MPE Report According to

FCC CFR Title 47 Part 15 Subpart E (15.407)

Applicant	:	Amcrest Technologies LLC				
Address	:	16727 Park Row Dr.Houston, TX 77084				
Manufacturer	:	Chejiang Dahua Vision Technology Co., Ltd.				
Address	:	No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China				
Equipment	:	2K Dual Band Pan/Tilt Wireless IP Camera				
	:	IP3M-941B, IP3M-941W, IP3M-941S, IP3M-941B-UK, IP3M-941W-UK,				
Model No.		IP3M-941S-UK, IP3M-941B-EU, IP3M-941W-EU, IP3M-941S-EU,				
		IP3M-941B-******, IP3M-941W-******, IP3M-941S-******(****** can be "A-Z",				
		or "-" or blank)				
FCC ID	:	AMCREST				

The test result refers exclusively to the test presented test model / sample.,

 \square

■ Without written approval of *Cerpass Technology (Suzhou) Co.,Ltd.* the test report shall not be reproduced except in full.

Prepared By:

Kerry Zhou Approved by:

Miro Chueh (EMC/RF Manager)

Laboratory Accreditation:

Cerpass Technology Corporation Test Laboratory NVLAP LAB Code: 200954-0 TAF LAB Code: 1439

Cerpass Technology (SuZhou) Co., Ltd.

NVLAP LAB Code:	200814-0
CNAS LAB Code:	L5515

Radio Frequency Exposure

LIMIT

0

For 2.4G Band: According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

For 5.0G Band: According to FCC §1.1310, The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b).

EUT Specification

EUT	2K Dual Band Pan/Tilt Wireless IP Camera							
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.150GHz ~ 5.250GHz WLAN: 5.745GHz ~ 5.825GHz Bluetooth: 2.402GHz ~ 2.480 GHz 							
Device category	 Portable (<20cm separation) Mobile (>20cm separation) 							
Exposure classification	 Occupational/Controlled exposure (S = 5mW/cm²) General Population/Uncontrolled exposure (S=1mW/cm²) 							
Antenna diversity	 Single antenna Multiple antennas Tx diversity Rx diversity Xr/Rx diversity 							
	Mode	Power (dBm)	Power (W)					
	IEEE802.11b	25.11	0.3243					
Max. output power for 2.4G Band	IEEE802.11g	25.39	0.3459					
2.40 Ballu	IEEE802.11n(20MHz)	25.39	0.3459					
	IEEE802.11n(40MHz)	25.37	0.3443					
	IEEE802.11a	14.44	0.0278					
	IEEE802.11n(20MHz)	14.54	0.0284					
Max. output power for	IEEE802.11ac(20MHz)	14.47	0.0280					
5.150-5.250GHz	IEEE802.11n(40MHz)	14.03	0.0253					
	IEEE802.11ac(40MHz)	14.11	0.0258					
	IEEE802.11ac(80MHz)	12.52	0.0179					
	IEEE802.11a	14.24	0.0265					
	IEEE802.11n(20MHz)	14.13	0.0259					
Max. output power for	IEEE802.11ac(20MHz)	14.12	0.0258					
5.745-5.850GHz	IEEE802.11n(40MHz)	13.12	0.0205					
	IEEE802.11ac(40MHz)	13.16	0.0207					
	IEEE802.11ac(80MHz)	13.41	0.0219					
	6.12dBi for 2.4G Band							
Antenna gain (Max)	2.83dBi for 5.150-5.250GHz 3.15dBi for 5.745-5.850GHz							
Evaluation applied	MPE Evaluation*							
Remark:								

1. The maximum output power is 25.89dBm (0.3459W) at 2412MHz (with numeric 4.093antenna gain.)

for2.4G band

The maximum output power is <u>14.54dBm (0.0284W)</u> at <u>5240MHz</u> (with <u>numeric 1.919antenna gain</u>.) The maximum output power is <u>14.24dBm (0.0265W)</u> at <u>5825MHz</u> (with <u>numeric 2.065antenna gain</u>.)

- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

*Note: Simultaneous transmission is not applicable for this EUT.

TEST RESULTS FOR 2.4G BAND

No non-compliance noted.

Calculation

 $E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

.

Where d = Distance in cm P = Power in mW G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
IEEE802.11b	2412-2462	25.11	6.12	20	0.2642	1
IEEE802.11g	2412-2462	25.39	6.12	20	0.2818	1
IEEE802.11n20	2412-2462	25.39	6.12	20	0.2818	1
IEEE802.11n40	2422-2452	25.37	6.12	20	0.2805	1

TEST RESULTS FOR 5150-5250MHZ

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW / cm²

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
IEEE802.11a	5180-5240	14.44	2.83	20	0.0106	1
IEEE802.11n(20MHz)	5180-5240	14.54	2.83	20	0.0109	1
IEEE802.11ac(20MHz)	5180-5240	14.47	2.83	20	0.0107	1
IEEE802.11n(40MHz)	5190-5230	14.03	2.83	20	0.0097	1
IEEE802.11ac(40MHz)	5190-5230	14.11	2.83	20	0.0098	1
IEEE802.11ac(80MHz)	5210	12.52	2.83	20	0.0068	1

TEST RESULTS FOR 5745-5825MHZ

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW / cm²

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
IEEE802.11a	5745-5825	14.24	3.15	20	0.0109	1
IEEE802.11n(20MHz)	5745-5825	14.13	3.15	20	0.0106	1
IEEE802.11ac(20MHz)	5745-5825	14.12	3.15	20	0.0106	1
IEEE802.11n(40MHz)	5755-5795	13.12	3.15	20	0.0084	1
IEEE802.11ac(40MHz)	5755-5795	13.16	3.15	20	0.0085	1
IEEE802.11ac(80MHz)	5775	13.41	3.15	20	0.0090	1