

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

Amcrest SmartHome 1080P Detterent Camera

MODEL NUMBER: ADC2W

PROJECT NUMBER: 4790425401-2.3

REPORT NUMBER: 4790425401-2.3-1

FCC ID: ZZ2-ADC2W

ISSUE DATE: Aug. 12, 2022

Prepared for

Amcrest Technologies LLC.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: + 86-512-6808 6400 Fax: + 86-512-6808 4099

Website: www.ul.com

Page 2 of 162

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	08/12/2022	Initial Issue	

TABLE OF CONTENTS

1.	. A	TTESTATION OF TEST RESULTS	4
2	. ті	EST METHODOLOGY	6
3	. F	ACILITIES AND ACCREDITATION	6
4.	C	ALIBRATION AND UNCERTAINTY	7
-	4.1.		
	4.2.		
5.	. E	QUIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	9
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.7.	THE WORSE CASE CONFIGURATIONS	12
	5.8.	TEST ENVIRONMENT	12
	5.9.	DESCRIPTION OF TEST SETUP	13
	5.10	D. MEASURING INSTRUMENT AND SOFTWARE USED	14
6	. М	IEASUREMENT METHODS	15
7	. A	NTENNA PORT TEST RESULTS	16
	7.1.	ON TIME AND DUTY CYCLE	16
	7.2.	6 dB BANDWIDTH	19
	7.3.	CONDUCTED POWER	30
	7.4.	POWER SPECTRAL DENSITY	32
	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	43
8	. R	ADIATED TEST RESULTS	80
	8.1.	LIMITS AND PROCEDURE	80
	8.1.	TEST ENVIRONMENT	86
	8.2.	RESTRICTED BANDEDGE	86
	8.3.	SPURIOUS EMISSIONS	103
9	. А	C POWER LINE CONDUCTED EMISSIONS	159
1	0.	ANTENNA REQUIREMENTS	162

Page 4 of 162

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Amcrest Technologies LLC.

Address: 16727 Park Row Dr, Houston, TX 77084, United States of America

Manufacturer Information

Company Name: Amcrest Technologies LLC.

Address: 16727 Park Row Dr, Houston, TX 77084, United States of America

EUT Description

Product Name: Amcrest SmartHome 1080P Detterent Camera

Model Name: ADC2W
Sample Number: 5040307
Data of Receipt Sample: Jun. 09, 2022

Date Tested: Jun. 09, 2022 ~ Aug. 09, 2022

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS

REPORT No.: 4790425401-2.3-1 Page 5 of 162

	Summary of Test Results							
Clause	Test Items	FCC Rules	Test Results					
1	6db DTS Bandwidth	FCC 15.247 (a) (2)	Complied					
2	Conducted Power	FCC 15.247 (b) (3)	Complied					
3	Power Spectral Density	FCC 15.247 (e)	Complied					
4	Conducted Band edge And Spurious emission	FCC 15.247 (d)	Complied					
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205	Complied					
6	Conducted Emission Test for AC Power Port	FCC 15.207	Complied					
7	Antenna Requirement	FCC 15.203	Complied					

Remark:

Laboratory Leader

The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C > when <Accuracy Method> decision rule is applied.

Prepared By:	Reviewed By:	
Tom Tang	Leon Wu	
Tom Tang	Leon Wu	
Authorized By:		
Chris Zhong		
Chris Zhong		

Page 6 of 162

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

Test Location	UL-CCIC Company Limited, EMC&RF Lab
Address	No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China
Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056; CAB No.: CN0073) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS based on KDB 414788.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 7 of 162

4. CALIBRATION AND UNCERTAINTY

4.1. **MEASURING INSTRUMENT CALIBRATION**

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.1dB
Radiation Emission test (include Fundamental emission) (9kHz-30MHz)	3.4dB
Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	3.4dB
Radiation Emission test (1GHz to 26GHz) (include Fundamental emission)	3.9dB (1GHz-18Gz)
Note: This was estaints assume that a surrounded by	4.2dB (18GHz-26.5Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 162

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	Amcrest SmartHome 1080P Detterent Camera
Model No.:	ADC2W
Operating Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Type of Modulation:	IEEE for 802.11B: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11G: OFDM (BPSK, QPSK, 16QAM, 64QAM)) IEEE for 802.11N(HT20 and HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Channels Step:	Channels with 5MHz step
Test software of EUT:	SecureCRT (manufacturer declare)
Antenna Type:	IFA Antenna
Antenna Gain:	Antenna 1: 1.28 dBi Antenna 2: 1.28 dBi
	Remark: This data is provided by customer and our lab isn't responsible for this data

Page 9 of 162

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains	IEE Std. 802.11	Channel Number	Max AV Conducted Power (dBm)			
(NTX)	ILL 310. 802.11	Charmer Number	Ant 1	Ant2	Total	
1	IEEE 802.11b	1-11[11]	16.47	/	/	
1	IEEE 802.11g	1-11[11]	16.19	/	/	
1/2	IEEE 802.11n HT20	1-11[11]	12.78	12.73	15.76	
1/2	IEEE 802.11n HT40	3-9[7]	10.71	10.86	13.77	

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)								
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)								
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452				

	Channel List for 802.11n (40 MHz)									
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)										
3	2422	5	2432	7	2442	9	2452			
4	2427	6	2437	8	2447					

Page 10 of 162

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX (802.11b)	CH1, CH6, CH11	2412MHz, 2437MHz, 2462MHz
WiFi TX (802.11g)	CH1, CH6, CH11	2412MHz, 2437MHz, 2462MHz
WiFi TX (802.11n HT20)	CH1, CH6, CH11	2412MHz, 2437MHz, 2462MHz
WiFi TX (802.11n HT40)	CH3, CH6, CH9	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softv	vare		Secure CRT					
	Transmit		Test Channel					
Modulation Mode	Antenna Number	NCB: 20MHz			NCB: 40MHz			
Mode		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	default	default	default				
802.11g	1	default	default	default	/			
802.11n HT20	1/2	default	default	default				
802.11n HT40	1/2		/		default	default	default	

Page 11 of 162

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	IFA antenna	1.28
2	2400-2483.5	IFA antenna	1.28

The EUT support Cyclic Shift Diversity(CDD) mode.

MIMO output power port and MIMO PSD port summing was performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with clause F)2)f)(i).

For output power measurements:

Directional gain= Gant + Array Gain = 1.28 dBi

G_{ANT}: equal to the gain of the antenna having the highest gain

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

For power spectral density (PSD) measurements:

Directional gain= GANT + Array Gain = 4.29 dBi

Array Gain = 10 log(Nant/Nss) dB. Nant : number of transmit antennas

Nss: number of spatial streams, The worst case directional gain will occur when Nss = 1

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11g	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11N (HT20) MIMO	⊠2TX, 2RX	Antenna1 or Antenna2 can be used as transmitting/receiving antenna independently.
IEEE 802.11N (HT20) MIMO	⊠2TX, 2RX	Antenna1 or Antenna2 can be used as transmitting/receiving antenna independently.

Remark:

- 1) For this product, it has two antennas, antenna1 and antenna2, only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical. For the modes of 11B&11G only the antenna1 is working.
- 2) For the 11N mode (including the 11N HT20 SISO,11N HT20 MIMO,11N HT40 SISO,11N HT40 MIMO), pre-testing all test modes, only the worst case modes is included in this report.

Page 12 of 162

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there two transmission antennas, and pre-testing both of them, only the worse data for the antenna is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

5.8. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests		
Relative Humidity	55 ~ 65%		
Atmospheric Pressure:	101kPa		
Temperature	TN	21 ~ 28°C	
	VL	N/A	
Voltage:	VN	AC 120V	
	VH	N/A	

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

Page 13 of 162

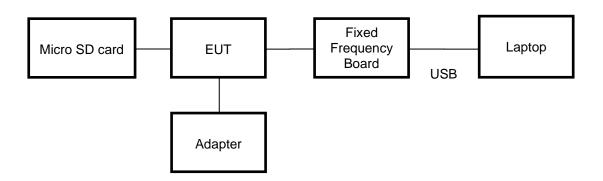
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E550c	N/A
2	Fixed Frequency Board	N/A	N/A	Supply by UL Lab
3	AC Adaptor	MASS POWER	NBS10B050200VUU	INPUT: 100-240V~, 50/60Hz, 0.3A OUTPUT: 5.0V=2.0A

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB	USB to TTL	100cm Length (Supply by UL Lab)	1


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Micro SD card	Sandisk	A1	32GB

TEST SETUP

The EUT can work in an engineer mode with a software through a PC.

SETUP DIAGRAM FOR TESTS

Page 14 of 162

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions (Instrument)								
		Соі	nducted	Emiss	sions	(Instrui			
Used	Equipment	Manufacturer	Model	No.	Seria	al No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	ESR	3	126	5700	2020-12-05	2021-12-04	2022-12-03
$\overline{\checkmark}$	Two-Line V-Network	R&S	ENV2	16	126	6701	2020-12-05	2021-12-04	2022-12-03
V	Artificial Mains Networks	R&S	ENY8	31	126	5711	2020-10-13	2021-10-12	2022-10-11
				Soft	ware				
Used	Des	cription		Ма	nufac	turer	Name	Version	
V	Test Software for 0	Conducted distur	bance		R&S		EMC32	Ver. 9.25	
		Ra	diated E	missi	ions (nstrum	nent)		
Used	Equipment	Manufacturer	Model	No.	Seria	al No.	Upper Last Cal.	Last Cal.	Next Cal.
$\overline{\checkmark}$	Spectrum Analyzer	Keysight	N9010	0B	155	727	2021-05-09	2022-04-09	2023-04-08
V	EMI test receiver	R&S	ESR2	26	126	6703	2020-12-05	2021-12-04	2022-12-03
V	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB 1	1513	158	456	2021-06-04	2022-06-03	2023-06-02
V	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		177	'821	2019-01-19	2022-01-18	2025-01-17
V	Receiver Antenna (1GHz-18GHz)	R&S	HF90)7	126	705	2019-01-27	2022-02-28	2025-02-27
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9	170	126	706	2019-02-29	2022-02-28	2025-02-27
	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1G ²	18-50	177	'825	2021-03-26	2022-03-01	2023-02-28
V	Pre-amplification (To 26.5GHz)	R&S	SCU-2	26D	135	391	2020-12-05	2021-12-04	2022-12-03
	Band Reject Filter	Wainwright	WRCJ 2350-24 2483.5-25 4085	400- 533.5-		1	2021-05-09	2022-05-08	2023-05-07
V	Highpass Filter	Wainwright	WHKX 2700-30 18000-4	000-		2	2021-05-09	2022-05-08	2023-05-07
			Sof						
Used	Desci	ription	Ма	anufac	turer		Name	Version	
☑ Test Software for Radiated disturbance T			Tonsce			TS+	Ver. 2.5		
			Oth	er ins	trume	nts			
Used	Equipment	Manufacturer	Model No.		Seria	al No.	Upper Last Cal.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	N9010	0B	155	368	2021-05-09	2022-04-09	2023-04-08
V	Power Meter	Keysight	U2021	XA	155	370	2021-05-09	2022-04-09	2023-04-08

Page 15 of 162

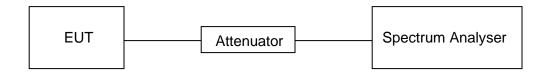
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth and 99% Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Conducted Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.2.3 (Method AVG PM)
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4 (Method PK PSD)
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test for AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 162

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

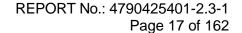

LIMITS

None; for reporting purposes only

PROCEDURE

FCC KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

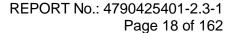


RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)
11B	100	100	1	100	0	0.01
11G	100	100	1	100	0	0.01
11N HT20	100	100	1	100	0	0.01
11N HT40	100	100	1	100	0	0.01

Note: 1) Duty Cycle Correction Factor=10log(1/x).

- 2) Where: x is Duty Cycle (Linear)
- 3) Where: T is On Time (transmit duration)
- 4) Pre-testing Antenna 1 and Antenna 2, and pre-testing SISO and MIMO modes, only the data of worse case is shown in this test repot.



TEST GRAPHS

Spectrum Analyzer 1
Swept SA

KEYSIGHT Input Re Input Z 50 0. Batten 30 dB PNO Fast Ingut Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingut Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingut Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingut Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingut Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingu Re Ingut Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingu Re Ingu Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingu Re Ingu Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingu Re Ingu Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingu Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingu Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingu Z 50 0. Batten 30 dB Preamp Off Ingu Re Ingu Z 50 0. Batten 30 dB Preamp Off Ingu Z 50 0. Ba

X Axis Scale

.:: 📎

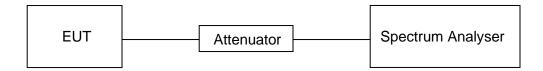
10:03:16 PM

Page 19 of 162

7.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
FCC 15.247(a)(2)	6dB Bandwidth	>= 500kHz	2400-2483.5		


TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

Form-ULID-008536-9 V2.0

Page 20 of 162

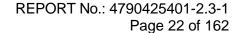
RESULTS

Test Mode	Test Antenna	Test Channel	6dB bandwidth (MHz)	Result
11B		LCH	10.0640	Pass
	Antenna 1	MCH	10.0467	Pass
		HCH	10.0653	Pass
		LCH	16.5733	Pass
11G	Antenna 1	MCH	16.5560	Pass
		HCH	16.5680	Pass
		LCH	17.8213	Pass
	Antenna 1	MCH	17.7787	Pass
11N20 MIMO		HCH	17.7933	Pass
1 TINZU IVIIIVIU	Antenna 2	LCH	17.7840	Pass
		MCH	17.7933	Pass
		HCH	17.8173	Pass
		LCH	36.4080	Pass
	Antenna 1	MCH	36.3893	Pass
11N40 MIMO		HCH	36.4293	Pass
		LCH	36.4160	Pass
	Antenna 2	MCH	36.3733	Pass
		HCH	36.4240	Pass

Remark:

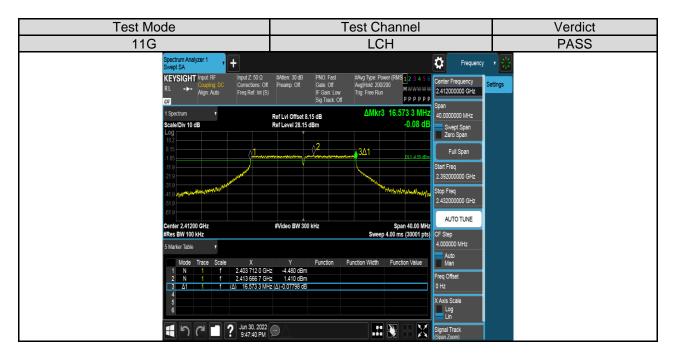

¹⁾ For this product, it has two antennas, antenna 1 and antenna 2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical. But for the modes of 11B &11G, only the antenna 1 is working.

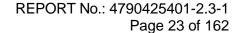
²⁾ Through pre-testing all the test modes of 11N 20 and 11N40, including SISO and MIMO, but only the data if worse case is included in this test report.

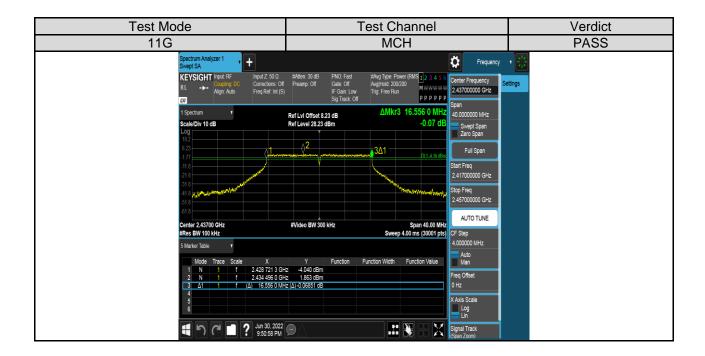


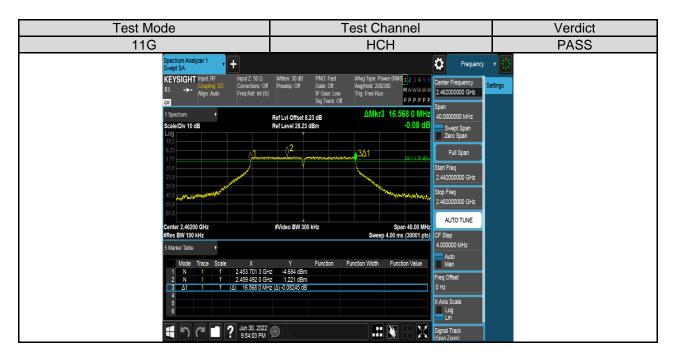
TEST GRAPHS

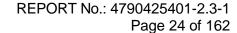

Antenna 1:

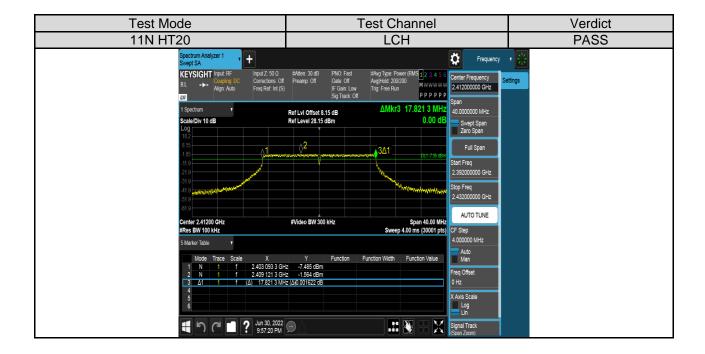


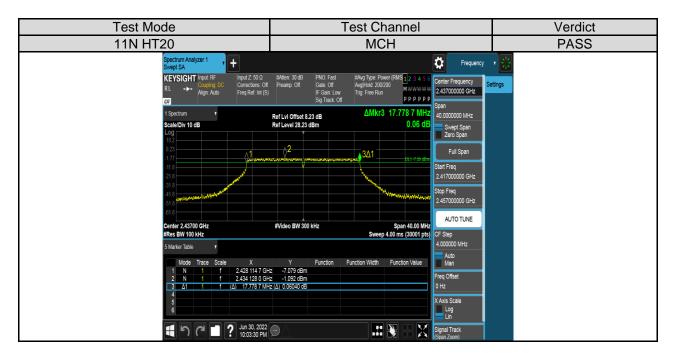


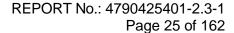


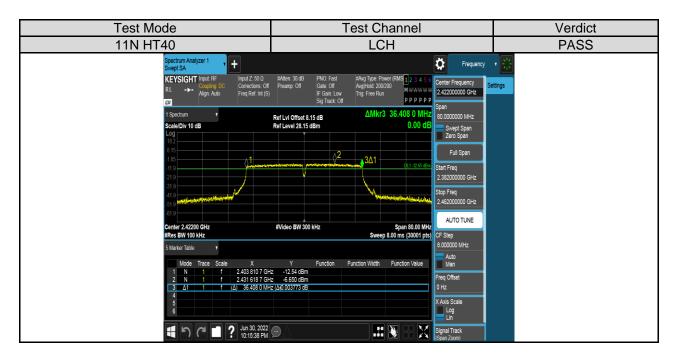


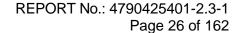


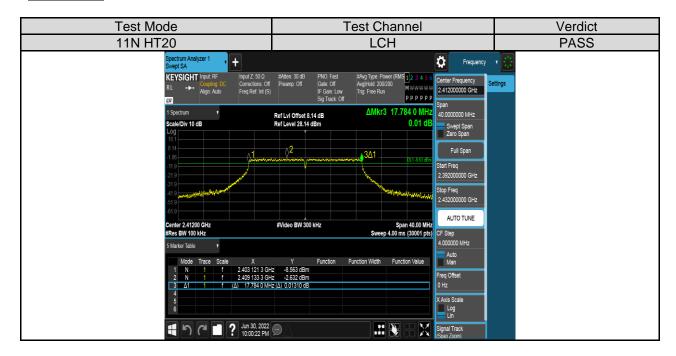


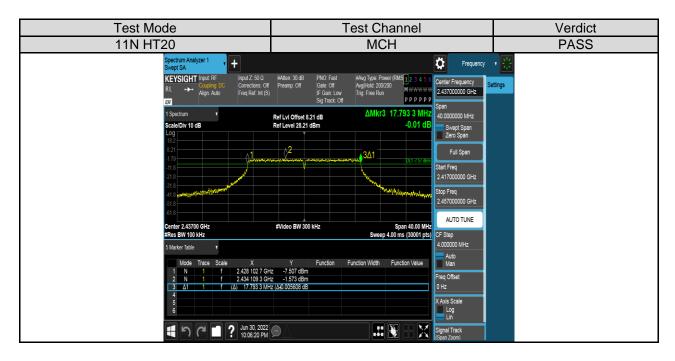




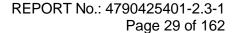








Antenna 2:



Page 30 of 162

7.3. CONDUCTED POWER

LIMITS

FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
FCC 15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5

¹⁾ If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

AVG Detector use for AVG result.

TEST SETUP

Page 31 of 162

RESULTS

Test Mode	Test Antenna	Test Channel	Measurement Output Power (AV)	10log(1/x) Factor	Maximum Conducted Output Power (AV)	Verdict
			dBm	dBm	dBm	
		LCH	16.27	0	16.27	Pass
11B	Antenna 1	MCH	16.47	0	16.47	Pass
		HCH	15.85	0	15.85	Pass
		LCH	15.95	0	15.95	Pass
11G	Antenna 1	MCH	16.19	0	16.19	Pass
		HCH	15.66	0	15.66	Pass
		LCH	12.78	0	12.78	Pass
	Antenna 1	MCH	12.77	0	12.77	Pass
		HCH	12.17	0	12.17	Pass
		LCH	11.48	0	11.48	Pass
11N20 MIMO	Antenna 2	MCH	12.73	0	12.73	Pass
		HCH	12.50	0	12.50	Pass
		LCH	15.19	0	15.19	Pass
	Antenna 1+2	MCH	15.76	0	15.76	Pass
	1.2	HCH	15.35	0	15.35	Pass
		LCH	10.64	0	10.64	Pass
	Antenna 1	MCH	10.71	0	10.71	Pass
11N40 MIMO		HCH	10.66	0	10.66	Pass
		LCH	9.68	0	9.68	Pass
	Antenna 2	MCH	9.85	0	9.85	Pass
		HCH	10.86	0	10.86	Pass
		LCH	13.20	0	13.20	Pass
	Antenna 1+2	MCH	13.31	0	13.31	Pass
		HCH	13.77	0	13.77	Pass

Remark:

- 1) For all the test results has been adjusted the duty cycle factor.
- 2) For Correction Factor is refer to the result in section 7.1
- 3) For this product, it has two antennas, antenna1 and antenna2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical. But for the modes of 11B &11G, only the antenna 1 is working.
- 4) Through pre-testing all the test modes of 11N 20 and 11N40, including SISO and MIMO, but only the data if worse case is included in this test report.

Form-ULID-008536-9 V2.0

Page 32 of 162

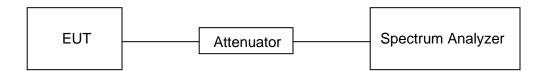
7.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Ran (MHz)			
FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

¹⁾ If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE

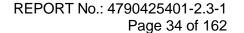

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	3 kHz ≤ RBW ≤100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

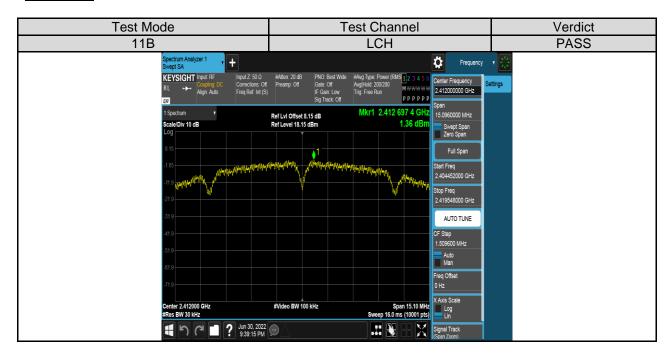
TEST SETUP

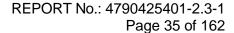

Page 33 of 162

RESULTS

Test Mode	Test Antenna	Test Channel	Maximum Peak power spectral density(dBm/30kHz)	Verdict
		LCH	1.36	Pass
11B	Antenna 1	MCH	1.58	Pass
		HCH	0.93	Pass
		LCH	-1.19	Pass
11G	Antenna 1	MCH	-1.00	Pass
		HCH	-1.56	Pass
		LCH	-3.88	Pass
	Antenna 1	MCH	-3.79	Pass
		HCH	-4.44	Pass
		LCH	-5.13	Pass
11N20 MIMO	Antenna 2	MCH	-3.96	Pass
		HCH	-4.05	Pass
	Antenna 1+2	LCH	-1.45	Pass
		MCH	-0.86	Pass
		HCH	-1.23	Pass
		LCH	-8.92	Pass
	Antenna 1	MCH	-9.13	Pass
		HCH	-9.39	Pass
	Antenna 2	LCH	-10.07	Pass
11N40 MIMO		MCH	-10.01	Pass
		HCH	-9.01	Pass
		LCH	-6.45	Pass
	Antenna 1+2	MCH	-6.54	Pass
		HCH	-6.19	Pass

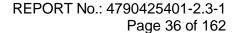
Remark:

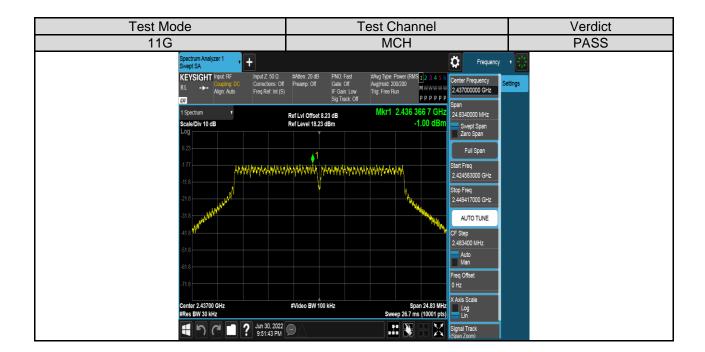

- 1) For this product, it has two antennas, antenna1 and antenna2, but only the 802.11N HT20 and 802.11N HT40 modes can support both the SISO and MIMO technical. But for the modes of 11B &11G, only the antenna 1 is working.
- 2) Through pre-testing all the test modes of 11N 20 and 11N40, including SISO and MIMO, but only the data if worse case is included in this test report.

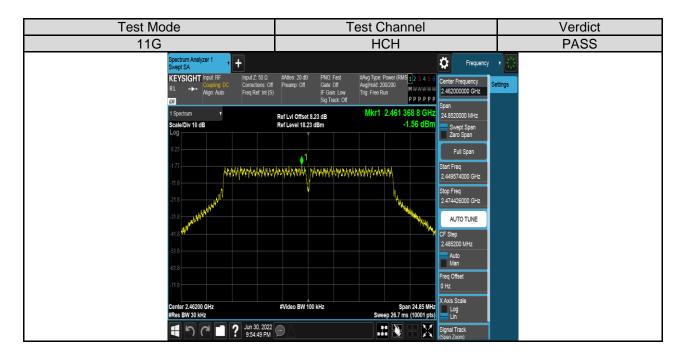


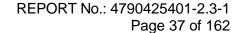
TEST GRAPHS

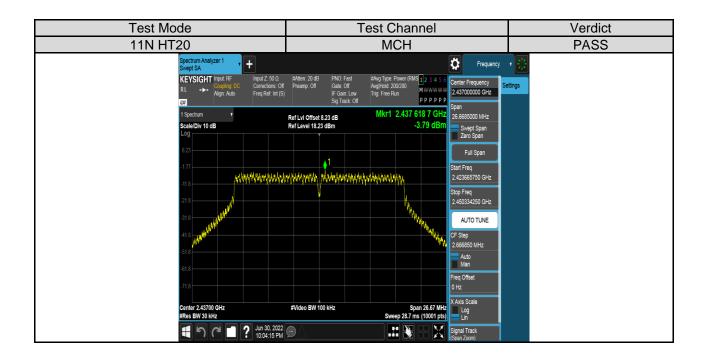
Antenna 1:

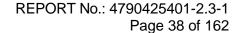


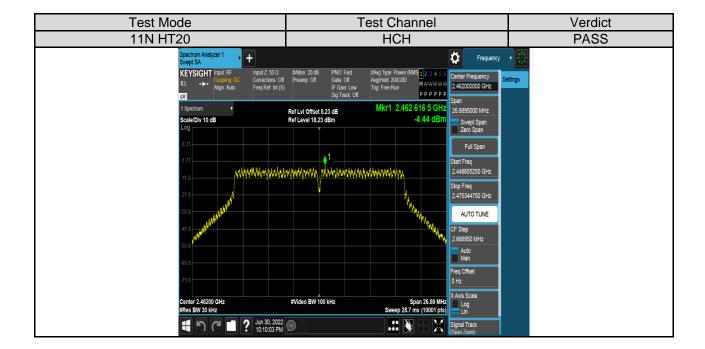


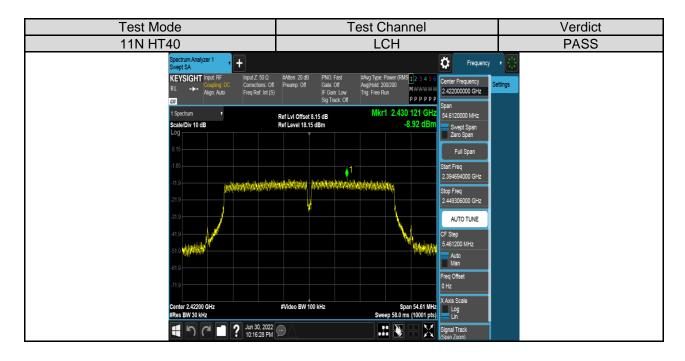


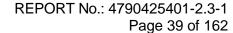


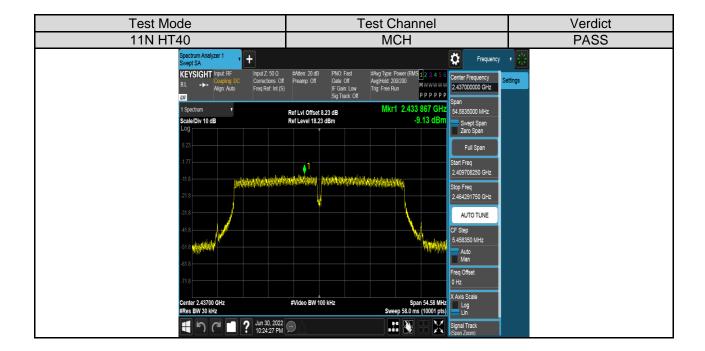


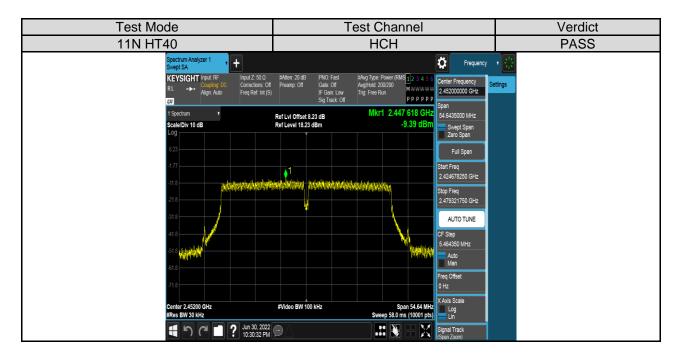


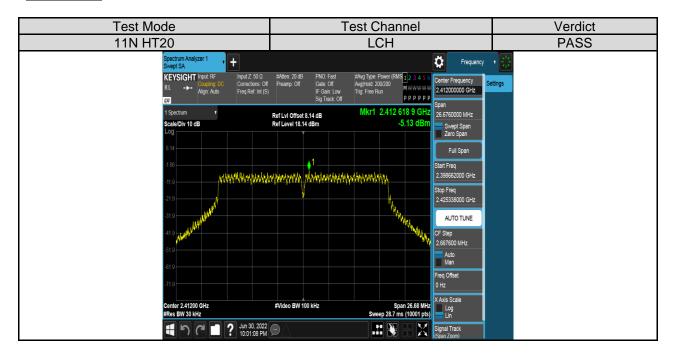


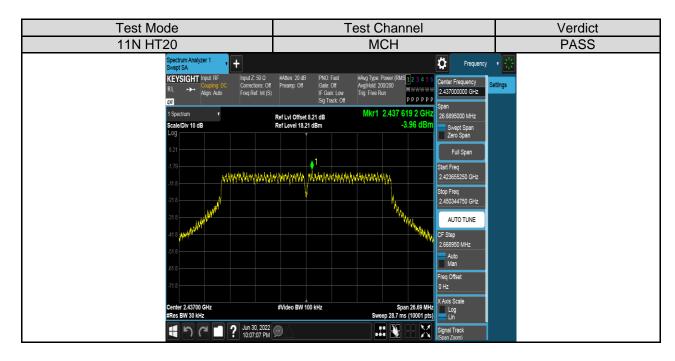

Test Mode Test Channel Verdict 11N HT20 LCH **PASS** pectrum Analyzer 1 wept SA Ü KEYSIGHT Input RF Center Frequency 2.412000000 GHz Span 26.7315000 MHz Mkr1 2.412 617 5 GH Ref LvI Offset 8.15 dB Ref Level 18.15 dBm -3.88 dBr Swept Span Zero Span Start Freq 2.398634250 GHz Stop Freq 2.425365750 GHz AUTO TUNE CF Step 2.673150 MHz Auto Man #Video BW 100 kHz Log Lin 5 Jun 30, 2022 9:58:05 PM # ₩

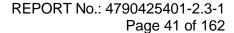


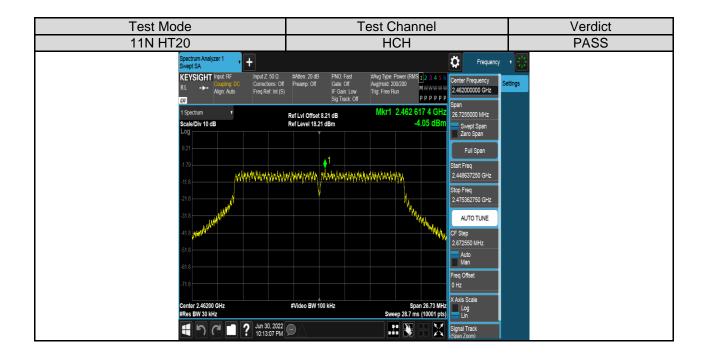


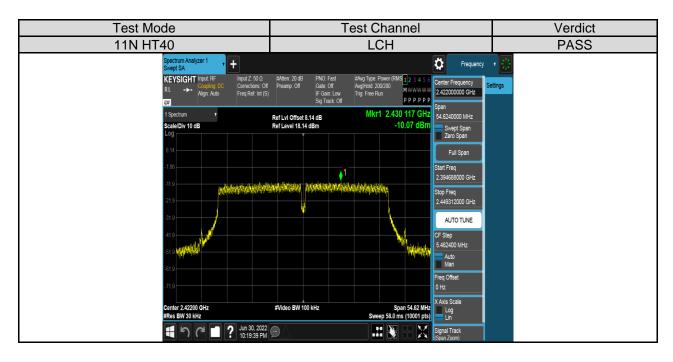




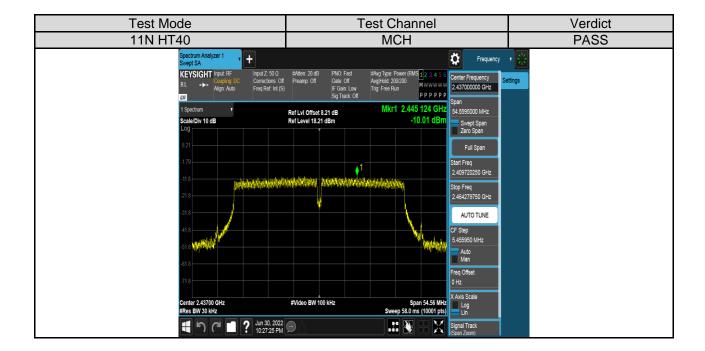


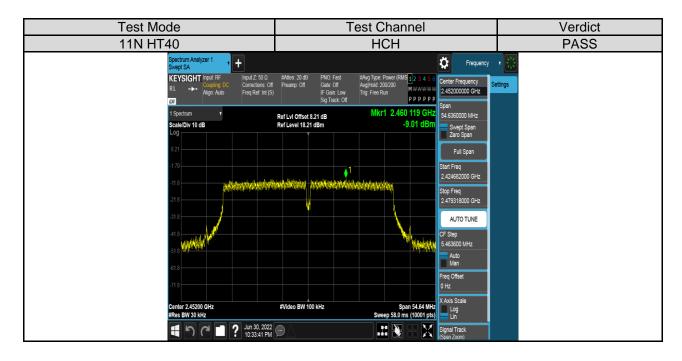



Antenna 2:









Page 43 of 162

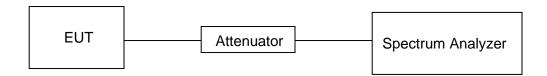
7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

FCC Part15 (15.247) Subpart C				
Section	Section Test Item Limit			
FCC §15.247 (d) Conducted Bandedge and Spurious Emissions At least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power				

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 x RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
measurement points	≥span/RBW	
Trace	Max hold	
Sweep time	Auto couple.	

Use the peak marker function to determine the maximum amplitude level.

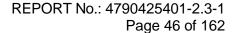
TEST SETUP

Page 44 of 162

PART 1: REFERENCE LEVEL MEASUREMENT


TEST RESULTS TABLE

Test Mode	Test Antenna	Test Channel	Result[dBm]
		LCH	6.42
11B	Antenna 1	MCH	6.71
		HCH	5.93
		LCH	1.51
11G	Antenna 1	MCH	1.79
		HCH	1.02
	Antenna 1	LCH	-1.7
		MCH	-1.21
44100 141140		HCH	-1.97
11N20 MIMO		LCH	-2.71
	Antenna 2	MCH	-1.47
		HCH	-2.06
	Antenna 1	LCH	-6.36
11N40 MIMO		MCH	-6.26
		HCH	-6.47
	Antenna 2	LCH	-7.40
		MCH	-7.39
		HCH	-6.29



TEST GRAPHS

Antenna 1:

