW/MHz)	20926.51	30327.60	21950.71	22249.63	
Total MIMO PSD Po	ower (dBm/MHz)	43.21	44.82	43.41	43.47	
Channel	Port	QPSK	16QAM	64QAM	256QAM	
	0	37.47	38.74	37.37	37.14	
l limb	1	37.27	38.56	37.12	37.03	
High	2	37.08	38.57	37.32	37.42	
	3	37.40	38.63	37.23	37.37	
Total MIMO PSD Po	ower (mW/MHz)	21518.51	29148.70	21289.42	21201.03	
Total MIMO PSD Po	ower (dBm/MHz)	43.33	44.65	43.28	43.26	


Table 8-3. Peak Power Spectral Density Table (n71_1C_15M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	raye 10 01 47




Plot 8-3. Power Spectral Density Plot (n71_1C_15M_16QAM - Mid Channel, Port 0)

Plot 8-4. Power Spectral Density Plot (n71_1C_15M_16QAM - Mid Channel, Port 1)

Plot 8-5. Power Spectral Density Plot (n71_1C_15M_16QAM - Mid Channel, Port 2)

Plot 8-6. Power Spectral Density Plot (n71_1C_15M_16QAM - Mid Channel, Port 3)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 19 01 47

8.4 Peak To Average Power Ratio

Test Overview

The peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

KDB 971168 D01 v03r01 – Section 5.7 ANSI C63.26-2015 – Section 5.2.3.4

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. The signal analyzer's CCDF function is enabled.
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

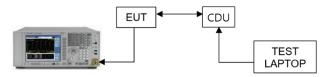


Figure 8-3. Test Instrument & Measurement Setup

Limit

N/A

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 20 01 47



Channel	Port		PAPF	R (dB)		Limit
	Port	QPSK	16QAM	64QAM	256QAM	(dB)
	0	8.14	8.14	8.16	8.14	
Low	1	8.12	8.12	8.12	8.10	
LOW	2	8.12	8.16	8.10	8.12	
	3	8.12	8.14	8.14	8.14	
	0	8.08	8.10	8.10	8.08	
Middle	1	8.04	8.06	8.04	8.04	N/A
ivildale	2	8.06	8.06	8.04	8.04	IN/A
	3	8.08	8.08	8.06	8.06	
High	0	8.14	8.24	8.22	8.16	
	1	8.08	8.18	8.14	8.14	
	2	8.14	8.20	8.18	8.14	
	3	8.14	8.24	8.20	8.16	

Table 8-4. Peak To Average Power Ratio Summary Data (n71_1C_15M)

Plot 8-7. Peak To Average Power Ratio Plot (n71_1C_15M_QPSK - Low Channel, Port 0)

Plot 8-8. Peak To Average Power Ratio Plot (n71_1C_15M_16QAM - High Channel, Port 0)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 21 01 47

8.5 Band Edge Emissions and Emission Mask at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

- a) Absolute Emission Limits
- iii) Measure and add 10 log(N_{ANT}) dB

ANSI C63.26-2015 - Section 5.7.3

Test Setting

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW: Please see test notes below.
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Limit

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

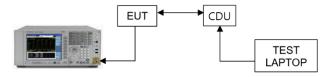


Figure 8-4. Test Instrument & Measurement Setup

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 22 01 47

Test Notes

- 1. Per Part 27.53(g), Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least 30 kilohertz may be employed.
- 2. When the channel edge detect with a margin of under 1dB to Limit, That used to integration method was performed using the spectrum analyzer's band power functions according to ANSI C63.26-2015 Section 5.7. The spectrum analyzer marker was placed at one-half of the RBW away from the band edge. The integration value was set to a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter.
- The limits were adjusted by a factor of [-10*log (4)] dB to account for the device operation as a 4 port MIMO transmitter, as per FCC KDB 622911. MIMO Factor calculation as below:
 MIMO Factor = 10*log (4) = 6.02 dB


Frequency range	Basic Limit (dBm)	4Tx MIMO Factor (dB)	RBW Factor (dB)	Adjusted limit (dBm)			
Low Frequency block – 100kHz	-13	6.02	0	-19.02			
High Frequency block + 100kHz	-13	6.02	0	-19.02			
Note: Adjusted limit (dBm) = Basic limit (dBm) - MIMO Factor - RBW Factor							

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 23 01 47

Channal	Dort	Managered Dange (MUz)		Limit			
Channel	Port	Measured Range (MHz)	QPSK	16QAM	64QAM	256QAM	(dBm)
	0	616.9 to 617	-26.38	-24.87	-23.31	-24.13	
Low	1	616.9 to 617	-26.87	-24.31	-25.85	-25.25	
Low	2	616.9 to 617	-24.26	-25.21	-24.81	-25.46	
	3	616.9 to 617	-26.11	-24.86	-23.06	-24.08	-19.02
	0	652 to 652.1	-24.38	-25.30	-24.37	-24.45	-19.02
Lligh	1	652 to 652.1	-25.08	-24.47	-26.14	-24.72	
High	2	652 to 652.1	-24.60	-23.51	-24.57	-26.22	
	3	652 to 652.1	-23.51	-23.02	-24.79	-24.36	

Table 8-5. Band Edge Emission Summary Data (n71_1C_15M)

Plot 8-9. Band Edge Emission Plot (n71_1C_15M_64QAM - Low Channel, Port 3)

Plot 8-10. Band Edge Emission Plot (n71_1C_15M_16QAM - High Channel, Port 3)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 24 01 47

8.6 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

- a) Absolute Emission Limits
- iii) Measure and add 10 log(N_{ANT}) dB

ANSI C63.26-2015 - Section 5.7

Test Setting

- 1. Start frequency was set to 9 kHz and stop frequency was set to at least 10 * the fundamental frequency excluding the frequency range of the band edge measurement.
- 2. RBW: Please see test notes below.
- 3. $VBW > 3 \times RBW$
- 4. Detector = RMS
- 5. Number of sweep points ≥ 2 x Span/RBW
- 6. Trace mode = trace average
- 7. Sweep time = auto couple
- 8. The trace was allowed to stabilize

Limit

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{\text{[Watts]}})$, where P is the transmitter power in Watts.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

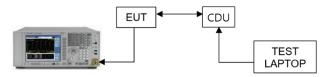


Figure 8-5. Test Instrument & Measurement Setup

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 25 01 47

Test Notes

- Per Part 27.53(g), Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least 30 kilohertz may be employed.
- The limits were adjusted by a factor of [-10*log (4)] dB to account for the device operation as a 4 port MIMO transmitter, as per FCC KDB 622911. MIMO Factor calculation as below: MIMO Factor = 10*log (4) = 6.02 dB
- 3. Narrower RBW parameter is applied according to Section 5.7 of ANSI C63.26-2015 for some edge channels due to improving measurement accuracy. RBW Factor calculation as below:
 - RBW Factor = 10*log (1/0.01) = 20 dB for the measurement range from 9 kHz to 150 kHz.
 - RBW Factor = $10*\log (1/0.1) = 10$ dB for the measurement range from 150 kHz to 30 MHz.

Frequency range	Basic Limit (dBm)	4 TX MIMO Factor (dB)	RBW Factor (dB)	Adjusted limit (dBm)
9 kHz to 150 kHz	-13	6.02	20	-39.02
150 kHz to 30 MHz	-13	6.02	10	-29.02
30 MHz to 1 GHz	-13	6.02	0	-19.02
1 GHz to 9 GHz	-13	6.02	0	-19.02

Note: Adjusted limit (dBm) = Basic limit (dBm) - MIMO Factor - RBW Factor Adjusted limit (dBm/MHz) = Basic limit (dBm/MHz) - MIMO Factor - RBW Factor

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 47	
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 20 01 47	

Channel Port	Port	rt Measurement Range	Level (dBm)				Limit	Margin
Channel	Port		QPSK	16QAM	64QAM	256QAM	(dBm)	(dB)
		9 kHz to 150 kHz	-65.83	-65.53	-67.16	-66.45	-39.02	-26.51
		150 kHz to 30 MHz	-50.27	-49.79	-50.37	-49.80	-29.02	-20.77
		30 MHz to 616.9 MHz	-26.22	-29.37	-29.79	-26.19	-19.02	-7.17
	0	652.1 MHz to 1 GHz	-33.54	-36.45	-36.91	-32.98	-19.02	-13.96
		1 GHz to 3 GHz	-26.67	-26.89	-27.91	-26.80	-19.02	-7.65
		3 GHz to 9 GHz	-24.73	-24.36	-24.38	-24.98	-19.02	-5.34
		9 kHz to 150 kHz	-65.65	-66.25	-67.61	-67.16	-39.02	-26.63
		150 kHz to 30 MHz	-50.00	-50.41	-50.99	-50.32	-29.02	-20.98
		30 MHz to 616.9 MHz	-24.06	-26.57	-29.44	-27.64	-19.02	-5.04
	1	652.1 MHz to 1 GHz	-33.41	-36.20	-36.84	-33.68	-19.02	-14.39
		1 GHz to 3 GHz	-26.26	-27.36	-27.81	-26.43	-19.02	-7.24
1		3 GHz to 9 GHz	-24.87	-25.66	-25.37	-25.18	-19.02	-5.85
Low		9 kHz to 150 kHz	-66.15	-66.03	-66.83	-66.47	-39.02	-27.01
		150 kHz to 30 MHz	-50.32	-50.00	-50.86	-50.61	-29.02	-20.98
		30 MHz to 616.9 MHz	-25.88	-28.60	-29.20	-26.59	-19.02	-6.86
	2	652.1 MHz to 1 GHz	-32.65	-34.81	-35.84	-32.04	-19.02	-13.02
		1 GHz to 3 GHz	-27.42	-27.64	-27.97	-27.82	-19.02	-8.40
	_	3 GHz to 9 GHz	-25.77	-25.75	-25.58	-25.65	-19.02	-6.56
	=	9 kHz to 150 kHz	-66.41	-66.03	-67.01	-66.30	-39.02	-27.01
		150 kHz to 30 MHz	-49.97	-50.01	-50.75	-50.38	-29.02	-20.95
		30 MHz to 616.9 MHz	-26.95	-28.98	-29.14	-28.06	-19.02	-7.93
	3	652.1 MHz to 1 GHz	-33.30	-35.67	-35.95	-33.37	-19.02	-14.28
		1 GHz to 3 GHz	-27.37	-27.56	-27.29	-27.50	-19.02	-8.27
		3 GHz to 9 GHz	-26.34	-26.35	-26.31	-25.86	-19.02	-6.84
		9 kHz to 150 kHz	-65.95	-64.77	-66.03	-65.93	-39.02	-25.75
		150 kHz to 30 MHz	-49.89	-49.56	-50.03	-49.99	-29.02	-20.54
		30 MHz to 616.9 MHz	-26.04	-26.22	-26.01	-26.09	-19.02	-6.99
	0	652.1 MHz to 1 GHz	-27.46	-27.62	-26.99	-27.90	-19.02	-7.97
		1 GHz to 3 GHz	-26.45	-26.58	-27.05	-27.09	-19.02	-7.43
		3 GHz to 9 GHz	-24.45	-24.56	-24.66	-24.78	-19.02	-5.43
		9 kHz to 150 kHz	-65.84	-64.74	-65.71	-65.72	-39.02	-25.72
		150 kHz to 30 MHz	-50.29	-50.05	-49.88	-50.60	-29.02	-20.86
		30 MHz to 616.9 MHz	-27.14	-27.57	-27.46	-28.19	-19.02	-8.12
	1	652.1 MHz to 1 GHz	-28.31	-28.55	-28.37	-28.82	-19.02	-9.29
		1 GHz to 3 GHz	-26.19	-26.58	-26.10	-26.38	-19.02	-7.08
N 4: -J		3 GHz to 9 GHz	-25.70	-25.55	-25.64	-25.11	-19.02	-6.09
Mid		9 kHz to 150 kHz	-65.69	-64.78	-66.03	-65.60	-39.02	-25.76
		150 kHz to 30 MHz	-50.07	-49.29	-49.87	-49.92	-29.02	-20.27
		30 MHz to 616.9 MHz	-24.97	-24.67	-24.85	-25.44	-19.02	-5.65
	2	652.1 MHz to 1 GHz	-26.55	-26.45	-26.41	-26.82	-19.02	-7.39
		1 GHz to 3 GHz	-26.95	-27.35	-27.48	-26.85	-19.02	-7.83
		3 GHz to 9 GHz	-26.03	-25.60	-25.54	-26.43	-19.02	-6.52
		9 kHz to 150 kHz	-66.28	-64.94	-65.98	-65.07	-39.02	-25.92
		150 kHz to 30 MHz	-50.17	-49.95	-50.07	-49.50	-29.02	-20.48
		30 MHz to 616.9 MHz	-26.26	-25.40	-24.99	-24.93	-19.02	-5.91
	3	652.1 MHz to 1 GHz	-27.47	-27.27	-27.05	-27.48	-19.02	-8.03
		1 GHz to 3 GHz	-26.19	-27.12	-27.33	-26.10	-19.02	-7.08
		3 GHz to 9 GHz	-26.22	-26.06	-26.22	-26.35	-19.02	-7.04

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 27 01 47

		9 kHz to 150 kHz	-65.50	-65.32	-66.27	-65.66	-39.02	-26.30
		150 kHz to 30 MHz	-49.69	-49.78	-50.03	-50.07	-29.02	-20.67
		30 MHz to 616.9 MHz	-29.89	-30.12	-30.02	-30.00	-19.02	-10.87
	0	652.1 MHz to 1 GHz	-25.57	-24.48	-25.18	-25.25	-19.02	-5.46
		1 GHz to 3 GHz	-27.25	-27.02	-26.82	-26.72	-19.02	-7.70
		3 GHz to 9 GHz	-24.45	-24.72	-24.50	-24.90	-19.02	-5.43
		9 kHz to 150 kHz	-65.76	-64.41	-66.11	-66.59	-39.02	-25.39
		150 kHz to 30 MHz	-50.63	-50.03	-50.29	-50.08	-29.02	-21.01
	1 1	30 MHz to 616.9 MHz	-31.27	-31.26	-31.96	-31.89	-19.02	-12.24
	'	652.1 MHz to 1 GHz	-25.73	-25.89	-26.16	-27.83	-19.02	-6.71
		1 GHz to 3 GHz	-26.22	-26.19	-26.57	-26.14	-19.02	-7.12
Lliah		3 GHz to 9 GHz	-25.12	-25.44	-25.43	-25.44	-19.02	-6.10
High		9 kHz to 150 kHz	-65.79	-64.84	-66.48	-65.82	-39.02	-25.82
		150 kHz to 30 MHz	-49.84	-49.55	-49.94	-50.18	-29.02	-20.53
	2	30 MHz to 616.9 MHz	-28.89	-28.64	-29.07	-29.35	-19.02	-9.62
	_	652.1 MHz to 1 GHz	-24.44	-24.76	-24.28	-24.91	-19.02	-5.26
		1 GHz to 3 GHz	-26.49	-27.08	-26.95	-26.80	-19.02	-7.47
		3 GHz to 9 GHz	-25.54	-25.36	-26.02	-26.00	-19.02	-6.34
		9 kHz to 150 kHz	-65.17	-64.30	-65.68	-65.94	-39.02	-25.28
		150 kHz to 30 MHz	-50.20	-49.02	-49.75	-50.00	-29.02	-20.00
	3	30 MHz to 616.9 MHz	-28.65	-29.08	-29.32	-29.63	-19.02	-9.63
	3	652.1 MHz to 1 GHz	-25.43	-24.86	-25.98	-25.43	-19.02	-5.84
		1 GHz to 3 GHz	-26.42	-26.90	-26.74	-26.37	-19.02	-7.35
		3 GHz to 9 GHz	-26.11	-26.03	-26.00	-26.66	-19.02	-6.98

Table 8-6. Conducted Spurious Emission Summary Data (n71_1C_15M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 20 01 47
@ 2024 Flament			EC OD 40 40 Day 04

Channel	Port	Measurement Range	Level (dBm) QPSK	Limit (dBm)	Margin (dB)
		9 kHz to 150 kHz	-68.93	-39.02	-29.91
		150 kHz to 30 MHz	-51.25	-29.02	-22.23
	0	30 MHz to 616.9 MHz	-27.77	-19.02	-8.75
		652.1 MHz to 717.9 GHz	-33.33	-19.02	-14.31
	U	728.1 MHz to 863.8625 MHz	-31.66	-19.02	-12.64
		869.1735 MHz to 1 GHz	-33.38	-19.02	-14.36
		1 GHz to 3 GHz	-28.62	-19.02	-9.60
		3 GHz to 9 GHz	-25.18	-19.02	-6.16
		9 kHz to 150 kHz	-68.41	-39.02	-29.39
		150 kHz to 30 MHz	-51.33	-29.02	-22.31
		30 MHz to 616.9 MHz	-27.17	-19.02	-8.15
	4	652.1 MHz to 717.9 GHz	-28.84	-19.02	-9.82
	1	728.1 MHz to 863.8625 MHz	-26.99	-19.02	-7.97
		869.1735 MHz to 1 GHz	-34.05	-19.02	-15.03
		1 GHz to 3 GHz	-28.41	-19.02	-9.39
Middle		3 GHz to 9 GHz	-25.45	-19.02	-6.43
ivildale		9 kHz to 150 kHz	-68.95	-39.02	-29.93
		150 kHz to 30 MHz	-50.70	-29.02	-21.68
		30 MHz to 616.9 MHz	-29.27	-19.02	-10.25
	2	652.1 MHz to 717.9 GHz	-33.64	-19.02	-14.62
	2	728.1 MHz to 863.8625 MHz	-31.90	-19.02	-12.88
		869.1735 MHz to 1 GHz	-33.20	-19.02	-14.18
		1 GHz to 3 GHz	-28.74	-19.02	-9.72
		3 GHz to 9 GHz	-26.01	-19.02	-6.99
		9 kHz to 150 kHz	-68.87	-39.02	-29.85
		150 kHz to 30 MHz	-51.04	-29.02	-22.02
		30 MHz to 616.9 MHz	-27.18	-19.02	-8.16
	3	652.1 MHz to 717.9 GHz	-31.71	-19.02	-12.69
	3	728.1 MHz to 863.8625 MHz	-31.19	-19.02	-12.17
		869.1735 MHz to 1 GHz	-33.64	-19.02	-14.62
		1 GHz to 3 GHz	-28.25	-19.02	-9.23
		3 GHz to 9 GHz	-26.55	-19.02	-7.53

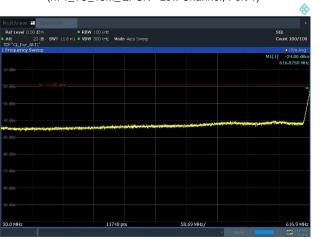
Table 8-7. Conducted Spurious Emission Summary Data (n26_1C_5M+n29_1C_5M+n71_1C_5M)

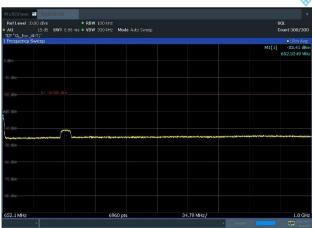
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 29 01 47

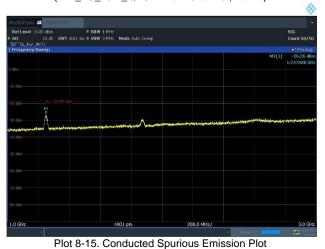
Channel	Port	Measurement Range	Level (dBm) QPSK	Limit (dBm)	Margin (dB)
		9 kHz to 150 kHz	-68.67	-39.02	-29.65
		150 kHz to 30 MHz	-51.47	-29.02	-22.45
		30 MHz to 616.9 MHz	-21.55	-19.02	-2.53
	0	652.1 MHz to 717.9 GHz	-20.43	-19.02	-1.41
	0	728.1 MHz to 863.8625 MHz	-23.98	-19.02	-4.96
		869.1735 MHz to 1 GHz	-31.21	-19.02	-12.19
		1 GHz to 3 GHz	-28.50	-19.02	-9.48
		3 GHz to 9 GHz	-24.14	-19.02	-5.12
		9 kHz to 150 kHz	-68.24	-39.02	-29.22
		150 kHz to 30 MHz	-52.69	-29.02	-23.67
		-19.02	-6.55		
		652.1 MHz to 717.9 GHz	-23.93	-19.02	-4.91
	'	728.1 MHz to 863.8625 MHz	-24.11	-19.02	-5.09
		869.1735 MHz to 1 GHz	-32.19	-19.02	-13.17
		1 GHz to 3 GHz	-28.31	-19.02	-9.29
Middle		3 GHz to 9 GHz	-25.53	-19.02	-6.51
Middle	nadie	9 kHz to 150 kHz	-68.76	-39.02	-29.74
		150 kHz to 30 MHz	-51.63	-29.02	-22.61
		30 MHz to 616.9 MHz	-26.04	-19.02	-7.02
	2	652.1 MHz to 717.9 GHz	-25.91	-19.02	-6.89
		728.1 MHz to 863.8625 MHz	-24.55	-19.02	-5.53
		869.1735 MHz to 1 GHz	-31.89	-19.02	-12.87
		1 GHz to 3 GHz	-28.58	-19.02	-9.56
		3 GHz to 9 GHz	-25.51	-19.02	-6.49
		9 kHz to 150 kHz	-67.99	-39.02	-28.97
		150 kHz to 30 MHz	-51.48	-29.02	-22.46
		30 MHz to 616.9 MHz	-25.12	-19.02	-6.10
	3	652.1 MHz to 717.9 GHz	-26.61	-19.02	-7.59
	3	728.1 MHz to 863.8625 MHz	-24.00	-19.02	-4.98
		869.1735 MHz to 1 GHz	-32.67	-19.02	-13.65
		1 GHz to 3 GHz	-29.15	-19.02	-10.13
		3 GHz to 9 GHz	-25.99	-19.02	-6.97

Table 8-8. Conducted Spurious Emission Summary Data (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	rage 30 01 47

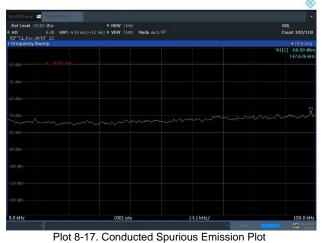


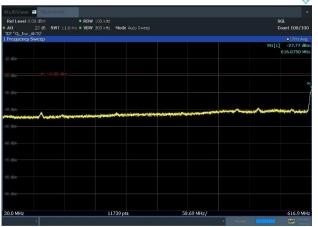

Plot 8-11. Conducted Spurious Emission Plot 9 kHz to 150 kHz (n71_1C_15M_QPSK - Low Channel, Port 1)


Plot 8-12. Conducted Spurious Emission Plot 150 kHz to 30 MHz (n71_1C_15M_QPSK - Low Channel, Port 1)

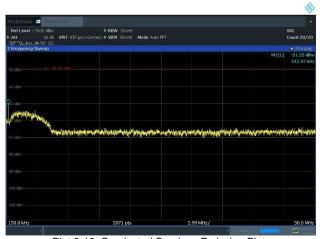
Plot 8-13. Conducted Spurious Emission Plot 30 MHz to 616.9 MHz (n71_1C_15M_QPSK - Low Channel, Port 1)

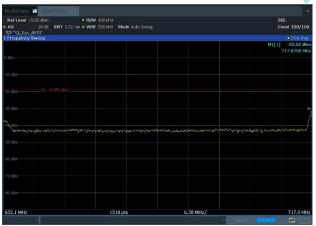
Plot 8-14. Conducted Spurious Emission Plot 652.1 MHz to 1 GHz (n71_1C_15M_QPSK - Low Channel, Port 1)


1 GHz to 3 GHz (n71_1C_15M_QPSK - Low Channel, Port 1)


Plot 8-16. Conducted Spurious Emission Plot 3 GHz to 9 GHz (n71_1C_15M_QPSK - Low Channel, Port 1)

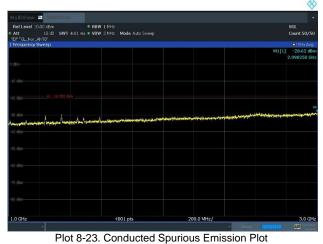
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 31 01 47


9 kHz to 150 kHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_QPSK – Mid, Port 0)


Plot 8-19. Conducted Spurious Emission Plot 30 MHz to 616.9 MHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_QPSK – Mid, Port 0)

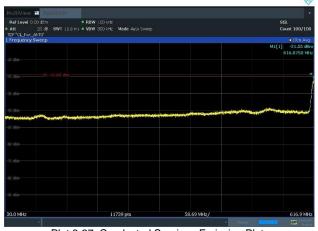

Plot 8-21. Conducted Spurious Emission Plot 728.1 MHz to 863.8625 MHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_QPSK – Mid, Port 0)

Plot 8-18. Conducted Spurious Emission Plot 150 kHz to 30 MHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_QPSK – Mid, Port 0)


Plot 8-20. Conducted Spurious Emission Plot 652.1 MHz to 717.9 MHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_QPSK – Mid, Port 0)

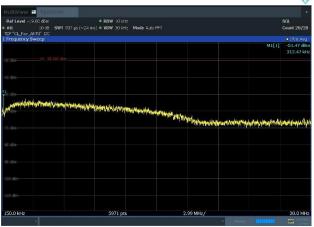

Plot 8-22. Conducted Spurious Emission Plot 869.1375 MHz to 1 GHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_QPSK – Mid, Port 0)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 32 01 47



1 GHz to 3 GHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_QPSK – Mid, Port 0)

Plot 8-25. Conducted Spurious Emission Plot 9 kHz to 150 kHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M_QPSK – Mid, Port0)

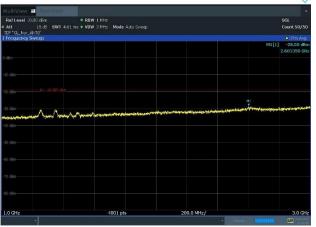


Plot 8-27. Conducted Spurious Emission Plot 30 MHz to 616.9 MHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M_QPSK – Mid, Port0)

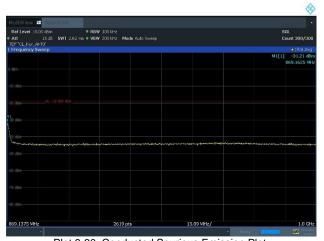
Plot 8-24. Conducted Spurious Emission Plot 3 GHz to 9 GHz

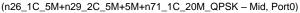
(n26_1C_5M+n29_1C_5M+n71_1C_5M_QPSK - Mid, Port 0)

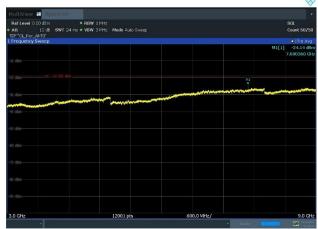
Plot 8-26. Conducted Spurious Emission Plot 150 kHz to 30 MHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M_QPSK – Mid, Port0)


Plot 8-28. Conducted Spurious Emission Plot 652.1 MHz to 717.9 MHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M_QPSK – Mid, Port0)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	F age 33 01 47




Plot 8-29. Conducted Spurious Emission Plot 728.1 MHz to 863.8625 MHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M_QPSK - Mid, Port0)



Plot 8-31. Conducted Spurious Emission Plot 1 GHz to 3 GHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M_QPSK - Mid, Port0)

Plot 8-30. Conducted Spurious Emission Plot 869.1375 MHz to 1 GHz

Plot 8-32. Conducted Spurious Emission Plot 3 GHz to 9 GHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M_QPSK - Mid, Port0)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 34 01 47

8.7 Radiated spurious emission

Test Overview

Radiated spurious emissions measurements are performed using the field strength method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized broadband tri-log antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas.

Test Procedure Used

ANSI C63.26 - Section 5.5.3.2

Test Setting

- 1. Start frequency was set to 30 MHz and stop frequency was set to at least 10 * the fundamental frequency
- 2. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1GHz
- 3. VBW ≥ 3 x RBW
- 4. No. of sweep points ≥ 2 x span / RBW
- 5. Detector = Peak for the pre-scan, (In cases where the level is within 2 dB of the limit, the final measurement is taken using RMS detector.)
- 6. Trace mode = Max Hold (In cases where the level is within 2 dB of the limit, the final measurement is taken using triggering/gating and trace averaging.)
- 7. The trace was allowed to stabilize.

Limit

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{\text{[Watts]}})$, where P is the transmitter power in Watts.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 33 01 47

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

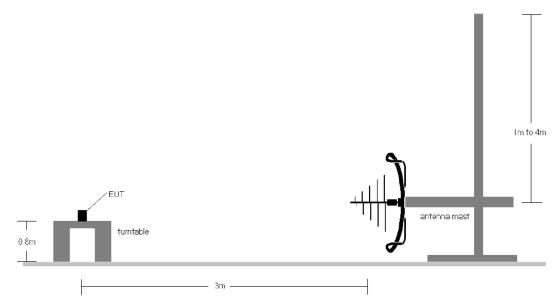


Figure 8-6. Test Instrument & Measurement Setup < 1 GHz

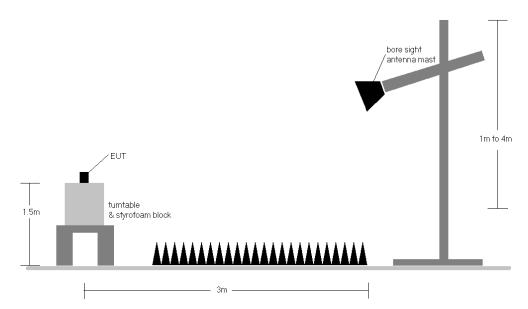


Figure 8-7. Test Instrument & Measurement Setup > 1 GHz

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 30 01 47

Test Notes

1. The average EIRP reported below is calculated per 5.2.7 of ANSI C63.26-2015 which states:

The measured e.i.r.p is converted to E-field in V/m. Then the distance correction is applied before converted back to calculated e.i.r.p.as explained in KDB 971168 D01 D01 v03r01.

Effective Isotropic Radiated Power Sample Calculation

Field Strength [dB μ V/m] = Measured Value [dBm] + 107 + AFCL [dB/m]

 $= -75.31 [dBm] + 107 + 20.38 [dB/m] = 52.07 dB\mu V/m$

e.i.r.p. [dBm] = E[dB μ V/m] + 20 log₁₀(d[m]) - 104.8

= 52.07 dB[μ V/m] + (20*log (3)) - 104.8

= -43.19 dBm

*AFCL (dB/m) contains measurement antenna factor(dB/m) and cable loss(dB) as below:

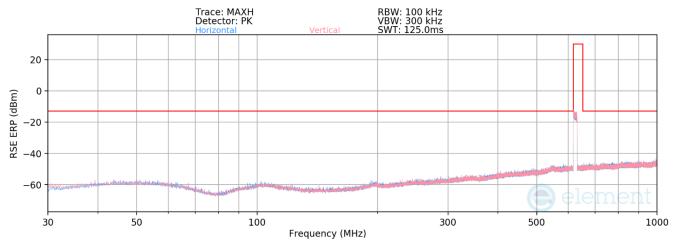
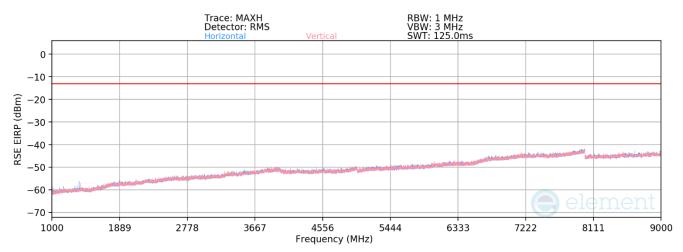
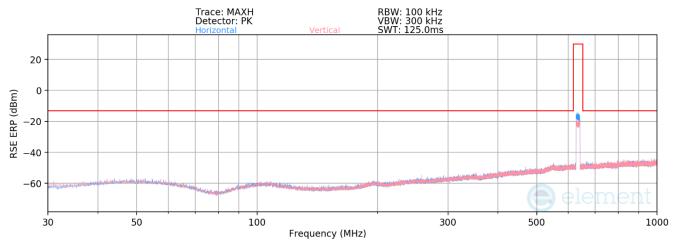
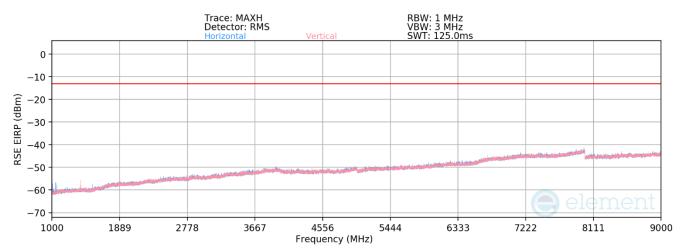

Frequency [MHz]	Antenna Factor (dB/m)	Chamber measurement cable loss + amplifier [dB]	AFCL (dB/m)
981.33	23.34	2.69	26.03
7981.88	37.00	-16.61	20.38

Table 8-9. Adopted AFCL value in the calculation

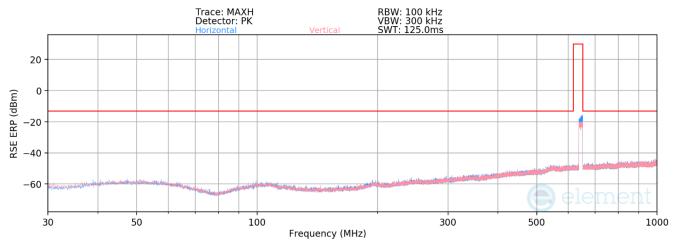

- The EUT was tested in both horizontal and vertical antenna polarizations and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, channel bandwidth configurations shown in the tables below.
- 3. The spectrum is measured from 30 MHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 4. All emissions were measured at a 3-meter test distance.
- 5. Spurious emissions were measured with all EUT antennas transmitting simultaneously and all antenna ports terminated.
- 6. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 7. All modes of operation were investigated and the worst case configuration results are reported in this section.

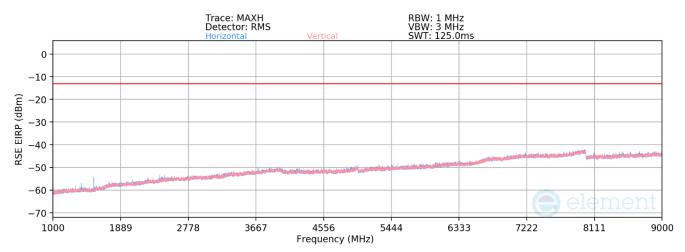
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 37 01 47


Plot 8-33. Radiated spurious emission_30 MHz to 1000 MHz (n71_1C_15M_Low Channel)

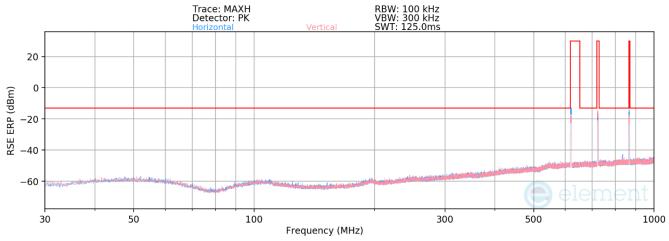

Plot 8-34. Radiated spurious emission_1 GHz to 9 GHz (n71_1C_15M_Low Channel)

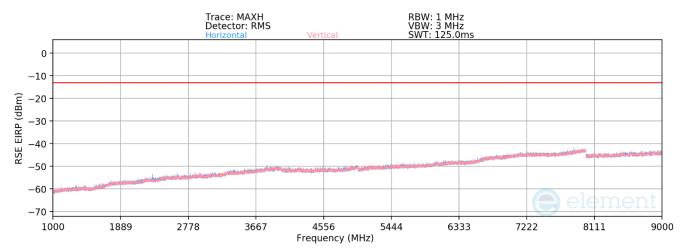
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	rage 30 01 47
© 2021 Element			ES-QP-16-12 Rev.01


Plot 8-35. Radiated spurious emission_30 MHz to 1000 MHz (n71_1C_15M_Mid Channel)

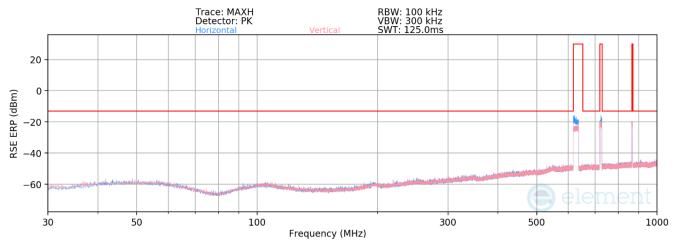

Plot 8-36. Radiated spurious emission_1 GHz to 9 GHz (n71_1C_15M_Mid Channel)

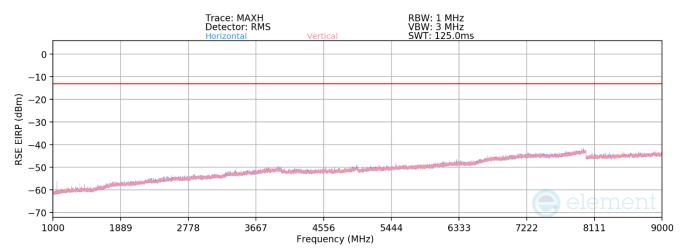
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 39 of 47
© 2021 Element			ES-QP-16-12 Rev.01


Plot 8-37. Radiated spurious emission_30 MHz to 1000 MHz (n71_1C_15M_High Channel)


Plot 8-38. Radiated spurious emission_1 GHz to 9 GHz (n71_1C_15M_High Channel)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 40 of 47
© 2021 Element			ES-QP-16-12 Rev.01


Plot 8-39. Radiated spurious emission_30 MHz to 1000 MHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_Mid Channel)


Plot 8-40. Radiated spurious emission_1 GHz to 9 GHz (n26_1C_5M+n29_1C_5M+n71_1C_5M_Mid Channel)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 41 01 47

Plot 8-41. Radiated spurious emission_30 MHz to 1000 MHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M_Mid Channel)

Plot 8-42. Radiated spurious emission_1 GHz to 9 GHz (n26_1C_5M+n29_2C_5M+5M+n71_1C_20M _Mid Channel)

FCC ID: A3LRF4450T-71A	element MEASUREMENT REPORT (Class II Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 42 01 47

Bandwidth (MHz)	n26_1C_5M+n29_2C_5M+5M+n71_1C_20M
Center Frequency (MHz)	723.5+725.5+634.5+866.5 MHz
Modulation Signal	QPSK

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Heigh [cm]	Turntable azimuth [degree]	Analyzer Level [dBm/MHz]	AFCL [dBm]	Field Strength [dB#//m]	RSE EIRP [dBm/MHz]	Limit [dBm/MHz]	Margin [dB]
992.17	Н	100	90	-84.32	26.03	48.71	-46.55	-13.00	-33.55
971.39	V	150	20	-85.88	25.85	46.97	-48.28	-13.00	-35.28
7981.88	Н	200	90	-79.15	20.38	52.07	-43.19	-13.00	-30.19
7936.35	V	150	60	-78.32	20.09	50.46	-44.79	-13.00	-31.79

Table 8-10. Radiated spurious emission Worst case Summary Data

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 43 01 47

9.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung RRU(RF4450t) FCC ID: A3LRF4450T-71A** complies with all of the requirements of Part 27 FCC Rules.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Fage 44 01 47

10.0 APPENDIX. A

10.1 Conducted Average Output Power

Test Overview

A transmitter port of EUT is connected to the input of a signal analyzer. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Description

KDB 971168 D01 v03r01 – Section 5 KDB 662911 D01 v02r01 – Section E)1) In-Band Power Measurements ANSI C63.26-2015 – Section 5.2.4.4.1

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. Conducted power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = $1 \sim 5\%$ of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Span = $2 \sim 3 \times OBW$
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger Settings is set to "RF Power" for signals with non-continuous operation with the sweep times set to "auto". Refer test note 3 for details.
- 8. Trace mode = Trace-Averaging (RMS) set to average over 100 sweeps
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

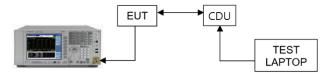


Figure 10-1. Test Instrument & Measurement Setup

<u>Limit</u>

N/A

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	raye 40 01 47

Note

- 1. Result for reference maximum output power of Grant of Authorization is under section 10.1.
- MIMO Calculations are done considering output channel power for all ports and respective margins are calculated according to procedures in section 6.4 of ANSI C63.26 and section D of KDB 971168 D01 v03r01.
- 3. Consider the following factors for MIMO Power:

Conducted power for each port is measured in dBm.

Powers are summed up in linear using the measure-and-sum technique defined in KDB 971168 D01 v03r01-Section D.

Conducted power per port (dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO conducted power in milliWatts (mW).

4. Sample Calculation:

Let us assume the following numbers:

a) Total MIMO Conducted Power as 225552.48 mW

Factors		Value	Unit
Summed MIMO Conducted Power (linear sum)		225552.48	mW
Summed MIMO Conducted Power (dBm)	= 10 * log (225552.48)	53.53	dBm

FCC ID: A3LRF4450T-71A	element	element MEASUREMENT REPORT (Class II Permissive Change)	
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Page 46 01 47

Channel	Port	QPSK	16QAM	64QAM	256QAM
	0	47.69	47.62	47.65	47.65
	1	47.38	47.30	47.24	47.28
Low	2	47.57	47.47	47.58	47.50
Low	3	47.40	47.37	47.42	47.44
	Total Conducted Power (mW)	225552.48	221935.59	223664.01	223363.46
	Total Conducted Power(dBm)	53.53	53.46	53.50	53.49
	0	47.65	47.55	47.66	47.78
	1	47.45	47.44	47.37	47.58
N 4: al	2	47.51	47.48	47.59	47.62
Mid	3	47.42	47.45	47.54	47.46
	Total Conducted Power (mW)	225372.26	223914.05	227086.40	230786.89
	Total Conducted Power(dBm)	53.53	53.50	53.56	53.63
	0	47.57	47.62	47.57	47.65
	1	47.20	47.33	47.25	47.39
∐iah	2	47.48	47.41	47.46	47.42
High	3	47.34	47.41	47.38	47.44
	Total Conducted Power (mW)	219804.46	222046.58	220656.48	223708.33
	Total Conducted Power(dBm)	53.42	53.46	53.44	53.50

Table 10-1. Conducted Average Output Power Table (n71_1C_15M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 47
8K22101401-01-R1.A3L	10/24/2022 - 11/04/2022	RRU(RF4450t)	Faye 41 01 41