APPENDIX A MEASUREMENT UNCERTAINTY According to **IEEE1528:2013**, the uncertainty budget has been determined for the Head SAR measurement system and is given in the following Table. Report No: RSZ150930002-20 | Source of
Uncertainty | Tolerance
Value | Probability
Distribution | Divisor | c _i ¹ (1-g) | c _i ¹ (10-g) | Standard
Uncertain
ty
(1-g) % | Standard
Uncertaint
y (10-g) % | |---|--------------------|-----------------------------|------------|-----------------------------------|------------------------------------|--|--------------------------------------| | | | Measure | ement Sys | tem | | | | | Probe Calibration | 3.5 | normal | 1 | 1 | 1 | 3.5 | 3.5 | | Axial Isotropy | 3.7 | rectangular | $\sqrt{3}$ | $(1-cp)^{1/2}$ | $(1-cp)^{1/2}$ | 1.5 | 1.5 | | Hemispherical Isotropy | 10.9 | rectangular | $\sqrt{3}$ | √ср | √ср | 4.4 | 4.4 | | Boundary Effect | 1.0 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | | Linearity | 4.7 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | | Detection Limit | 1.0 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | | Readout Electronics | 1.0 | normal | 1 | 1 | 1 | 1.0 | 1.0 | | Response Time | 0.8 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.5 | 0.5 | | Integration Time | 1.7 | rectangular | $\sqrt{3}$ | 1 | 1 | 1.0 | 1.0 | | RF Ambient Condition -Noise | 0.6 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.3 | 0.3 | | RF Ambient Condition -
Reflections | 3.0 | rectangular | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | | Probe Positioner Mech.
Restrictions | 0.4 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.2 | 0.2 | | Probe Positioning with
respect to Phantom
Shell | 2.9 | rectangular | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | | Extrapolation and
Integration | 3.7 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.1 | 2.1 | | | | Test sai | mple relat | ted | | | | | Test sample positioning | 2.0 | normal | 1 | 1 | 1 | 2.0 | 2.0 | | Device Holder
Uncertainty | 4.0 | normal | 1 | 1 | 1 | 6.215 | 6.215 | | Drift of Output Power | 5.0 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.67 | 2.67 | | | | Phanto | m and Set | up | | | | | Phantom Uncertainty | 3.4 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.0 | 2.0 | | SAR correction
in permittivity and
conductivity | 1.2 | normal | 1 | 1 | 0.85 | 1.2 | 1.0 | | Liquid conductivity measurement | 5.0 | normal | 1 | 0.78 | 0.71 | 3.9 | 3.6 | | Liquid permittivity measurement | 5.0 | normal | 1 | 0.25 | 0.29 | 1.3 | 1.5 | | conductivity—temperat
ure | 1.1 | rectangular | $\sqrt{3}$ | 0.78 | 0.71 | 0.5 | 0.5 | | permittivity—temperatu
re | 1.3 | rectangular | $\sqrt{3}$ | 0.23 | 0.23 | 0.2 | 0.2 | | Combined Uncertainty | | RSS | | | | 10.78 | 10.55 | | Expanded uncertainty (coverage factor=2) | | Normal(k=2) | | | | 21.56 | 21.10 | SAR Evaluation Report 83 of 131 According to IEC62209-2:2010, the uncertainty budget has been determined for the Body SAR measurement system and is given in the following Table. | Source of
Uncertainty | Tolerance
Value | Probability
Distribution | Divisor | c _i ¹ (1-g) | c _i ¹ (10-g) | Standard
Uncertainty
(1-g) % | Standard
Uncertainty
(10-g) % | |---|--------------------|-----------------------------|-------------|-----------------------------------|------------------------------------|------------------------------------|-------------------------------------| | | | Measure | ment Syst | em | | | | | Probe Calibration | 3.5 | normal | 1 | 1 | 1 | 3.5 | 3.5 | | Axial Isotropy | 3.7 | rectangular | $\sqrt{3}$ | 1 | 1 | 1.5 | 1.5 | | Boundary Effect | 1.0 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | | Linearity | 4.7 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | | Detection Limit | 1.0 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | | Readout Electronics | 1.0 | normal | 1 | 1 | 1 | 1.0 | 1.0 | | Response Time | 0.8 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.5 | 0.5 | | Integration Time | 1.7 | rectangular | $\sqrt{3}$ | 1 | 1 | 1.0 | 1.0 | | RF Ambient Condition -Noise | 0.6 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.3 | 0.3 | | RF Ambient Condition -
Reflections | 3.0 | rectangular | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | | Probe Positioner Mech. Restrictions | 0.4 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.2 | 0.2 | | Probe Positioning with respect to Phantom Shell | 2.9 | rectangular | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | | Extrapolation and
Integration | 3.7 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.1 | 2.1 | | | | Test sar | nple relate | ed | | | | | Test sample positioning | 2.0 | normal | 1 | 1 | 1 | 2.0 | 2.0 | | Device Holder
Uncertainty | 4.0 | normal | 1 | 1 | 1 | 6.215 | 6.215 | | Drift of Output Power | 5.0 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.67 | 2.67 | | | | Phantor | n and Setu | ıp | | | | | Phantom Uncertainty | 3.4 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.0 | 2.0 | | SAR correction in permittivity and conductivity | 1.2 | normal | 1 | 1 | 0.84 | 1.2 | 1.0 | | Liquid conductivity measurement | 5.0 | normal | 1 | 0.78 | 0.71 | 3.9 | 3.6 | | Liquid permittivity measurement | 5.0 | normal | 1 | 0.23 | 0.26 | 1.3 | 1.5 | | conductivity—temperat
ure | 1.1 | rectangular | $\sqrt{3}$ | 0.78 | 0.71 | 0.5 | 0.5 | | permittivity—temperatu
re | 1.3 | rectangular | $\sqrt{3}$ | 0.23 | 0.26 | 0.2 | 0.2 | | Combined Uncertainty | | RSS | | | | 9.58 | 9.49 | | Expanded uncertainty (coverage factor=2) | | Normal(k=2) | | | | 19.16 | 18.98 | SAR Evaluation Report 84 of 131 # APPENDIX B – PROBE CALIBRATION CERTIFICATES # **NCL CALIBRATION LABORATORIES** Report No: RSZ150930002-20 Calibration File No.: PC-1598 Task No: BACL-5778 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Equipment: Miniature Isotropic RF Probe Record of Calibration Head and Body Manufacturer: APREL Laboratories Model No.: E-020 Serial No.: 500-00283 Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole Project No: BACL-5745 Calibrated: 14th October 2014 Released on: 14th October 2014 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager NCL CALIBRATION LABORATORIES Suite 102, 303 Terry Fox Dr, OTTAWA, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613) 435-8306 SAR Evaluation Report 85 of 131 Division of APREL Inc. #### Introduction This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices. Report No: RSZ150930002-20 #### **Calibration Method** Probes are calibrated using the following methods. <1000MHz TEM Cell for sensitivity in air Standard phantom using temperature transfer method for sensitivity in tissue >1000MHz Waveguide* method to determine sensitivity in air and tissue *Waveguide is numerically (simulation) assessed to determine the field distribution and power The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points #### References - o IEEE Standard 1528 - IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques - o EN 62209-1 - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models. instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices - o IEC 62209-2 - Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz 6 GHz) - o TP-D01-032-E020-V2 E-Field probe calibration procedure - o D22-012-Tissue dielectric tissue calibration procedure - D28-002-Dipole procedure for validation of SAR system using a dipole - IEEE 1309 Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz Page 2 of 10 This page has been reviewed for content and attested to on Page 2 of this document. SAR Evaluation Report 86 of 131 Division of APREL Inc. #### Conditions Probe 500-00283 was a recalibration. Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C}$ +/- $1.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C}$ +/- $1.5 \,^{\circ}\text{C}$ Relative Humidity: $< 60 \,^{\circ}$ ### **Primary Measurement Standards** Instrument Serial Number Cal due date Tektronix USB Power Meter 11C940 May 14, 2015 Signal Generator HP 83640B 3844A00689 Feb 12, 2015 ### Secondary Measurement Standards Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015 #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Art Brennan, Quality Manager Dan Brooks, Test Engineer Page 3 of 10 This page has been reviewed for content and attested to on Page 2 of this document. SAR Evaluation Report 87 of 131 Division of APREL Inc. **Probe Summary** Probe Type: E-Field Probe E020 Serial Number: 500-00283 Frequency: As presented on page 5 Report No: RSZ150930002-20 Sensor Offset: 1.56 Sensor Length: 2.5 Tip Enclosure: Composite* Tip Diameter: < 2.9 mm Tip Length: 55 mm Total Length: 289 mm *Resistive to recommended tissue recipes per IEEE-1528 Sensitivity in Air Diode Compression Point: 95 mV This page has been reviewed for content and attested to on Page 2 of this document. SAR Evaluation Report 88 of 131 Page 4 of 10 # NCL Calibration Laboratories Division of APREL Inc. Calibration for Tissue (Head H. Body R) | Frequency | Tissue
Type | Measured
Epsilon | Measured
Sigma | Standard
Uncertainty
(%) | Calibration
Frequency
Range
(MHz) | Conversion
Factor | |-----------|----------------|---------------------|-------------------|--------------------------------|--------------------------------------------|----------------------| | 450 H | Head | 43.59 | 0.86 | 3.5 | ±50 | 5.7 | | 450 B | Body | 56.74 | 0.94 | 3.5 | ±50 | 5.8 | | 750 H | Head | 42.98 | 0.92 | 3.5 | ±50 | 6.0 | | 750 B | Body | 43.05 | 0.93 | 3.5 | ±50 | 5.5 | | 835 H | Head | 43.42 | 0.94 | 3.5 | ±50 | 5.9 | | 835 B | Body | 55.77 | 1.01 | 3.5 | ±50 | 5.9 | | 900 H | Head | 41.87 | 1.06 | 3.5 | ±50 | 6.0 | | 900 B | Body | 55.62 | 1.05 | 3.5 | ±50 | 5.9 | | 1450 H | Head | X | X | X | X | Х | | 1450 B | Body | X | X | X | X | X | | 1500 H | Head | X | X | X | X | Х | | 1500 B | Body | X | X | X | X | X | | 1640 H | Head | X | X | X | X | X | | 1640 B | Body | X | X | X | X | X | | 1750 H | Head | 38.23 | 1.38 | 3.5 | ±75 | 5.4 | | 1750 B | Body | 52.86 | 1.54 | 3.5 | ±75 | 5.3 | | 1800 H | Head | X | Х | X | X | X | | 1800 B | Body | X | Х | Х | X | Х | | 1900 H | Head | 40.20 | 1.38 | 3.5 | ±75 | 4.8 | | 1900 B | Body | 52.63 | 1.46 | 3.5 | ±75 | 4.5 | | 2000 H | Head | Х | Х | X | X | Х | | 2000 B | Body | X | Х | X | X | X | | 2100 H | Head | Х | Х | X | Х | Х | | 2100 B | Body | Х | Х | X | X | Х | | 2300 H | Head | Х | Х | X | X | Х | | 2300 B | Body | Х | Х | X | X | Х | | 2450 H | Head | 37.26 | 1.84 | 3.5 | ±75 | 4.9 | | 2450B | Body | 53.61 | 1.9 | 3.5 | ±75 | 4.3 | | 3000 H | Head | X | X | X | X | X | | 3000 B | Body | X | X | X | X | X | | 3600 H | Head | 37.49 | 3.16 | 3.5 | ±100 | 4.5 | | 3600 B | Body | 49.94 | 3.86 | 3.5 | ±100 | 4.0 | | 5250 H | Head | 35.51 | 4.78 | 3.5 | ±100 | 3.0 | | 5250 B | Body | 47.54 | 5.11 | 3.5 | ±100 | 2.8 | | 5600 H | Head | 36.05 | 5.15 | 3.5 | ±100 | 2.8 | | 5600 B | Body | 46.49 | 5.72 | 3.5 | ±100 | 2.2 | | 5800 H | Head | 45.99 | 6.01 | 3.5 | ±100 | 3.2 | | 5800 B | Body | 35.6 | 5.37 | 3.5 | ±100 | 2.5 | Page 5 of 10 This page has been reviewed for content and attested to on Page 2 of this document. **SAR Evaluation Report** 89 of 131 Division of APREL Inc. ### **Boundary Effect:** Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm. Report No: RSZ150930002-20 ### **Spatial Resolution:** The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe. #### DAQ-PAQ Contribution To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω . Page 6 of 10 This page has been reviewed for content and attested to on Page 2 of this document. SAR Evaluation Report 90 of 131 Division of APREL Inc. # Receiving Pattern Air Page 7 of 10 This page has been reviewed for content and attested to on Page 2 of this document. **SAR Evaluation Report** 91 of 131 Division of APREL Inc. # Isotropy Error Air **Isotropicity Tissue:** 0.10 dB Page 8 of 10 This page has been reviewed for content and attested to on Page 2 of this document. **SAR Evaluation Report** 92 of 131 Division of APREL Inc. # **Dynamic Range** Page 9 of 10 This page has been reviewed for content and attested to on Page 2 of this document. **SAR Evaluation Report** 93 of 131 Division of APREL Inc. ### Video Bandwidth # Probe Frequency Characteristics Report No: RSZ150930002-20 Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB ### **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2014. Page 10 of 10 This page has been reviewed for content and attested to on Page 2 of this document. SAR Evaluation Report 94 of 131 # APPENDIX C DIPOLE CALIBRATION CERTIFICATES ### NCL CALIBRATION LABORATORIES Report No: RSZ150930002-20 Calibration File No: DC-1599 Project Number: BAC-dipole-cal-5779 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Validation Dipole(Head and Body) Manufacturer: APREL Laboratories Part number: ALS-D-835-S-2 Frequency: 835 MHz Serial No: 180-00558 Customer: Bay Area Compliance Laboratory (China) Calibrated: 8th October 2014 Released on: 8th October 2014 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager VCL CALIBRATION LABORATORIES ite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613)435-8306 SAR Evaluation Report 95 of 131 Division of APREL Laboratories. ### Conditions Dipole 180-00558 was received with a damaged connection for a re-calibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Report No: RSZ150930002-20 Art Brennan, Quality Manager Maryna Nesterova Calibration Engineer #### **Primary Measurement Standards** Instrument Serial Number Cal due date Tektronix USB Power Meter 11C940 May 14, 2015 Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 96 of 131 Division of APREL Laboratories. # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. ### **Mechanical Dimensions** **Length:** 162.2 mm **Height:** 89.4 mm **Electrical Specification** | Tissue | Frequency | SWR: | Return Loss | Impedance | |--------|-----------|---------|-------------|-----------| | Head | 835 MHz | 1.066 U | -30.344 dB | 49.001 Ω | | Body | 835 MHz | 1.089 U | -28.118 dB | 53.117 Ω | # System Validation Results | Tissue | Frequency | 1 Gram | 10 Gram | Peak | |--------|-----------|--------|---------|--------| | Head | 835 MHz | 9.773 | 6.174 | 14.713 | | Body | 835 MHz | 9.736 | 6.297 | 14.513 | 3 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 97 of 131 Division of APREL Laboratories. ### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00558. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. #### References - IEC-62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures" - Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" - TP-D01-032-E020-V2 E-Field probe calibration procedure - D22-012-Tissue dielectric tissue calibration procedure - D28-002-Dipole procedure for validation of SAR system using a dipole - IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz ### Conditions Dipole 180-00558 was repaired prior to this calibration. The repair reliability depends upon correct usage of the dipole. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 20 °C +/- 0.5°C # Dipole Calibration uncertainty The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2% TOTAL 8.32% (16.64% K=2) This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 98 of 131 4 Report No: RSZ150930002-20 Division of APREL Laboratories. # **Dipole Calibration Results** # **Mechanical Verification** | APREL | APREL | Measured | Measured | |----------|---------|----------|----------| | Length | Height | Length | Height | | 161.0 mm | 89.8 mm | 162.2 mm | 89.4 mm | # **Electrical Verification** | Tissue Type | Return Loss: | SWR: | Impedance: | |-------------|--------------|---------|------------| | Head | -30.344 dB | 1.066 U | 49.001Ω | | Body | -28.118 dB | 1.089 U | 53.117 Ω 🗆 | # **Tissue Validation** | | Dielectric constant, ε _r | Conductivity, o [S/m] | |--------------------|-------------------------------------|-----------------------| | Head Tissue 835MHz | 43.42 | 0.94 | | Body Tissue 835MHz | 55.77 | 1.01 | t. 5 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 99 of 131 ### Division of APREL Laboratories. The Following Graphs are the results as displayed on the Vector Network Analyzer. ### **S11 Parameter Return Loss** # Head Tissue: Frequency Range 0.817 to 0.848 GHz # Body Tissue: Frequency Range 0.823 to 0.851 GHz This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 100 of 131 6 Report No: RSZ150930002-20 Division of APREL Laboratories. ### **SWR** ### Body This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 101 of 131 7 Division of APREL Laboratories. # **Smith Chart Dipole Impedance** # Body This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 102 of 131 8 Division of APREL Laboratories. # **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2014. 9 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 103 of 131 ### **NCL CALIBRATION LABORATORIES** Report No: RSZ150930002-20 Calibration File No: DC-1531 Project Number: BACL-5745 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. BACL Head & Body Validation Dipole Manufacturer: APREL Laboratories Part number: ALS-D-1750-S-2 Frequency: 1750 MHz Serial No: 198-00304 Customer: ISL Calibrated: 8th October, 2013 Released on: 8th October, 2013 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager NCL CALIBRATION LABORATORIES Suite 102, 303 Terry Fox Dr, OTTAWA, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613) 435-8306 SAR Evaluation Report 104 of 131 Division of APREL Laboratories. # **Conditions** Dipole 198-00304 was an original calibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Art Brennan, Quality Manager Constantin Teodorian, Test Engineer 2 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 105 of 131 Division of APREL Laboratories. # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. ### **Mechanical Dimensions** Length: 75 mm Height: 42 mm ### **Electrical Calibration** | Test | Result Head | Result Body | |-----------|-------------|-------------| | S11 R/L | -25.567 | -20.548 dB | | SWR | 1.111U | 1.207 U | | Impedance | 53.637Ω | 55.929 Ω | ### System Validation Results, 1750 MHz | | 1g | 10g | | |------|-------|-------|--| | Head | 37.02 | 18.99 | | | Body | 36.65 | 18.85 | | | Туре | Epsilon | Sigma | | |------|---------|-------|--| | Head | 38.51 | 1.36 | | | Body | 51.79 | 1.53 | | 3 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 106 of 131 Division of APREL Laboratories. ### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-030 130 MHz to 26 GHz E-Field Probe Serial Number 215. #### References SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" IEC-62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)" IEC-62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 2 *Draft*: "Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" ### Conditions Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 20 °C +/- 0.5°C This was an original calibration taken from stock. ### **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2% TOTAL 8.32% (16.64% K=2) 4 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 107 of 131 Division of APREL Laboratories. # **Dipole Calibration Results** # **Mechanical Verification** | Measured | Measured | |----------|----------| | Length | Height | | 75 mm | 42 mm | # **Tissue Validation** | _ | | Conductivity | |-----------|-------|--------------| | Frequency | 3 | U | | 1750 Head | 38.23 | 1.38 | | 1750 Body | 52.86 | 1.54 | 5 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 108 of 131 Division of APREL Laboratories. ### **Electrical Calibration** | Test | Result Head | Result Body | |-----------|-------------|-------------| | S11 R/L | -25.567 | -20.548 dB | | SWR | 1.111U | 1.207 U | | Impedance | 53.637Ω | 55.929 Ω | The Following Graphs are the results as displayed on the Vector Network Analyzer. # **S11 Parameter Return Loss** ### Head # Body 6 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 109 of 131 Division of APREL Laboratories. ### **SWR** # Head # Body 1.249442 GHz This page has been reviewed for content and attested to by signature within this document. 2.250218 110 of 131 **SAR Evaluation Report** Division of APREL Laboratories. # **Smith Chart Dipole Impedance** 8 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 111 of 131 Division of APREL Laboratories. # **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2013 . 9 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 112 of 131 ### **NCL CALIBRATION LABORATORIES** Report No: RSZ150930002-20 Calibration File No: DC-1601 Project Number: BAC-dipole –cal-5779 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Validation Dipole (Head & Body) Manufacturer: APREL Laboratories Part number: ALS-D-1900-S-2 Frequency: 1900 MHz Serial No: 210-00710 Customer: Bay Area Compliance Laboratory (China) Calibrated: 9th October, 2014 Released on: 9th October, 2014 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager NCL CALIBRATION LABORATORIES uite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613)435-8306 SAR Evaluation Report 113 of 131 Division of APREL Laboratories. # Conditions Dipole 210-00710 was received in good condition and was a re-calibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Report No: RSZ150930002-20 Art Brennan, Quality Manager Maryna Nesterova Calibration Engineer ### **Primary Measurement Standards** Instrument Serial Number Cal due date Tektronix USB Power Meter 11C940 May 14, 2015 Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 114 of 131 Division of APREL Laboratories. # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. ### **Mechanical Dimensions** **Length:** 67.1 mm **Height:** 38.9 mm **Electrical Specification** | Tissue | Frequency | SWR: | Return Loss | Impedance | |--------|-----------|---------|-------------|-----------| | Head | 1900MHz | 1.084 U | -27.92 dB | 52.247 Ω | | Body | 1900MHz | 1.128 U | -24.40 dB | 52.618 Ω | # **System Validation Results** | Tissue | Frequency | 1 Gram | 10 Gram | Peak | |--------|-----------|--------|---------|--------| | Head | 1900 MHz | 39.481 | 20.44 | 73.364 | | Body | 1900 MHz | 39.715 | 20.552 | 73.565 | This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 115 of 131 3 Division of APREL Laboratories. ### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00710. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. #### References - IEC-62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures" - Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" - TP-D01-032-E020-V2 E-Field probe calibration procedure - D22-012-Tissue dielectric tissue calibration procedure - D28-002-Dipole procedure for validation of SAR system using a dipole - IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz #### Conditions Dipole 210-00710 was a recalibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 20 °C +/- 0.5°C # **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2% TOTAL 8.32% (16.64% K=2) 4 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 116 of 131 Division of APREL Laboratories. # **Dipole Calibration Results** # **Mechanical Verification** | APREL | APREL | Measured | Measured | |---------|---------|----------|----------| | Length | Height | Length | Height | | 68.0 mm | 39.5 mm | 67.1mm | 38.9 mm | # **Electrical Validation** | Tissue | Frequency | SWR: | Return Loss | Impedance | |--------|-----------|---------|-------------|-----------| | Head | 1900MHz | 1.084 U | -27.92 dB | 52.247 Ω | | Body | 1900MHz | 1.128 U | -24.40 dB | 52.618 Ω | # **Tissue Validation** | | Dielectric constant, ε _r | Conductivity, o [S/m] | |---------------------|-------------------------------------|-----------------------| | Head Tissue 1900MHz | 40.20 | 1.38 | | Body Tissue 1900MHz | 52.63 | 1.46 | 5 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 117 of 131 Division of APREL Laboratories. The Following Graphs are the results as displayed on the Vector Network Analyzer. ### **S11 Parameter Return Loss** ### Body: Frequency Range 1.869 to 1.931 MHz 6 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. 118 of 131 SAR Evaluation Report #### **NCL Calibration Laboratories** Division of APREL Laboratories. #### **SWR** This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 119 of 131 7 #### **NCL Calibration Laboratories** Division of APREL Laboratories. #### **Smith Chart Dipole Impedance** #### Body This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 120 of 131 8 #### **NCL Calibration Laboratories** Division of APREL Laboratories. ### **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2014 9 Report No: RSZ150930002-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 121 of 131 # APPENDIX D EUT TEST POSITION PHOTOS **Body-worn Back Setup Photo (10mm)** SAR Evaluation Report 122 of 131 **Body-worn Left Setup Photo (10mm)** SAR Evaluation Report 123 of 131 **Left Head Touch Setup Photo** SAR Evaluation Report 124 of 131 **Right Head Touch Setup Photo** SAR Evaluation Report 125 of 131 SAR Evaluation Report 126 of 131 ## **APPENDIX E EUT PHOTOS** **EUT – Front View** Report No: RSZ150930002-20 **EUT – Back View** SAR Evaluation Report 127 of 131 **EUT – Right Side View** SAR Evaluation Report 128 of 131 **EUT – Bottom View** SAR Evaluation Report 129 of 131 **EUT – Uncover View** SAR Evaluation Report 130 of 131 #### APPENDIX F INFORMATIVE REFERENCES [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996. Report No: RSZ150930002-20 - [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O ce of Engineering & Technology, Washington, DC, 1997. - [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetricPage 131 of 131 assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996. - [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 (652, May 1997. - [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997. - [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992. - [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15 {17, 1997, pp. 120-24. - [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175. - [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996. - [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press. - [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992. - [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9 - [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994. - [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10. ***** END OF REPORT ***** SAR Evaluation Report 131 of 131