

FCC - TEST REPORT

Report Number	:	60.960.15.027.02R01	Date of Issue	:_	September 8, 2017
Model	: _	PML100, 82031, 82032			
Product Type	: _	PRECISION POWER MI	ETER		
Applicant	: _	4iiii Innovations Inc.			
Address	: _	141 2nd Ave East, Coch	rane Alberta, Canad	a T4	IC 2B9
Production Facility	:	4iiii Innovations Inc.			
Address	:	141 2nd Ave East, Coch	rane Alberta, Canad	a T4	IC 2B9
				_	
Test Result	:	■Positive	□Negative		
Total pages including Appendices	:	57			

TÜV SÜD HONG KONG LTD. is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025. TÜV SÜD HONG KONG LTD. reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations TÜV SÜD HONG KONG LTD. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD HONG KONG LTD. issued reports. This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1. Table of Contents

1.	Table of Contents
2.	Details about the Test Laboratory
3.	Description of Equipment Under Test
4.	Summary of Test Standards4
5.	Summary of Test Results5
	5.1.FCC Part 15 Subpart C - BLE5
	5.2.FCC Part 15 Subpart C – ANT+5
6.	General Remarks 6
7.	Test Setups7
	7.1.Radiated test setups Below 1GHz7
	7.2.Radiated test setups Above 1GHz7
	7.3.Conducted RF test setups7
8.	Systems test configuration
9.	Emission Test Results9
	9.1.Spurious Radiated Emission BLE9
	9.2.Radiated Emission ANT+16
	9.3.20dB & 99% Bandwidth ANT+19
	9.4.Bandedge Emission ANT+
	9.5.6dB & 99% Bandwidth BLE25
	9.6.Conducted Peak Output Power BLE
	9.7. Spurious Emissions at Antenna Terminals BLE
	9.8.100kHz Bandwidth of band edges BLE
	9.9.Power Special Density BLE
	9.10.Antenna Requirement
10.	Appendix A - Photographs of EUT47
11.	Appendix B - Setup Photographs of EUT52
12.	10 Appendix C - General Product Information54
13.	Test Equipment Site List
14.	Measurement System Uncertainty57

2. Details about the Test Laboratory

Company name:

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China

Telephone: Fax: 86 755 8828 6998 86 755 828 5299

514049

FCC Registration No.:

3. Description of Equipment Under Test

Description of the Equipment Under Test

Product:	PRECISION POWER METER
Model no.:	PML100, 82031, 82032
FCC ID:	ZZNPM101
Rating:	3.0VDC (1 x 3.0VDC size "CR2032" cell battery)
Frequency:	2457MHz, 2402MHz-2480MHz
Antenna gain:	0 dBi
Number of operated channel:	40
Modulation:	GFSK

4. Summary of Test Standards

	iesi Sianuarus
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2016 Edition	Subpart C - Intentional Radiators

All the test methods for BLE were according to 558074 D01 DTS Meas Guidance v04 DTS Measurement Guidance and ANSI C63.10 (2013).

5. Summary of Test Results

5.1. FCC Part 15 Subpart C - BLE

Emission Tests				
FCC Part 15 Subpart C				
Test Condition	Pages	Tes	st Resu	ılt
		Pass	Fail	N/A
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	34-36	\boxtimes		
FCC Title 47 Part 15.207 Conduct Emission	NIL			\boxtimes
FCC Title 47 Part 15.247(a)(2) 6dB & 99% Bandwidth	28-29	\boxtimes		
FCC Title 47 Part 15.247(b) Peak Output Power	32-34	\boxtimes		
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna	36-38	\boxtimes		
Terminals	00.00		<u> </u>	
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	40-43	\boxtimes		
FCC Title 47 Part 15.247(e) Power Spectral Density	45-47	\boxtimes		
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	48	\boxtimes		

5.2. FCC Part 15 Subpart C – ANT+

Emission Tests				
FCC Part 15 Subpart C				
Test Condition	Pages	Tes	st Resu	ılt
		Pass	Fail	N/A
FCC Title 47 Part 15.249 & 15.209 Radiated Emission	18-19	\boxtimes		
FCC Title 47 Part 15.207 Conduct Emission	NIL			\boxtimes
FCC Title 47 Part 15.215 20dB & 99% Bandwidth	22-23	\boxtimes		
FCC Title 47 Part 15.249 Bandedge Emission	25-26	\boxtimes		

6. General Remarks

Remarks

Client informs that the 82031, 82032 have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction, with PRECISION POWER METER, PML100. The difference lies only on different color of the different models. (Client's conformation letter shown at appendix A)

EMC Tests were performed on model: PML100.

This submittal(s) (test report) is intended for FCC ID: ZZNPM101 complies with : Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules for the DTS grant and Section 15.249 of the FCC Part 15, Subpart C rules for the or DXT grant

The TX and RX range is 2402MHz-2480MHz for the BLE and 2475 Mhz for the ANT+ Note: The report is for BLE and ANT+ is for DTS and DXT grants respectively

SUMMARY:

- All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed
- The Equipment Under Test
 - - Fulfills the general approval requirements.
 - □ **Does not** fulfill the general approval requirements.

Sample Received Date: May 22, 2017

Testing Start Date: May 23, 2017

Testing End Date: July 31, 2017

- TÜV SÜD HONG KONG LTD. -

Reviewed by:

CHAN Kwong Ngai EMC Test Engineer

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Prepared by:

Page 6 of 57

Alex CHAN

EMC Project Engineer

7.2. Radiated test setups Above 1GHz

7.3. Conducted RF test setups

8. Systems test configuration

Auxiliary Equipment Used

during Test:

DESCRIPTION	MANUFACTUR ER	MODEL NO.	S/N
Notebook			
Adapter			

Test software: CRS test tool, which used to control the EUT in continues transmitting mode

The system was configured to hopping mode and non-hopping mode.

The system was configured to channel 0, 19, and 39 for the test. BLE mode

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9. Emission Test Results

9.1. Spurious Radiated Emission BLE

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above1GHz

Spurious Radiated Emission BLE

EUT:	PML100	Test Result
Op Condition:	Operated, TX Mode (2402MHz)	🛛 Passed
Test Specification:	FCC15.205, 15.209 & 15.247(d) Antenna: Horizontal	Not Passed
Comment:	3.0VDC	
Remark:	9kHz to 25GHz	

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
59.423	31.88	40	-8.12	Quasi Peak
176.847	37.65	43.5	-5.85	Quasi Peak
232.783	34.52	46	-11.48	Quasi Peak
528.680	32.69	46	-13.31	Quasi Peak
1004.330	35.22	74	-38.78	Peak
1004.330	20.65	54	-33.35	Average
1597.937	46.14	74	-27.86	Peak
1597.937	32.63	54	-21.37	Average
4804.000	38.55	74	-35.45	Peak
4804.000	28.92	54	-25.08	Average
7206.000	37.88	74	-36.12	Peak
7206.000	26.42	54	-27.58	Average
12010.000	47.87	74	-26.13	Peak
12010.000	37.59	54	-16.41	Average

Spurious Radiated Emission BLE

EUT:	PML100
Op Condition:	Operated, TX Mode (2402MHz)
Test Specification:	FCC15.205, 15.209 & 15.247(d) Antenna: Vertical
Comment:	3.0VDC
Remark:	9kHz to 25GHz

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
59.423	31.03	40	-8.97	Quasi Peak
176.847	35.48	43.5	-8.02	Quasi Peak
232.783	33.29	46	-12.71	Quasi Peak
528.680	31.09	46	-14.91	Quasi Peak
1004.330	37.25	74	-36.75	Peak
1004.330	26.44	54	-27.56	Average
1597.937	41.58	74	-32.42	Peak
1597.937	21.72	54	-32.28	Average
4804.000	35.25	74	-38.75	Peak
4804.000	24.97	54	-29.03	Average
7206.000	41.04	74	-32.96	Peak
7206.000	30.85	54	-23.15	Average
12010.000	42.76	74	-31.24	Peak
12010.000	32.33	54	-21.67	Average

Spurious Radiated Emission BLE

EUT:	PML100	Test Result
Op Condition:	Operated, TX Mode (2440MHz)	🔀 Passed
Test Specification:	FCC15.205, 15.209 & 15.247(d) Antenna: Horizontal	Not Passed
Comment:	3.0VDC	
Remark:	9kHz to 25GHz	

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
59.660	30.03	40	-9.97	Quasi Peak
175.482	32.50	43.5	-11.00	Quasi Peak
230.155	31.55	46	-14.45	Quasi Peak
528.795	30.95	46	-15.05	Quasi Peak
1197.000	41.57	74	-32.43	Peak
1197.000	20.92	54	-33.08	Average
1625.210	39.28	74	-34.72	Peak
1625.210	30.01	54	-23.99	Average
4880.025	34.25	74	-39.75	Peak
4880.025	24.07	54	-29.93	Average
7556.718	39.00	74	-35.00	Peak
7556.718	28.41	54	-25.59	Average
12200.210	46.90	74	-27.10	Peak
12200.210	37.83	54	-16.17	Average

Spurious Radiated Emission BLE

EUT:	PML100
Op Condition:	Operated, TX Mode (2440MHz)
Test Specification:	FCC15.205, 15.209 & 15.247(d) Antenna: Vertical
Comment:	3.0VDC
Remark:	9kHz to 25GHz

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
59.660	29.25	40	-10.75	Quasi Peak
175.482	31.92	43.5	-11.58	Quasi Peak
230.155	31.49	46	-14.51	Quasi Peak
528.795	30.81	46	-15.19	Quasi Peak
1197.000	39.54	74	-34.46	Peak
1197.000	29.27	54	-24.73	Average
1593.062	43.11	74	-30.89	Peak
1593.062	32.85	54	-21.15	Average
4880.156	40.46	74	-33.54	Peak
4880.156	29.72	54	-24.28	Average
7319.062	43.23	74	-30.77	Peak
7319.062	32.61	54	-21.39	Average
12200.210	43.33	74	-30.67	Peak
12200.210	32.88	54	-21.12	Average
7319.062 7319.062 12200.210 12200.210	43.23 32.61 43.33 32.88	74 54 74 54	-30.77 -21.39 -30.67 -21.12	Peak Average Peak Average

Spurious Radiated Emission BLE

EUT:	PML100	Test Result
Op Condition:	Operated, TX Mode (2480MHz)	🔀 Passed
Test Specification:	FCC15.205, 15.209 & 15.247(d) Antenna: Horizontal	Not Passed
Comment:	3.0VDC	
Remark:	9kHz to 25GHz	

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
60.055	30.15	40	-9.85	Quasi Peak
175.550	32.84	43.5	-10.66	Quasi Peak
231.075	29.77	46	-16.23	Quasi Peak
530.005	31.26	46	-14.74	Quasi Peak
1202.005	40.08	74	-33.92	Peak
1202.005	29.94	54	-24.06	Average
1595.625	43.37	74	-30.63	Peak
1595.625	33.48	54	-20.52	Average
4880.156	45.84	74	-28.16	Peak
4880.156	36.11	54	-17.89	Average
7439.065	42.35	74	-31.65	Peak
7439.065	31.87	54	-22.13	Average
12400.450	46.97	74	-27.03	Peak
12400.450	36.54	54	-17.46	Average

Spurious Radiated Emission BLE

EUT:	PML100
Op Condition:	Operated, TX Mode (2480MHz)
Test Specification:	FCC15.205, 15.209 & 15.247(d) Antenna: Vertical
Comment:	3.0VDC
Remark:	9kHz to 25GHz

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
60.055	29.85	40	-10.15	Quasi Peak
175.550	31.42	43.5	-12.08	Quasi Peak
231.075	28.53	46	-17.47	Quasi Peak
530.005	30.40	46	-15.60	Quasi Peak
1202.005	37.22	74	-36.78	Peak
1202.005	26.40	54	-27.60	Average
1595.625	45.47	74	-28.53	Peak
1595.625	34.92	54	-19.08	Average
4880.156	36.29	74	-37.71	Peak
4880.156	26.33	54	-27.67	Average
7527.185	40.80	74	-33.20	Peak
7527.185	31.51	54	-22.49	Average
12400.450	47.14	74	-26.86	Peak
12400.450	36.93	54	-17.07	Average

9.2. Radiated Emission ANT+

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz

Radiated Emission – ANT+

EUT: Op Condition: Test Specification:	PML100 Operated, TX Mode (2457MHz) FCC15.249 & 15.209, Antenna: Horizontal	Test Result
Comment: Remark:	3.0VDC 9kHz to 25GHz	

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
45.520	16.40	40	-23.60	Quasi Peak
59.463	17.51	40	-22.49	Quasi Peak
108.145	15.92	43.5	-27.58	Quasi Peak
2457.000	90.56	114	-23.44	Peak
2457.000	88.46	94	-5.54	Average
4913.750	51.71	74	-22.29	Peak
4913.750	49.88	54	-4.12	Average
9828.125	45.60	74	-28.40	Peak

Radiated Emission

EUT:	PML100	Test Result
Op Condition:	Operated, TX Mode (2457MHz)	🛛 Passed
Test Specification:	FCC15.249 & 15.209, Antenna: Vertical	Not Passed
Comment:	3.0VDC	
Remark:	9kHz to 25GHz	

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
41.397	17.13	40	-22.87	Quasi Peak
48.733	16.73	40	-23.27	Quasi Peak
62.798	15.24	40	-24.76	Quasi Peak
2457.000	89.43	114	-24.57	Peak
2457.000	87.16	94	-6.84	Average
4913.750	48.28	74	-25.72	Peak
4913.750	46.54	54	-7.46	Average
9828.125	47.15	74	-26.85	Peak

9.3. 20dB & 99% Bandwidth ANT+

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit [kHz]

>150 KHz for DTS

20dB & 99% Bandwidth - ANT+

EUT:
Op Condition:
Test Specification:
Comment:

PML100 Operated, TX Mode (2457MHz) FCC15.215, 20dB Bandwidth 3.0VDC

Reflevel	10.00 dBm		RBW	10 kHz					(
Att	30 dB	SWT 1 m	s e VBW 3	30 kHz M r	de Sween				
1Pk Max		0			au encop				
					м	1[1]		- 2.456	21.03 dB 97250 GF
dBm	D1 -0.780 d	Bm			D:	1[1]			0.09 d
					$ \Lambda $	I	I	1	102.70 KH
10 dBm					<u></u>				
20 dBm		 1 700 dBm=		M1	/ <u>D1</u>				
	02 -20			- 7° \	1 mg				
20 dam					ר				
50 UDIII			۲ I	\sim		$ \mathcal{M} $			
		<u>م</u>	لہ						
40 dBm		$\int \mathcal{N}$	~~~~				m		
50 dBm	$-\Lambda \sim$	~~~					v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Ser and the series of the seri	J~~ ·								m
50 dBm									
70 d0									
/U UBM									
30 dBm—									

20dB bandwidth
107.700 kHz

20dB & 99% Bandwidth ANT+

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2457MHz) FCC15.215, 99% Bandwidth 3.0VDC Test Result ∑ Passed ☐ Not Passed

Spectrum	Γ										
Ref Level	10.00 dBm			🔵 RBW	30 kHz						
Att	25 dB	SWT	1.1 ms	: 👄 VBW	100 kHz	Mode	Swe	ер			
∋1Pk Max											
							M	1[1]			-0.69 dBm
						M1	-			2.457	01880 GHz
0 dBm						$\overline{\mathbf{\nabla}}$	_0	CC BW		167.8726	48336 KHZ
						$\langle \rangle$					
-10 dBm						+					
							L				
-20 dBm			_		-12/			2			
					N.S.			ĸ			
-30 dBm					~			5			
40 dBm			\sim	\sim				~	$\sim \sim$		
-40 000		2								M -	
\sim	~~~~	\sim								~~~~	ma
-50 dBm											
-60 dBm			-								
-70 dBm			_								
-80 dBm											
CF 2.457 C	Hz				691	pts				Spa	n 1.0 MHz

99% bandwidth	
167.872 kHz	

Page 21 of 57

9.4. Bandedge Emission ANT+

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz

Bandedge Emission ANT+

EUT: Op Condition: Test Specification: Comment:

PML100 Operated, TX Mode (2457MHz) FCC15.247, Antenna: Horizontal 3.0VDC

Band	Frequency	Result	Limit	Margin	Detector
	MHz	dBµV/m	dBµV/m	dB	
Low	2396.000	34.72	74	-39.28	Peak
Low	2396.000	31.62	54	-22.38	Average
High	2491.000	36.98	74	-37.02	Peak
High	2491.000	32.88	54	-21.12	Average

Bandedge Emission ANT+

9.5. 6dB & 99% Bandwidth BLE

Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

≥500

6dB & 99% Bandwidth BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2402MHz) FCC15.247(a)(2), 6dB Bandwidth & 99% Bandwidth 3.0VDC

Test Result				
🛛 Passed				
Not Passed				

Spectrum	, T							
Ref Level	10.00 dBm	Offset	1.00 dB 😑 RI	3W 100 kHz				
Att	25 dB	SWT	19 µs 👄 V I	BW 300 kHz	Mode Auto FFT			
😑 1Pk Max								
					D1[1]			-0.42 dB 672.90 kHz
0 dBm	D1 -0.820 c	Bm			Occ Bw		1.0680	17366 MHz,
	er	 220. d0m—	M.		~~ <u>₩</u> ז¶1]			-6.49 dBm
-10 dBm	D2 -0.0				_		2.401	67870 GHZ
			A A A A A A A A A A A A A A A A A A A			₹2 ▼		
-20 dBm			1			\mathbf{N}		
-30 dBm			(
-30 0.0111	\frown	\sim						
-40 dBm	/							
-50 dBm								
-50 abiii								
-60 dBm—								
-70 dBm								
-80 dBm								
CF 2.402 G	Hz			691	pts		Spa	n 3.0 MHz

6dB bandwidth	Limit
672.900 kHz	>500 kHz

99% bandwidth	
1068.017 kHz	

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 26 of 57

6dB & 99% Bandwidth BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2440MHz) FCC15.247(a)(2), 6dB Bandwidth & 99% Bandwidth 3.0VDC

Test Result			
🛛 Passed			
Not Passed			

Spectrum	Spectrum								
Ref Level	10.00 dBm	Offset	1.00 dB 👄 RE	3W 100 kHz					
Att	25 dB	SWT	19 µs 👄 ۷	3W 300 kHz	Mode A	uto FFT			
⊖1Pk Max									
					D	1[1]			-0.44 dB 564.30 kHz
0 dBm	D1 -0.170 c	lBm			0	cc Bw——		1.0680	17366 MHz
	D2 _6 '	 170 dBm—			াল — — —	¥(1]			-5.81 dBm
-10 dBm								2.439	68740 GHz
			The second secon						
-20 dBm—			1						
-30 dBm			/						
-40 dBm		$\overline{}$							
-50 dBm									
-60 dBm									
-00 0011									
-70 dBm									
-80 dBm									
05.0.44.0								0	
[CF 2.44 GF	1Z			691	pts			Spa	n 3.0 MHz j

6dB bandwidth	Limit
664.300 kHz	>500 kHz

9	9% bandwidth	
	1068.017 kHz	

EMC_SZ_FR_23.05 FCC Release 2017-06-20

6dB & 99% Bandwidth BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2480MHz) FCC15.247(a)(2), 6dB Bandwidth & 99% Bandwidth 3.0VDC

Test Result	
🛛 Passed	
Not Passed	

Spectrum	r)								
Ref Level	10.00 dBm	Offset	1.00 dB 👄 RE	3W 100 kHz					
Att	25 dB	SWT	19 µs 👄 ۷	3W 300 kHz	Mode A	uto FFT			
●1Pk Max									
					М	1[1]		2.479	-5.70 dBm 67000 GHz
0 dBm	D1 0.320 di	Bm 	MI			cc Bw			41968 MHz
		1 580 dBm				<u>1611</u>]			0.08 dB
-10 dBm			TI			<u> </u>			686.UU KHZ
			7						
-20 dBm							\backslash		
		/	1						
-30 dBm								$\sim\sim$	
-40 08m									
-50 dBm									
-60 dBm									
-70 dBm—									
-80 dBm									
CF 2.48 GF	lz			691	pts			Spa	n 3.0 MHz 🖌

6dB bandwidth	Limit
686.000 kHz	>500 kHz

99% bandwidth
1081.041 kHz
1001.0 4 1 KHZ

EMC_SZ_FR_23.05 FCC Release 2017-06-20

9.6. Conducted Peak Output Power BLE

Test Method

1. Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW,

- Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.

3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted Peak Output Power BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2402MHz) FCC15.247(b) 3.0VDC, Antenna gain: 0 dBi, Cable Loss: 1.0dB

Test Result	
imes Passed	
Not Passed	

Spectrum								
Ref Level 10).00 dBm	Offset 1	.00 dB 👄 RE	3W 1 MHz				
Att	25 dB	SWT	1 ms 👄 VE	3W 3 MHz	Mode Aut	to Sweep		
●1Pk Max								
					M	1[1]		-0.85 dBm
					M1		2.402	04340 GHz
0 dBm			-		-			
-10 dBm								
0.0 10								
-20 dBm	/							
-30 dBm	£							
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
-, o doin								
-80 dBm			+					
	-			601			0	- E O MU-
GF 2.402 GH	2			691	prs		spa	n ə.u ⊮iHz

Conducted Output Power	Limit
-0.05dBm	30dBm

Conducted Peak Output Power BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2440MHz) FCC15.247(b) 3.0VDC, Antenna gain: 0 dBi, Cable Loss: 1.0dB

Spectrun	Γ							
Ref Level	10.00 dBm	Offset 1	1.00 dB 👄 RE	3W 1 MHz				
Att	25 dB	SWT	1 ms 👄 🛛 🛛	3W 3 MHz	Mode Aut	o Sweep		
😑 1Pk Max								
					м М1	1[1]	2.440	-0.17 dBm 24600 GHz
0 dBm——								
-10 dBm								
-20 dBm—								
-30 dBm	/							V~~~
-40 dBm	·							
-50 dBm								
00 45								
-60 dBm								
-70 dBm								
-80 dBm								
CE 2.44 G				691	nts		Sna	n 5.0 MHz
				071	P.2		000	,

Conducted Output Power	Limit
-0.17dBm	30dBm

Conducted Peak Output Power BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2480MHz) FCC15.247(b) 3.0VDC, Antenna gain: 0 dBi, Cable Loss: 1.0dB

Spectrun	n							
Ref Level	10.00 dBm	Offset 1	.00 dB 🥃 RB	W 1 MHz				
Att	25 dB	SWT	1 ms 👄 VE	3W 3 MHz	Mode Aut	o Sweep		
😑 1Pk Max								
				M1	М	1[1]	2.479	0.34 dBm 79020 GHz
0 dBm								
-10 dBm								
-20 dBm—								
-30 dBm	ender							
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm—								
-80 dBm								
CF 2.48 GH	Hz			691	pts		Spa	n 5.0 MHz

Conducted Output Power	Limit
0.34dBm	30dBm

9.7. Spurious Emissions at Antenna Terminals BLE

Test Method

- 1. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious Emissions at Antenna Terminals BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2402MHz) FCC2.1051 & 15.247(d) 3.0VDC Test Result ⊠ Passed □ Not Passed

Spectrun	י 🗋								
Ref Level	10.00 dBm	Offset	1.00 dB 👄 RE	3W 100 kHz					
Att	25 dB	SWT	9.7 ms 👄 ۷	3W 300 kHz	Mode A	uto Sweep			
⊖1Pk Max									
					м	1[1]			62.18 dBm /04.50 MHz
0 dBm									
-10 dBm									
-20 dBm	01 01 000	dB co							
	DI -21.000								
-30 dBm									
-40 dBm									
io abiii									
-50 dBm									
-50 0011									
60 dBm						м	1		
-00 UBIII	a source.		and the later state		a Doubladay	warmen	Hunnuru	Hereward	all a contraction of the
AN AN ALL AND AN	m when the country	numunun	www.www.	Currenter	Crafter a the made				
-70 dBm									
-80 dBm			-						
Start 30.0	MHz	I	1	691	pts	I		Sto	00 1.0 GHz

Spectrun	n]							
Ref Level	10.00 dBm	Offset 1.00 dB	RBW 100 kHz					
Att	25 dB	SWT 240 ms (📄 VBW 300 kHz	Mode Auto	Sweep			
😑 1Pk Max								
				M3[1]		-	52.60 dBm
M1							4	1.8032 GHz
U UBIII				M1[1	1			-1.00 dBm
10 dpm							. 2	2.4070 GHz
-10 ubiii								
20 dpm								
-2010600-	D1 -21.000) dBm						
-20 dBm								
-30 ubiii								
-40 dBm								
-40 08 11								
42 50 dBm	MЗ							
30 00 11	l T							
60 dBm		Mary				.		
manlime	Jan and a Com	humber	manumun	when when a free from the second s	e a marca	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the contraction of	mound
-70 dBm								
, o abiii								
-80 dBm								
00 0011								
Start 1.0 C	Hz		691 p	ts			Stop	25.0 GHz
Marker								
Type Re	f Trc	X-value	Y-value	Function	<u>ı </u>	Fund	tion Result	
M1	1	2.407 GHz	-1.00 dBm	I				
M2	1	1.191 GHz	-51.25 dBm	1				
M3	1	4.8032 GHz	-52.60 dBm	1				

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 34 of 57

Spurious Emissions at Antenna Terminals BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2440MHz) FCC2.1051 & 15.247(d) 3.0VDC

Test Result									
🛛 Passed									
Not Passed									

Spectrun	'n								
Ref Level	10.00 dBm	Offset	1.00 dB 😑 RB	3W 100 kHz					
Att	25 dB	SWT	9.7 ms 👄 ۷	300 kHz	Mode A	uto Sweep			
⊖1Pk Max									
					М	1[1]		-	61.33 dBm i65.20 MHz
0 dBm									
-10 dBm									
-20 dBm	D1 -20.200	dBm							
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm						M1	a to et de de adorde	unter the second	a forme to a dealer
ollasman	han a start a second	many	unnunudad	neuropenante	henrichten	March 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
-70 dBm									
-80 dBm									
Start 30.0	MHz			691	pts			Sto	p 1.0 GHz

Spectru	ım												
Ref Lev	el 10	.00 dBm	Offset 1	.00 dB 🧉	RBW	100 kHz	z						
Att		25 dB	SWT 2	40 ms 🧉	VBW	300 kHz	z M	ode A	uto Sw	еер			
⊖1Pk Ma>	(
M1								M	3[1]				55.58 dBm
													4.8730 GHz
0 00.00								м	1[1]				-0.20 dBm
-10 dBm-	_											1	2.4410 GHZ
20 dBm-	-D1	-20.20	dBm										
			1										
-30 dBm-	_												
-40 dBm-	_												
40													
50 dBm-	_	МЗ							<u> </u>				
		Ť											
-60 dBm-	AM	mun	which why			نبالد امريك	Mar and	mo	to wer	and h	mhand	munor	March m. m.
Manula			www	- and and and a second	Colouration.		www						10 m - 10 m
-70 dBm-	_												
-80 dBm-	-								<u> </u>				
Start 1.0) GH2	2		I		691	pts					Stor	25.0 GHz
Marker							<i></i>						
Type	Ref	Trc	X-value	<u>ا</u> د	Y	-value	1	Func	tion	1	Fun	tion Result	- 1
M1		1	2.4	41 GHz		-0.20 dF	Bm	- and	CION		- T unit	Scient Result	
M2		1	1.22	58 GHz	-	51.03 dF	Bm						
M3		1	4.8	73 GHz	-	-55.58 dF	Bm						
	-												

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 35 of 57

Spurious Emissions at Antenna Terminals BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2480MHz) FCC2.1051 & 15.247(d) 3.0VDC

Test Result									
🛛 Passed									
Not Passed									

Spectrun	n								
Ref Level	10.00 dBm	Offset 1	00 dB 🥌 RE	3W 100 kHz					
Att	25 dB	SWT	9.7 ms 👄 VI	30 0 kHz	Mode A	uto Sweep			
😑 1Pk Max									
					М	1[1]		-	62.16 dBm 89.50 MHz
0 dBm									
-10 dBm—									
-20 dBm	D1 -20.430	dBm 							
-30 dBm									
-40 dBm									
-50 dBm—									
-60 dBm									M1
Hunorallatt	allow mar	mount	how when the	hunan	man from the	un un and	and weather w	namalital	generation of the second
-70 dBm—									
-80 dBm									
start 30.0	MHZ			691	pts			Sto	p 1.0 GHz

Spectrun	n]								
Ref Level	10.00 dBm	Offset 1.	00 dB 👄 I	RBW 100 kHz	_				
Att	25 dB	SWT 2	40 ms 😑 '	VBW 300 kHz	Mode A	uto Sweep)		
⊖1Pk Max									
641					M	3[1]		-	51.96 dBm
					<u> </u>				1.2260 GHz
					M	1[1]			-0.43 dBm
-10 dBm									2.4700 GH2
-20 dBm	D1 -20.430	dBm		_					
-30 dBm									
N12									
-40 dBm									
43. JP									
60 dB		moun				ul have			L
humenetter	alle and a second	how	www.	allow the hard and a service	www	~~~~~~	(manusure)	and a constants and	munun
-70 dBm									
-80 dBm							_		
Start 1.0 (Hz			691	pts			Stor	25.0 GHz
Marker									
Type Re	f Trc	X-value	.	Y-value	Func	tion	Fund	tion Result	. 1
M1	1	2.4	76 GHz	-0.43 dB	m				
M2	1	2.58	D3 GHz	-39.60 dB	m				
M3	1	1.2	26 GHz	-51.96 dB	m				

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 36 of 57

9.8. 100kHz Bandwidth of band edges BLE

Test Method

- 1 Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW \geq RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2402MHz) FCC15.247(d), Conducted 3.0VDC

Spect	rum											[₩
Ref Le	vel :	10.00 dBm	Offset 1.	00 dB 🧉	RBW	100 kHz							
Att		25 dB	SWT	1 ms 🧉	VBW	300 kHz	Mode /	luto Sw	еер				
😑 1Pk M	ax												ר
							N	13[1]				-48.18 di	Bm
0.40m											2.4	100000 G	Hz
U aBm-							N	11[1]				-1.00 di	Bim
10 40-	.										. 2.4	102030 G	Ηz
-10 aBN													π
-20 dBn	<u>م</u>	01 -21.00	D dBm										Ħ
													(U
-30 dBn	∩_+							<u> </u>					Н
												1 (1
-40 dBn	∩—†												1
											M2		
-50 dBn	∩—†										J. and	- Wolf	-
										man	m		- 1
-60 dBn	∩—+												-
huber	com	Villano - avi	meneralina	mann	man	urreter-se	Markella	when	www				- 1
-70 dBn	∩—+												-
													- 1
-80 dBn	∩—+				_			+					
													- 1
Start 2	31.0	Hz				691	nts				Ston	2.404 GF	17
Markor						071					0100	2110101	<u> </u>
Type	Ref	Tre	X-value	1	Y-	value	- Eup	tion	1	Euno	tion Result	•	1
M1		1	2,4020	3 GHz	· ·	-1.00 dBr	n			· une	Alon Nosul	•	-1
M2		1	2.3	39 GHz	-	52.21 dBr	n						
M3		1	2	.4 GHz	-	48.18 dBr	n						
	_												

Band edges	Limit				
47.18 dB	> 20dB				

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2402MHz) FCC15.247(d), Radiated 3.0VDC

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
2200 000	42.02	74	20.00	Deeli
2390.000	43.02	74	-30.98	Реак

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2480MHz) FCC15.247(d), Conducted 3.0VDC

Spectrun	n											
Ref Level	10.00 dBm	Offset 1.	00 dB 🧉	RBV	/ 100 kHz							
Att	25 dB	SWT 75	5.9 µs 🧉	VBV	/ 300 kHz	M	ode A	uto FFT				
⊖1Pk Max												
0 dBm							M	3[1]			2.50	-55.91 dBm 000000 GHz 0.36 dBm
10 4											2.48	800140 GHz
-10 dBm												
-20 dBm	D1 -19.640	dBm										
-30 dBm-												
- A0 dBm—	М.											
-50 dBm	MA A	Re. mm	m	w	$\sim\sim$	m		. M	мз			
-60 dBm	- KP	UN ~~					my	NV		muran	man	monom
-70 dBm												
-80 dBm						<u> </u>						
Start 2.47	8 GHz				691	pts					Stop	2.51 GHz
Marker												
Type Re	f Trc	X-value		1	/-value		Func	tion		Fund	tion Result	t [
M1	1	2.4800	14 GHz		0.36 dB	m						
M2	1	2.483	35 GHz		-53.25 dB	m						
M3	1	2	.5 GHz		-55.91 dB	m						

Band edges	Limit
52.89 dB	> 20dB

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2480MHz) FCC15.247(d), Radiated 3.0VDC

Frequency	Result	Limit	Margin	Detector
MHz	dBµV/m	dBµV/m	dB	
0400 500	44.00	74	00.00	D. J
2483.500	41.98	74	-32.02	Реак

9.9. Power Special Density BLE

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm]

≤8

Test result

Power spectral					
Frequency	density	Result			
MHz	dBm				
Top channel 2402MHz	-9.04	Pass			
Middle channel 2440MHz	-7.41	Pass			
Bottom channel 2480MHz	-7.32	Pass			

Power Spectral Density BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2402MHz) FCC15.247(e) 3.0VDC

PSD	Limit
-14.54 dBm	< 8 dBm

Power Spectral Density BLE

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2440MHz) FCC15.247(e) 3.0VDC

PSD	Limit
-13.28 dBm	< 8 dBm

Power Special Density

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode (2480MHz) FCC15.247(e) 3.0VDC

PSD	Limit
-12.60 dBm	< 8 dBm

9.10. Antenna Requirement

EUT: Op Condition: Test Specification: Comment: PML100 Operated, TX Mode FCC15.203 & 15.247(b) 3.0VDC Test Result ☐ Passed ☐ Not Passed

Limit

For intentional device, according to FCC Title 47 Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC Title 47 Part 15.247(b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The antenna used in this product is PCB antenna, and the maximum gain of this antenna is 0.0 dBi.

10. Appendix A - Photographs of EUT

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 47 of 57

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 48 of 57

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 49 of 57

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 50 of 57

Page 51 of 57

11. Appendix B - Setup Photographs of EUT

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China

Page 52 of 57

20dB & 99% Bandwidth, Peak Output Power, Spurious Emissions at Antenna Terminals, 100kHz Bandwidth of band edges, Min. No. of Hopping Frequencies, Min. Hopping Channel Carrier Frequency Separation, Average Time of Occupancy

12. 10 Appendix C - General Product Information

Radiofrequency radiation exposure evaluation

According to KDB 447498 D01v06 section 4.3.1, For frequencies between 100 MHz to 6GHz and test separation distances \leq 50 mm, the Numeric threshold is determined as:

Step a)

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR

>> The fundamental frequency of the EUT is 2402-2480MHz, the test separation distance is ≤ 50mm. (Manufacturer specified the separation distance is: 20mm)

Step a)

- >> Numeric threshold (2402MHz), mW / 20mm * $\sqrt{2.402GHz} \le 3.0$ Numeric threshold (2402MHz) ≤ 38.713 mW
- >> Numeric threshold (2440MHz), mW / 20mm * $\sqrt{2.440GHz} \le 3.0$ Numeric threshold (2440MHz) ≤ 38.411 mW
- >> Numeric threshold (2457MHz), mW / 20mm * $\sqrt{2.457GHz} \le 3.0$ Numeric threshold (2457MHz) ≤ 38.278 mW
- >> Numeric threshold (2480MHz), mW / 20mm * $\sqrt{2.480GHz} \le 3.0$ Numeric threshold (2480MHz) ≤ 38.100 mW
- >> The power of EUT measured (2402MHz) is: -0.05dBm = 0.989mW The power of EUT measured (2440MHz) is: -0.17dBm = 0.962mW The power of EUT measured (2457MHz) is: -0.47dBm = 0.341mW The power of EUT measured (2480MHz) is: 0.34dBm = 1.081mW

Which is smaller than the Numeric threshold. Therefore, the device is exempt from stand-alone SAR test requirements.

Report Number: 60.960.15.027.02R01

Appendix C

To: TÜV SÜD HKG Ltd.

Attention: From: Fax No: Mr. Edmond Fung Dave McNab

Date: August 17, 2017 Total Page (Cover Included): 1

Declaration Letter

Subject: Declaration of Model Consistency

We: 4iiii Innovations Inc.

Officially notify TÜV SÜD HKG Ltd. that the <<Additional Model>> have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction, with <<PRODUCT>>, <<Main Test Model>>. The difference lies only on different color / different outlook of the different models.

<<Additional Model >>: 82031, 82032

<<Main Test Model >>: PML100

<<Product>>: PRECISION POWER METER

Applicant:

August 16, 2017 (Date)

(Applicant's authorized signature and company Chop)

file: declaration letter-template

Page 1 of 1

EMC_SZ_FR_23.05 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R. China Page 55 of 57

13. Test Equipment Site List

Radiated emission Test – Site 2

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-14
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-7-14
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2018-7-14
Signal Generator	Rohde & Schwarz	SMY01	839369/005	2018-7-7
Attenuator	Agilent	8491A	MY39264334	2018-7-7
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

20dB & 99% Bandwidth, Peak Output Power, Spurious Emissions at Antenna Terminals, 100kHz Bandwidth of band edges, Power Spectral Density – Site 2

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Generator	Rohde & Schwarz	SMB100A	108272	2018-7-7
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2018-7-7
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2018-7-7
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	101226/100851	2018-7-7

14. Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty			
Items	Extended Uncertainty		
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.54dB		
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 4.83dB; Vertical: 4.91dB;		
Uncertainty for Radiated Emission in 3m chamber	Horizontal: 4.89dB;		
1000MHz-25000MHz	Vertical: 4.88dB;		
Uncertainty for Conducted RF test	2.04dB		