

Report NO: TS201506021 Page 1 / 78

FCC SAR TEST REPORT

For

Nexpro international LLC

2020 Ponce De Leon, Suite 1205A, Coral Gables, FL33134, Miami, USA.

Product Name: Feature Phone

Model No. : Draco2Plus

FCC ID : ZYPDRACO2PLUS

Date of Receipt: 13th Jun. 2015

Date of Test : 16th Jun. 2015

Issued Date : 17th Jun. 2015

Report No. : TS201506021

Report Version: V1.0

Issue By

Shenzhen Sunway Communication CO.,LTD Testing Center

1/F,BuildingA, SDG Info Port, KefengRoad, Hi-Tech Park, Nanshan District,
Shenzhen, Guangdong, China 518104,

Note: The test results relate only to the samples tested. This report shall not be reproduced in full, without the written approval of SUNWAY Testing Center.

Report NO: TS201506021 Page 2 / 78

TABLE OF CONTENS

1. Statement of Compliance	4
2. SAR Evaluation compliance	5
3. General Information:	6
3.1 EUT Description:	6
3.2 Test Environment:	7
4. SAR Measurement System:	8
4.1 Dasy4 System Description:	8
5. System Components:	9
6. Tissue Simulating Liquid	11
6.1 The composition of the tissue simulating liquid:	11
6.2 Tissue Calibration Result:	11
7. SAR System Validation	15
7.1 Validation System:	15
7.2 Validation Dipoles:	15
7.3 Validation Result:	16
8. SAR Evaluation Procedures:	17
9. SAR Exposure Limits	19
9.1 Uncontrolled Environment	19
9.2 Controlled Environment	19
10. Measurement Uncertainty:	20
11. Conducted Power Measurement:	22
12. Results and Test photos :	24
12.1 SAR result summary:	24
12.2 Evaluation of Simultaneous :	25
12.3 DUT and setup photos photos	26
13. Equipment List:	29
Appendix A. System validation plots:	30
Appendix B. Max SAR Test plots:	34
Appendix C. Probe Calibration Data:	42

Report NO: TS201506021	Page 3 / 78
Appendix D. DAE Calibration Data:	55
Annendix F. Dinole Calibration Data:	60

Report NO: TS201506021 Page 4 / 78

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Exposure Position	Frequency Band	1g-SAR (W/kg)	Highest 1g-SAR (W/kg)
Hood	GSM850	0.424	0.467
Head	GSM1900	0.467	0.407
Body	GSM850	0.562	0.562
(1cm Gap)	GSM1900	0.418	0.562

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003.

<Highest simultaneous transmission SAR>

	Position Main antenna		Bluetooth	Max Sum
Highest SAR value for Head	Right Cheek	0.467	0.053	0.52
Highest SAR value for Body	Back	0.562	0.026	0.588

According to the above table, the maximum sum of reported SAR values for GSM and BT is **0.588**W/kg (1g).

Report NO: TS201506021 Page 5 / 78

2. SAR Evaluation compliance

Product Name:	Feature Phone		
Brand Name:	N/A		
Model Name:	Draco2Plus		
Applicant:	Nexpro international LLC		
Address:	2020 Ponce De Leon, Suite 1205A, Coral Gables,FL33134, Miami, USA.		
Manufacturer:	United Time Technology Co.,Ltd		
Address:	7/F.,5-A Building, Software IndustrialBase, No.1006 Keyuan Road, Nanshan, Shenzhen, P.R.China		
Applicable Standard:	FCC 47 CFR Part 2 (2.1093) ANSI/IEEE C95.1-1992 IEEE 1528-2003 FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 FCC KDB 865664 D02 SAR Reporting v01r01 FCC KDB 447498 D01 General RF Exposure Guidance v05r02 FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r02 FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01		
Test Engineer:	Li.zhao		
Reviewed By	Li. Zhao Tomy. Lirl		
Performed Location:	Shenzhen Sunway Communication CO.,LTD Testing Center 1/F,BuildingA, SDG Info Port, KefengRoad, Hi-Tech Park, Nanshan District,Shenzhen, Guangdong, China 518104 Tel: +86-755- 36615880 Fax: +86-755- 86525532		

Report NO: TS201506021 Page 6 / 78

3. General Information:

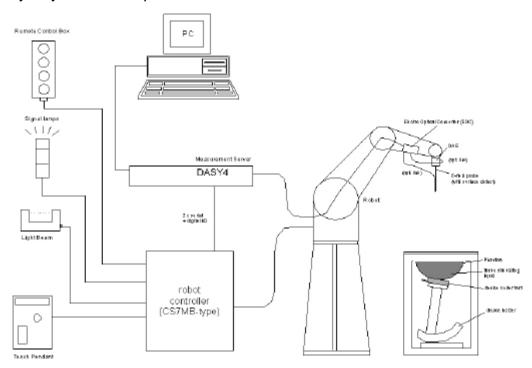
3.1 EUT Description:

	EUT Information				
Product Name	Feature Phone				
Brand Name	N/A				
Model Name	Draco2Plus				
Hardware Version	N/A				
Software Version	N/A				
Antonna gain:	GSM 850:-0.4dBi				
Antenna gain:	PCS 1900: 0.66dBi				
AC adaptor	Input:100-240V AC,50/60Hz, 0.1A				
AC adapter:	Output:5V DC MAX 0.5A				
Power supply:	Rechargeable Li-ion Battery DC3.7V-600mAh				
	GSM850: 824.2 MHz ~ 848.8 MHz				
Tx Frequency	GSM1900: 1850.2 MHz ~ 1909.8 MHz				
	Bluetooth: 2402 MHz ~ 2480 MHz				
	GSM/GPRS				
Mode	Bluetooth				
	Class B – EUT cannot support Packet Switched and Circuit Switched				
GSM/(E)GPRS Transfer	Network simultaneously but can automatically switch between Packet and				
mode	Circuit Switched Network.				

Report NO: TS201506021 Page 7 / 78

3.2 Test Environment:

Ambient conditions in the SAR laboratory:


Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

Report NO: TS201506021 Page 8 / 78

4. SAR Measurement System:

4.1 Dasy4 System Description:

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
- ➤ The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- > Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Report NO: TS201506021 Page 9 / 78

5. System Components:

DASY4 Measurement Server:

Calibration: No calibration required.

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

DATA Acquisition Electronics (DAE):

Calibration: Recommended once a year

The data acquisition electronics consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

Dosimetric Probes:

Calibration: Recommended once a year

Model: ES3DV3,

Frequency: 10MHz to 3G, Linearity:±0.2dB, Dynamic Range: 10 µW/g to100 mW/g

Directivity:

± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to

probe axis)

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Report NO: TS201506021 Page 10 / 78

Light Beam unit:

Calibration: No calibration required.

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm.

> SAM Twin Phantom:

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Device Holder for SAM Twin Phantom:

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered

Report NO: TS201506021 Page 11 / 78

6. Tissue Simulating Liquid

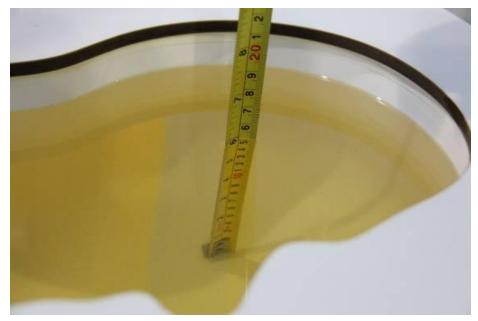
6.1 The composition of the tissue simulating liquid:

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
	For Head							
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800,1900,2000	55.2	0	0	0.3	0	44.5	1.40	40.0
	For Body							
900	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3

6.2 Tissue Calibration Result:

Fraguanay	Dielectric Parameters		Tissue Temp.		
Frequency (MHz)	Description	Permittivity	Conductivity	rissue reilip. (℃)	Date
(IVITIZ)		(εr)	(σ)	(0)	
000	Reference	41.50±5%	$0.97\!\pm\!5\%$	NA	
900	Reference	(39.425~43.574)	(0.9215~1.0185)	INA	2015/06/16
(Head)	Measurement	42.15	0.982	22.7	
1000	Reference	40.00±5%	1.40±5%	NA	
1900	Reference	(38.00~42.00)	(1.33~1.47)	IVA	2015/06/16
(Head)	Measurement	40.5	1.47	22.6	



Report NO: TS201506021 Page 12 / 78

Fraguanay	Fraguency		Dielectric Parameters		Ticque Tomp	
Frequency (MHz)	Description	Permittivity (εr)	Conductivity (σ)	Tissue Temp. (℃)	Date	
900	Reference	55.2±5% (52.44~57.96)	0.97±5% (0.9215~1.0185)	NA	2015/06/16	
(Body)	Measurement	54.7	0.96	22.5	2015/00/16	
1900	Reference	53.3±5% (50.635~55.965)	1.52±5% (1.444~1.596)	NA	2015/06/16	
(Body)	Measurement	53.6	1.53	22.5		

Report NO: TS201506021 Page 13 / 78

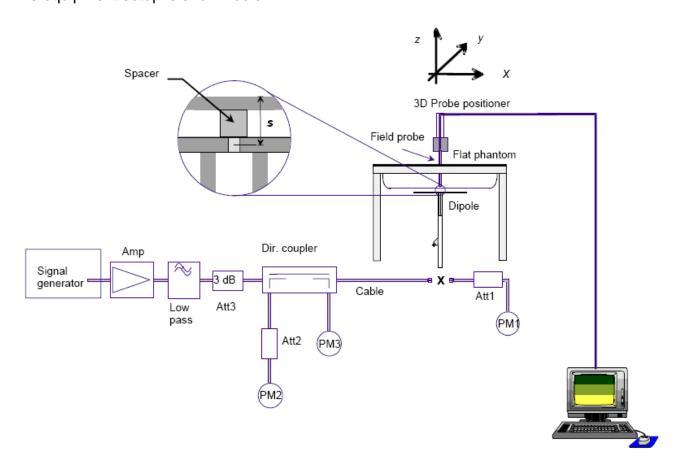
Liquid depth in the Head Phantom (900 MHz) (depth>15cm)

Liquid depth in the Flat Phantom (900 MHz) (depth>15cm)

Report NO: TS201506021 Page 14 / 78

Liquid depth in the Head Phantom (1900 MHz) (depth>15cm)

Liquid depth in the Body Phantom (1900 MHz) (depth>15cm)



Report NO: TS201506021 Page 15 / 78

7. SAR System Validation

7.1 Validation System:

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

7.2 Validation Dipoles:

The dipoles used is based on the IEEE-1528/EN62209-1 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE-1528/EN62209-1 and FCC Supplement C.

Report NO: TS201506021 Page 16 / 78

7.3 Validation Result:

Frequency (MHz)	Description	SAR(1g) W/Kg	SAR(10g) W/Kg	Tissue Temp. (°C)	Date
900	Reference	10.7±10% (9.63~11.77)	6.87±10% (6.18~7.49)	NA	2015/06/16
(Head)	Measurement	10.48	6.92	22.7	
1900	Reference	40.6±10% (36.54~44.66)	21.3±10% (19.17~23.43)	NA	2015/06/16
(Head)	Measurement	39.32	20.84	22.6	
900 (Padh)	Reference	10.7±10% (9.63~11.77)	6.94±10% (6.246~7.634)	NA	2015/06/16
(Body)	Measurement	9.84	6.48	22.5	
1900	Reference	40.1±10% (36.09~44.11)	21.3±10% (19.17~23.43)	NA	2015/06/16
(Body)	Measurement	40.8	21.64	22.5	

Report NO: TS201506021 Page 17 / 78

8. SAR Evaluation Procedures:

The procedure for assessing the average SAR value consists of the following steps:

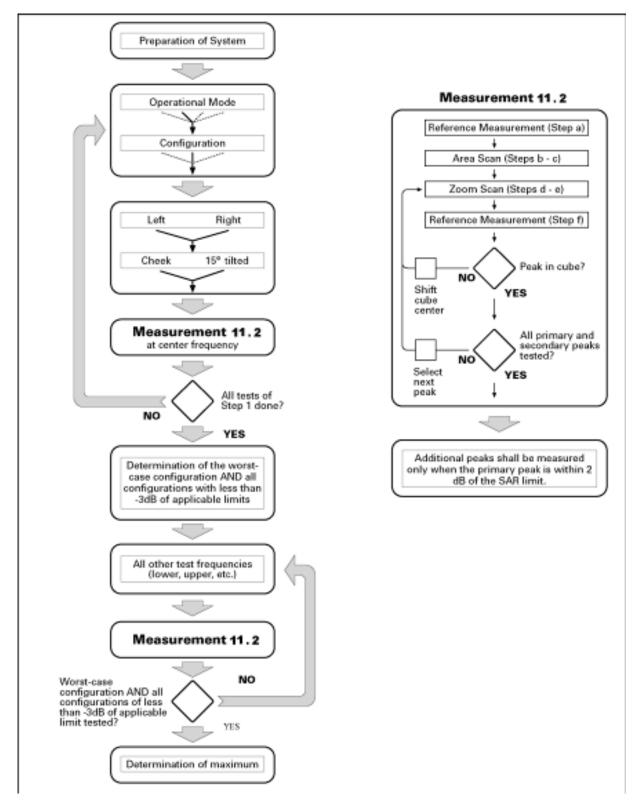
Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

> Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user.

Zoom Scan


Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 7 x 7 x 7 points (5mmx5mmx5mm) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

Power Drift Measurement

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement.

Report NO: TS201506021 Page 18 / 78

Block diagram of the tests to be performed

Report NO: TS201506021 Page 19 / 78

9. SAR Exposure Limits

9.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

9.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Report NO: TS201506021 Page 20 / 78

10. Measurement Uncertainty:

NO	Source	Uncert.	Prob. Dist.	Div.	ci (1g)	ci (10g)	Stand. Uncert. ui (1g)	Stand. Uncert. ui (10g)	Veff
1	Repeat	0.04	N	1	1	1	0.04	0.04	9
Instru	Instrument								
2	Probe calibration	7	N	2	1	1	3.5	3.5	∞
3	Axial isotropy	4.7	R	√3	0.7	0.7	1.9	1.9	∞
4	Hemispherical isotropy	9.6	R	√3	0.7	0.7	3.9	3.9	8
5	Boundary effect	1.0	R	1/2	1	1	0.6	0.6	∞
6	Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
7	Detection limits	1.0	R	√3	1	1	0.6	0.6	8
8	Readout electronics	0.3	N	1	1	1	0.3	0.3	8
9	Response time	0.8	R	√3	1	1	0.5	0.5	∞
10	Integration time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
11	Ambient noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
12	Ambient reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Probe positioner mech. restrictions	0.4	R	√3	1	1	0.2	0.2	8
14	Probe positioning with respect to phantom shell	2.9	R	√3	1	1	1.7	1.7	∞
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	∞
Test	sample related								
16	Device positioning	3.8	N	1	1	1	3.8	3.8	99

Report NO: TS201506021 Page 21 / 78

17	Device holder	5.1	N	1	1	1	5.1	5.1	5
18	Drift of output power	5.0	R	√3	1	1	2.9	2.9	8
Phan	tom and set-up								
19	Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
20	Liquid conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	8
21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	8
22	Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.5	∞
23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	8
Combined standard			RSS	$U_C = \sqrt{\sum_{i=1}^{n} C_i^2 U_i^2}$		12.2%	11.9%	236	
_	anded uncertainty 95%)	$U = k \ U_C$,k=2			24.4%	23.8%			

Report NO: TS201506021 Page 22 / 78

11. Conducted Power Measurement:

<GSM Conducted Power>

General Note:

- 1. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 2. According to October 2013TCB Workshop, for GSM / GPRS, the number of time slots to test for SAR should correspond to the highest frame-average maximum output power configuration, considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (2Tx slot) for GSM850/GSM1900 band due to their highest frame-average power.
- 3. For hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS 2 Tx slots for GSM850/GSM1900 band due to its highest frame-average power.

Band GSM850	Burst Av	erage Pow	er (dBm)	Frame-Av	erage Pow	ver (dBm)
TX Channel	128	190	251	128	190	251
Frequency (MHz)	824.2	836.6	848.8	824.2	836.6	848.8
GSM (GMSK, 1 Tx slot)	32.95	32.88	32.84	23.95	23.88	23.84
GPRS (GMSK, 1 Tx slot) – CS1	32.94	32.93	32.85	23.94	23.93	23.85
GPRS (GMSK, 2 Tx slots) – CS1	31.86	31.80	31.70	25.86	25.80	25.70
GPRS (GMSK, 3 Tx slots) – CS1	29.54	29.45	29.39	25.28	25.19	25.13
GPRS (GMSK, 4 Tx slots) – CS1	27.31	27.25	27.13	24.31	24.25	24.13
·						
Band GSM1900	Burst Av	erage Pow	er (dBm)	Frame-A	erage Pow	ver (dBm)
Band GSM1900 TX Channel	Burst Av 512	erage Pow 661	ver (dBm) 810	Frame-Av	erage Pow 661	ver (dBm) 810
					ı	1
TX Channel	512	661	810	512	661	810
TX Channel Frequency (MHz)	512 1850.2	661 1880	810 1909.8	512 1850.2	661 1880	810 1909.8
TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot)	512 1850.2 31.53	661 1880 31.28	810 1909.8 31.04	512 1850.2 22.53	661 1880 22.28	810 1909.8 22.04
TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1	512 1850.2 31.53 31.52	661 1880 31.28 31.29	810 1909.8 31.04 31.07	512 1850.2 22.53 22.52	661 1880 22.28 22.29	810 1909.8 22.04 22.07

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

Report NO: TS201506021 Page 23 / 78

<Bluetooth Conducted Power>

Mode Band	Max.Average power(dBm)
2.4GHz Bluetooth	0.72

Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- · f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Bluetooth Max Turn up Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds	
1	0	2.48	0.4	

Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.4 which is <= 3, SAR testing is not required.

Report NO: TS201506021 Page 24 / 78

12. Results and Test photos:

12.1 SAR result summary:

Head

Test Case of Head			Meas.	Target		Meas. SAR	Scale	Power	
Band	Test Position	СН	Power (dBm)	Power (dBm)	Factor	(W/kg) 1g Avg.	SAR (W/kg)	Drift <±0.2 dB	Plot
	Right Cheek	Ch128	32.95	33.50	1.135	0.374	0.424	0.016	#1
GSM	Right Tilt	Ch128	32.95	33.50	1.135	0.215	0.244	0.056	
850	Left Cheek	Ch128	32.95	33.50	1.135	0.368	0.418	0.103	
	Left Tilt	Ch128	32.95	33.50	1.135	0.190	0.216	0.008	
	Right Cheek	Ch512	31.53	32.00	1.114	0.419	0.467	-0.060	#2
GSM	Right Tilt	Ch512	31.53	32.00	1.114	0.110	0.123	0.071	
1900	Left Cheek	Ch512	31.53	32.00	1.114	0.398	0.443	0.091	
	Left Tilt	Ch512	31.53	32.00	1.114	0.084	0.093	0.035	

Body Worn (10mm between DUT and Flat Phantom)

Test Case of Head		Meas.	Target		Meas. SAR	Scale	Power		
Band	Test Position	СН	Power (dBm)	Power (dBm)	Factor	(W/kg) 1g Avg.	SAR (W/kg)	Drift <±0.2 dB	Plot
GPRS 850(2	Front	Ch128	31.86	32.00	1.033	0.362	0.374	-0.138	
Tx slots)	Back	Ch128	31.86	32.00	1.033	0.544	0.562	0.134	#3
GPRS 1900(2	Front	Ch512	28.81	29.00	1.045	0.196	0.205	0.012	
Tx slots)	Back	Ch512	28.81	29.00	1.045	0.400	0.418	-0.129	#4

Report NO: TS201506021 Page 25 / 78

12.2 Evaluation of Simultaneous:

BT* - Estimated SAR for Bluetooth

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{\text{GHz}}}/x$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Maximum turn up	Exposure Position	Head	Body-worn	
Power	Test separation	0 mm	10 mm	
1dBm	Estimated SAR (W/kg)	0.053W/kg	0.026W/kg	

Conclusion:

According to the above table, the sum of reported SAR values for GSM and BT $\,<$ 1.6W/kg. So the simultaneous transmission SAR is not required for BT transmitter.

Report NO: TS201506021

Page 26 / 78

12.3 DUT and setup photos photos:

Front

Back

Report NO: TS201506021 Page 27 / 78

Left Cheek Left Tilt

Right Cheek Right Tilt

Report NO: TS201506021 Page 28 / 78

Back of the EUT with 1 cm Gap

Report NO: TS201506021 Page 29 / 78

13. Equipment List:

NO.	Instrument	Manufacturer	Model	S/N	Cal. Date	Cal. Due Date
1	Communication Tester	Agilent	E5515C	MY502672 64	Dec 27 th 2014	Dec 26 th 2015
2	E-field Probe	Speag	ES3DV3	3028	Oct 22 th 2014	Oct 21 th 2015
3	Dielectric Probe Kit	Speag	DAK	1038	N/A	N/A
4	DAE	Speag	DAE4	689	Oct 1 th 2014	Sep 30 th 2015
5	SAM TWIN phantom	Speag	SAM	1360/1432	N/A	N/A
6	Robot	Stabuli	TX60L	N/A	N/A	N/A
7	Device Holder	Speag	SD000H0 1HA	N/A	N/A	N/A
8	Vector Network	Agilent	E5071C	MY461076 15	Jan 6 th 2015	Jan 7 th 2016
9	Signal Generator	Agilent	E4438C	MY490722 79	Nov 27 th 2014	Nov 26 th 2015
10	Amplifier	Mini-circult	ZHL-42W	QA098002	N/A	N/A
11	Power Meter	Agilent	N1419A	MY500015 63	Nov 27 th 2014	Nov 26 th 2015
12	Power Sensor	Agilent	N8481H	MY510200 10	Nov 27 th 2014	Nov 26 th 2015
13	Directional Coupler	Agilent	772D	MY461512 75	Nov 27 th 2014	Nov 26 th 2015
14	Directional Coupler	Agilent	778D	MY482206 07	Nov 27 th 2014	Nov 26 th 2015
15	Dipole 900MHz	Speag	D900V2	1d086	Aug 9 th 2013	Aug 8 th 2016
16	Dipole 1900MHz	Speag	D1900V2	5d194	Jan 7 th 2015	Aug 6 th 2018

Report NO: TS201506021

Page 30 / 78

Appendix A. System validation plots:

DUT: Dipole 900MHz; Type: D900V2; Serial: D900V2 - SN: 1d086 Program Name: System Performance Check at 900 MHz Head

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 900 MHz; $\sigma = 0.982 \text{ mho/m}$; $\varepsilon_r = 42.15$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3028; ConvF(6.19, 6.19, 6.19); Calibrated:10/22/2014

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn689; Calibrated: 10/1/2014
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.82 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.523 V/m; Power Drift = -0.01dB

Peak SAR (extrapolated) = 4.068 W/kg

SAR(1 g) = 2.62 mW/g; SAR(10 g) = 1.73 mW/gMaximum value of SAR (measured) = 2.90 mW/g

> -2.10 -4.20 -6.30 -8.40 -10.5

0 dB = 2.90 mW/g

Report NO: TS201506021 Page 31 / 78

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d194

Program Name: System Performance Check at 1900 MHz Head

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

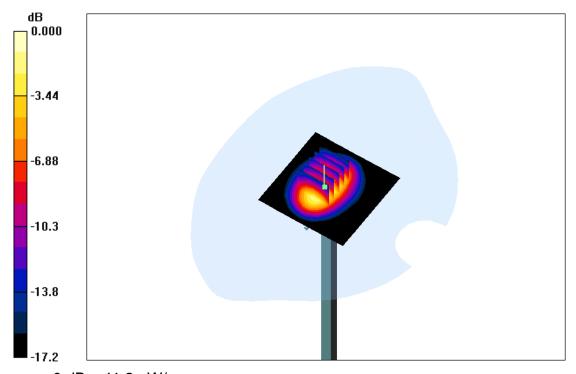
Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3028; ConvF(4.68, 4.68, 4.68); Calibrated: 10/22/2014

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn689; Calibrated: 10/1/2014
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 80.6 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.83 mW/g; SAR(10 g) = 5.21 mW/gMaximum value of SAR (measured) = 11.2 mW/g

0 dB = 11.2 mW/g

Report NO: TS201506021 Page 32 / 78

DUT: Dipole 900MHz; Type: D900V2; Serial: D900V2 - SN: 1d086 Program Name: System Performance Check at 900 MHz Body

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

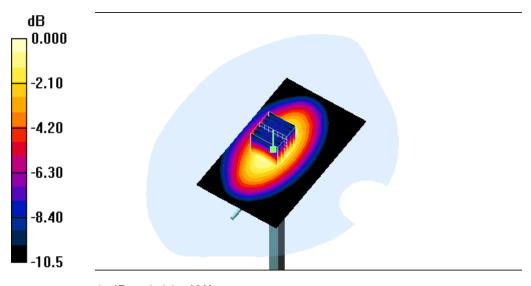
Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(6.02, 6.02, 6.02); Calibrated:10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn689; Calibrated: 10/1/2014
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.72 mW/g


d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.523 V/m; Power Drift = -0.01dB

Peak SAR (extrapolated) = 4.068 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.62 mW/gMaximum value of SAR (measured) = 2.80 mW/g

0 dB = 2.90 mW/q

Report NO: TS201506021 Page 33 / 78

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d194

Program Name: System Performance Check at 1900 MHz Body

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ mho/m}$; $\epsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

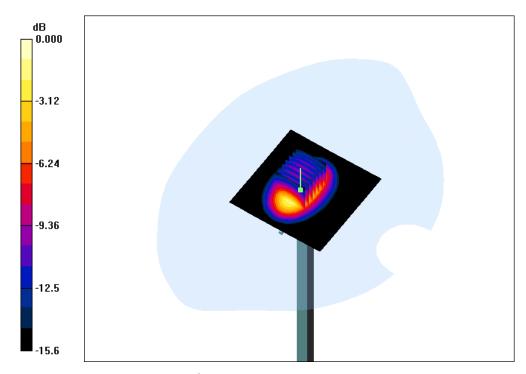
- Probe: ES3DV3 - SN3028; ConvF(4.48, 4.48, 4.48); Calibrated: 10/22/2014

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn689; Calibrated: 10/1/2014

- Phantom: SAM 1; Type: SAM; Serial: TP-1360

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.8 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.9 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.41 mW/gMaximum value of SAR (measured) = 12.5 mW/g

0 dB = 12.5 mW/g

Report NO: TS201506021 Page 34 / 78

Appendix B. Max SAR Test plots:

#1

Date: 6/16/2015

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

DUT: Sendtel; Type: SI PIN; Serial: IMEI Number

Program Name: 380RF

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.926 \text{ mho/m}$; $\varepsilon_r = 41.7$; $\rho = 1000$

kg/m³

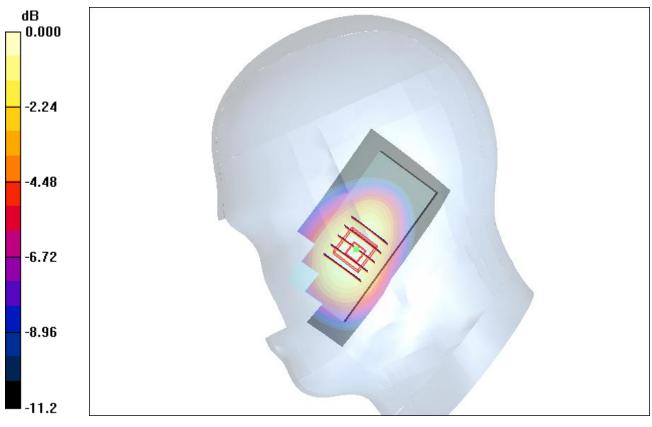
Phantom section: Right Section

DASY4 Configuration:

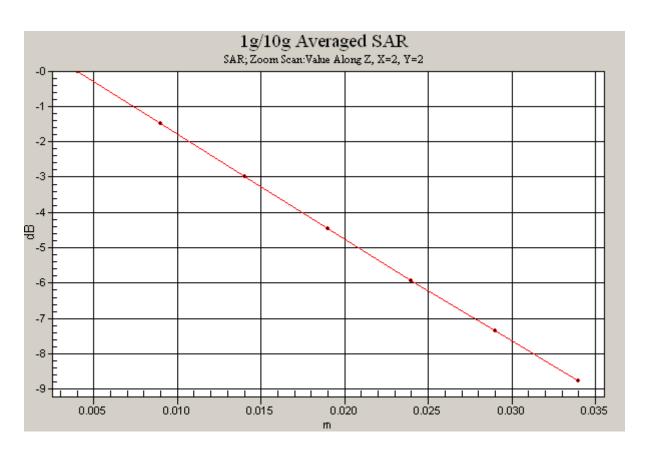
- Probe: ES3DV3 SN3028; ConvF(6.19, 6.19, 6.19); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn689; Calibrated: 10/1/2014
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Cheek/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.402 mW/g

Right Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 6.27 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 0.539 W/kg


SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.252 mW/g Maximum value of SAR (measured) = 0.397 mW/g

Report NO: TS201506021 Page 35 / 78

0 dB = 0.397 mW/g

Report NO: TS201506021 Page 36 / 78

#2

Date: 6/16/2015

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

DUT: Sendtel; Type: SI PIN; Serial: IMEI Number

Program Name: 380RF

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.36 mho/m; ϵ_r = 39.8; ρ = 1000

kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3028; ConvF(4.68, 4.68, 4.68); Calibrated: 10/22/2014

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn689; Calibrated: 10/1/2014

- Phantom: SAM 1; Type: SAM; Serial: TP-1360

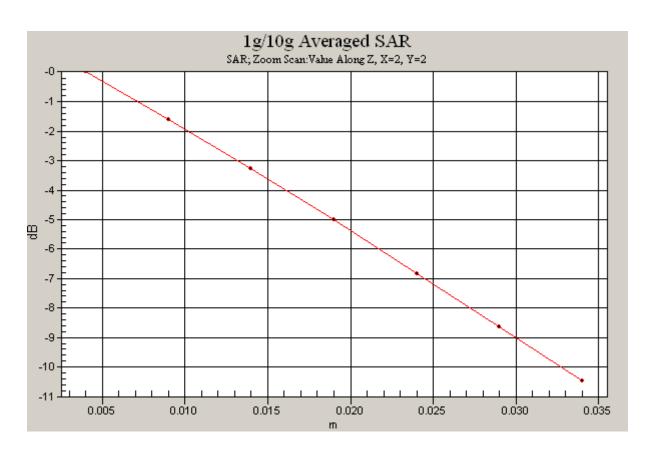
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Cheek/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.480 mW/g

Right Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.28 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 0.614 W/kg


SAR(1 g) = 0.419 mW/g; SAR(10 g) = 0.271 mW/g Maximum value of SAR (measured) = 0.446 mW/g

Report NO: TS201506021 Page 37 / 78

0 dB = 0.446 mW/g

Report NO: TS201506021 Page 38 / 78

#3

Date: 6/16/2015

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

DUT: Sendtel; Type: SI PIN; Serial: IMEI Number

Program Name: 380RF

Communication System: GPRS850; Frequency: 824.2 MHz; Duty Cycle: 1:4

Medium parameters used: f = 824.2 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3028; ConvF(6.02, 6.02, 6.02); Calibrated: 10/22/2014

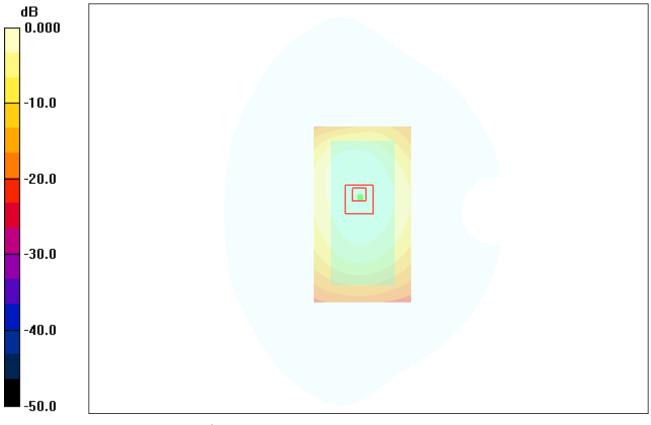
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn689; Calibrated: 10/1/2014

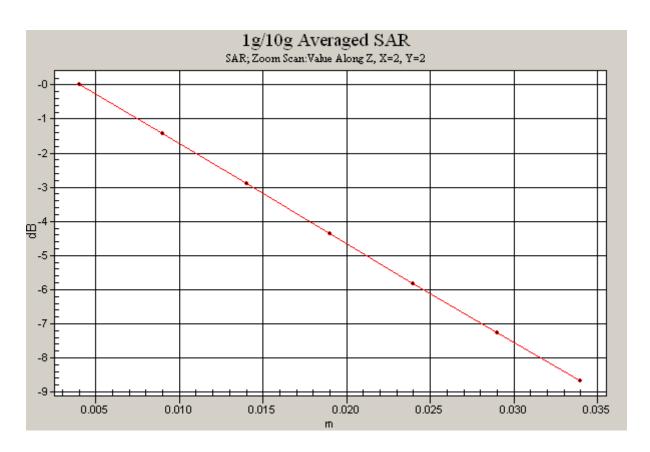
- Phantom: SAM 2; Type: SAM; Serial: TP-1432

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.562 mW/g


Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.3 V/m; Power Drift = 0.134 dB

Peak SAR (extrapolated) = 0.765 W/kg


SAR(1 g) = 0.544 mW/g; SAR(10 g) = 0.365 mW/g Maximum value of SAR (measured) = 0.556 mW/g

Report NO: TS201506021 Page 39 / 78

0 dB = 0.556 mW/g

Report NO: TS201506021 Page 40 / 78

#4

Date: 6/16/2015

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

DUT: Sendtel; Type: SI PIN; Serial: IMEI Number

Program Name: 380RF

Communication System: GPRS1900; Frequency: 1850.2 MHz; Duty Cycle: 1:4

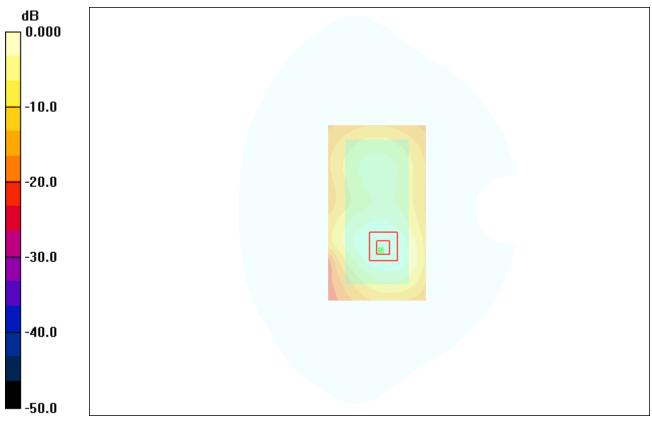
Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.48 mho/m; ε_r = 52.6; ρ = 1000

kg/m³

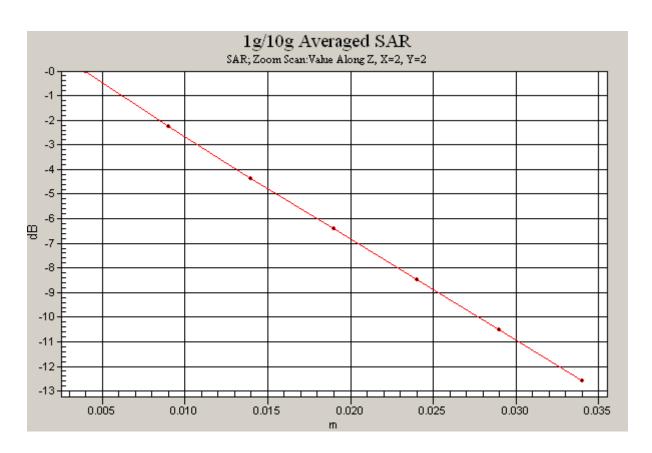
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3028; ConvF(4.48, 4.48, 4.48); Calibrated: 10/22/2014
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn689; Calibrated: 10/1/2014
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Back/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.473 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.29 V/m; Power Drift = -0.129 dB Peak SAR (extrapolated) = 0.710 W/kg


SAR(1 g) = 0.400 mW/g; SAR(10 g) = 0.237 mW/g Maximum value of SAR (measured) = 0.431 mW/g

Report NO: TS201506021 Page 41 / 78

0 dB = 0.431 mW/g

Report NO: TS201506021 Page 42 / 78

Appendix C. Probe Calibration Data:

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hitp://www.chinattl.com

ILAC MRA

CALIBRATION
No. L0570

Client AUDEN Certificate No: Z14-97115

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3028

Calibration Procedure(s) TMC-OS-E-02-195

Calibration Procedures for Dosimetric E-field Probes

Calibration date: October 22, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

		,	
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101548	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Reference10dBAttenuator	BT0520	12-Dec-12(TMC,No.JZ12-867)	Dec-14
Reference20dBAttenuator	BT0267	12-Dec-12(TMC,No.JZ12-866)	Dec-14
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Aug-15
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jan -15
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-14 (CTTL, No.J14X02145)	Jun-15
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	
		Issued: Octo	ber 23, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97115 Page 1 of 11

Report NO: TS201506021 Page 43 / 78

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z14-97115 Page 2 of 11

7

SHENZHEN SUNWAY COMMUNICATION CO.,LTD

Report NO: TS201506021 Page 44 / 78

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com

Probe ES3DV3

SN: 3028

Calibrated: October 22, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z14-97115

Page 3 of 11

Report NO: TS201506021 Page 45 / 78

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com

DASY - Parameters of Probe: ES3DV3 - SN: 3028

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μV/(V/m) ²) ^A	1.16	1.27	1.21	±10.8%
DCP(mV) ⁸	105.8	103.2	103.8	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc E
	System Name		dB	dB√μV		dB	mV	(k=2)
0	CM	Х	0.0	0.0	1.0	0.00	282.9	±2.2%
		Υ	0.0	0.0	1.0		292.0	
		Z	0.0	0.0	1.0		290.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97115

⁶ The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Report NO: TS201506021 Page 46 / 78

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China. Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinattl.com Http://www.chinattl.com

DASY - Parameters of Probe: ES3DV3 - SN: 3028

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.02	6.02	6.02	0.33	1.68	±12%
835	55.2	0.97	6.02	6.02	6.02	0.34	1.79	±12%
1750	53.4	1.49	4.69	4.69	4.69	0.63	1.30	±12%
1900	53.3	1.52	4.48	4.48	4.48	0.60	1.34	±12%
2300	52.9	1.81	4.37	4.37	4.37	0.74	1.25	±12%
2450	52.7	1.95	4.14	4.14	4.14	0.68	1.35	±12%
2600	52.5	2.16	4.02	4.02	4.02	0.84	1.16	±12%

⁹ Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

[#] At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

E

Calibrati

Frequency uncertainty is At frequent formula is a

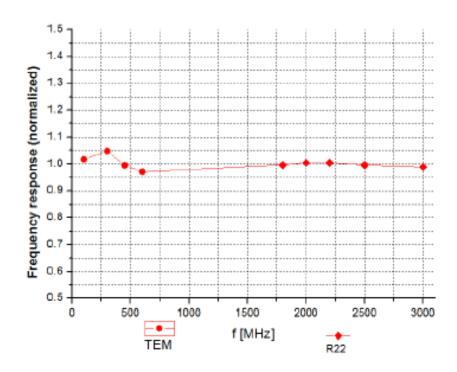
Certificate No: Z14-97115

Page 6 of 11

Certificate

restricte

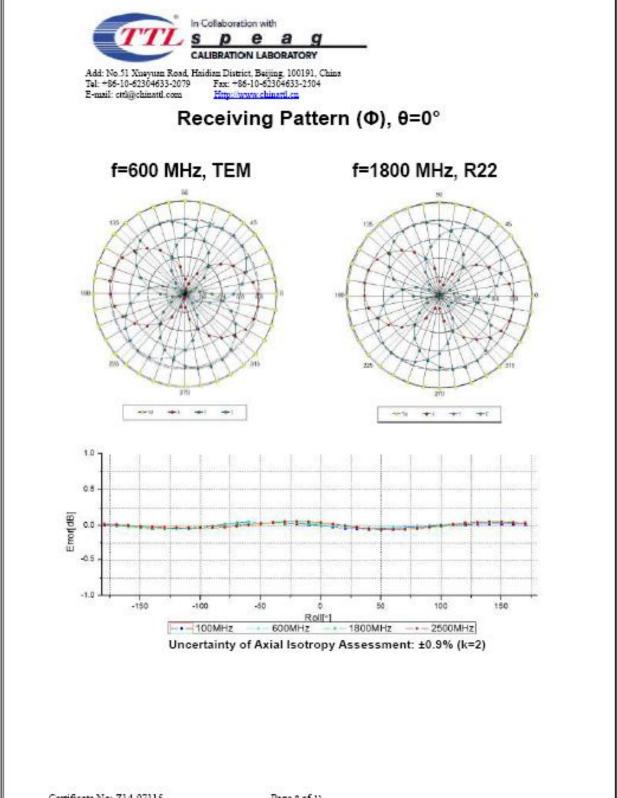
GAlpha/Depti
effect after co
between 3-6



Report NO: TS201506021 Page 47 / 78

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinatd.com Hetp://www.chinatd.com

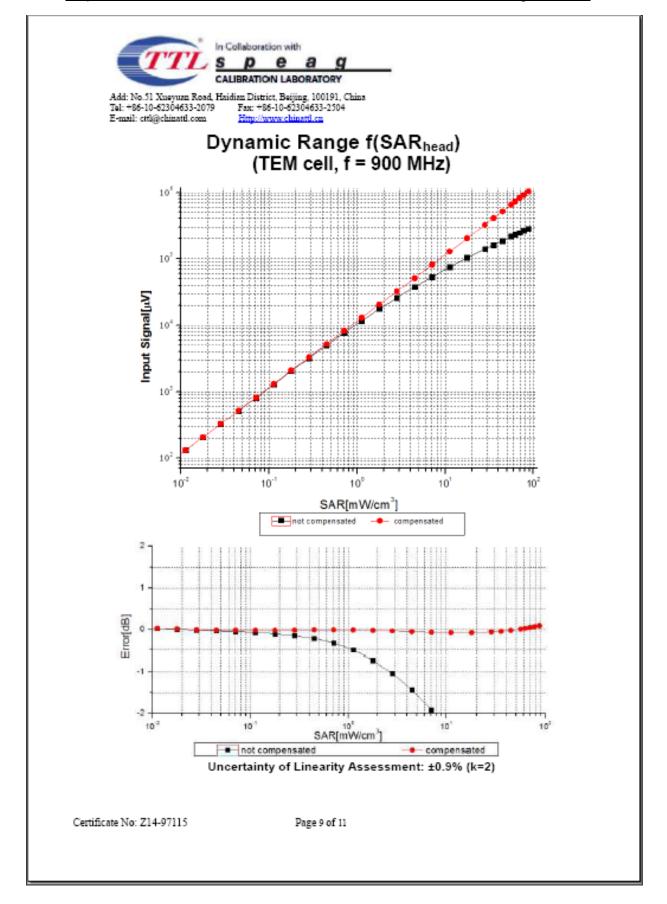
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

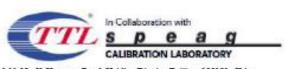
Certificate No: Z14-97115

Report NO: TS201506021 Page 48 / 78



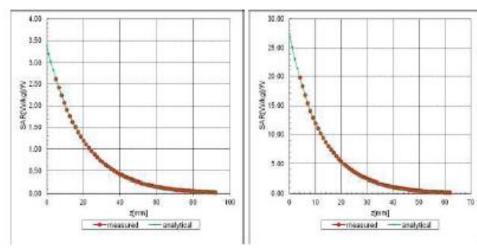
Certificate No: Z14-97115

Page 8 of 11

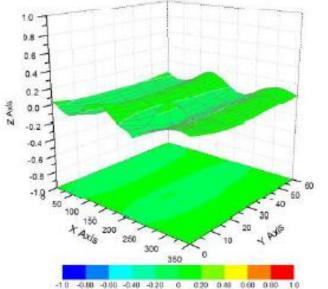


Report NO: TS201506021 Page 49 / 78

Report NO: TS201506021 Page 50 / 78



Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tal: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinattl.com Http://www.chinattl.com


Conversion Factor Assessment

f=835 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2)

Certificate No: Z14-97115

Page 10 of 11

Report NO: TS201506021 Page 51 / 78

Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinatd.com Http://www.chinatd.com

DASY - Parameters of Probe: ES3DV3 - SN: 3208

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	54.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z14-97115 Page 11 of 11

Report NO: TS201506021 Page 52 / 78

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (*Telecommunication Metrology Center of MITT in Beijing, China*), under thé Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (*Schmid & Partner Engineering AG, Switzerland*) and TMC, to support FCC (*U.S. Federal Communications Commission*) equipment certification are defined and described in the following.

- 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx. ET3DVx and ES3DVx.
 - i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

Report NO: TS201506021

Page 53 / 78

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client Sunway-SZ (Auden)

Certificate No: DAE4-689 Oct14

ALIBRATION C	EHIIFICATE		
Object ,	DAE4 -: SD 000 D	04 BM - SN: 689	
Calibration procedure(s)	QA CAL-06.v28 Calibration process	dure for the data acquisition elec	etronics (DAE)
Calibration date:	October 01, 2014		
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the physical unbability are given on the following pages are facility: environment temperature (22 \pm 3)*	nd are part of the certificate.
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
eithley Multimeter Type 2001	SN: 0810278	01-Oct-13 (No:13976)	Oct-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002	07-Jan-14 (in house check)	In house check: Jan-15 In house check: Jan-15
Calibrated by:	Name Dominique Steffen	Function Technician	Signature
or year ago. Nor	Dominique Steffen	Technician	Signature
Calibrated by: Approved by:			Signature White F. British
or year ago. Nor	Dominique Steffen	Technician	Signature F. Smilphl Issued: October 1, 201

Certificate No: DAE4-689_Oct14

Page 1 of 5

Report NO: TS201506021 Page 54 / 78

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-689_Oct14

Page 2 of 5

Report NO: TS201506021 Page 55 / 78

Appendix D. DAE Calibration Data:

DC Voltage Measurement

A/D - Converter Resolution nominal

 $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \,, & \mbox{full range} = & -100...+300 \ m\mbox{W} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \,, & \mbox{full range} = & -1......+3m\mbox{W} \end{array}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	z
High Range	404.239 ± 0.02% (k=2)	404.156 ± 0.02% (k=2)	404.835 ± 0.02% (k=2)
Low Range	3.94871 ± 1.50% (k=2)	3.98364 ± 1.50% (k=2)	4.00706 ± 1.50% (k=2)

Connector Anglé

83.0°±1° Connector Angle to be used in DASY system

Certificate No: DAE4-689_Oct14

Page 3 of 9

Report NO: TS201506021 Page 56 / 78

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200037.45	-2.43	-0.00
Channel X + Input	20004.97	0.89	0.00
Channel X - Input	-20004.37	1.76	-0.01
Channel Y + Input	200038.83	1.40	0.00
Channel Y + Input	20005.93	1.88	0.01
Channel Y - Input	-20004.16	1.96	-0.01
Channel Z + Input	200036.92	-0.75	-0.00
Channel Z + Input	20003.46	-0.50	-0.00
Channel Z - Input	-20002.36	3.79	-0.02

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.93	0.43	0.02
Channel X + Input	200.65	0.11	0.05
Channel X - Input	-198.95	0.46	-0.23
Channel Y + Input	2000.28	0.04	0.00
Channel Y + Input	200.24	-0.14	-0.07
Channel Y - Input	+199.08	-0.30	0.10
Channel Z + Input	2000.87	0.60	0.03
Channel Z + Input	199.31	-1.12	-0.56
Channel Z - Input	-200.09	-0.51	0.25

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	22 24 *	21.85
_	- 200	-19.90	-22.18
Channel Y	200	1.27	-0.05
	- 200	4.06	3.25
Channel Z	200	16.18	15.97
	- 200	-18.12	-18.54

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	3.20	-1.25	-1.10
Channel Y	200	4.48		-0.80
Channel Z	200	7.05	3.04	*

Certificate No: DAE4-689_Oct14

Page 4 of 5

Report NO: TS201506021 Page 57 / 78

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	15681	16385
Channel Y	16252	16126
Channel Z	16131	16597

5. Input Offset Measurement

DASY measurement parameters; Auto Zero Time; 3 sec; Measuring time; 3 sec Input 10MQ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Ghannel X	1.41	0.06	2.73	0.67
Channel Y	0.68	-1.71	2,71	0.60
Channel Z	-0.36	-1.58	0.75	0.46

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (+ Vec)	=0.01	-8	-9

Report NO: TS201506021 Page 58 / 78

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerlscher Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

Certificate No: D2450V2-910_Jun13

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Report NO: TS201506021 Page 59 / 78

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters The following parameters

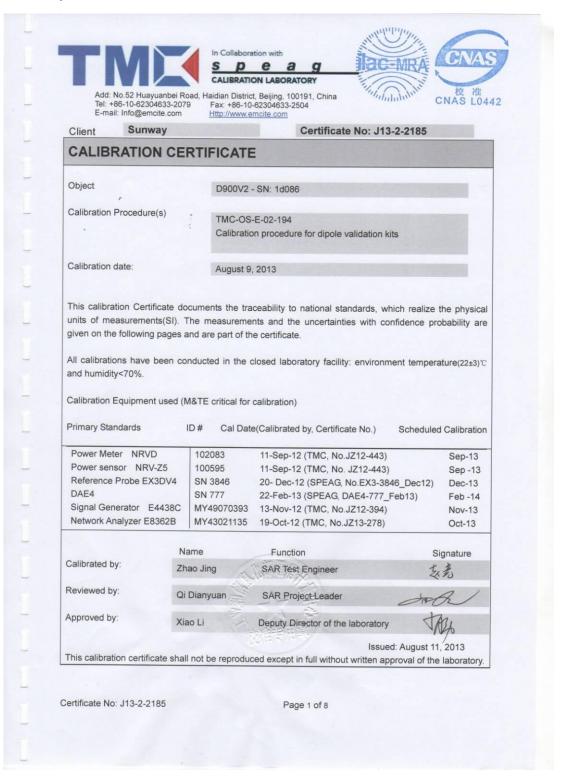
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)


Certificate No: D2450V2-910_Jun13

Page 3 of 8

Report NO: TS201506021 Page 60 / 78

Appendix E. Dipole Calibration Data:

Report NO: TS201506021 Page 61 / 78

p e

E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Glossary:

tissue simulating liquid TSL ConvF sensitivity in TSL / NORMx,y,z not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

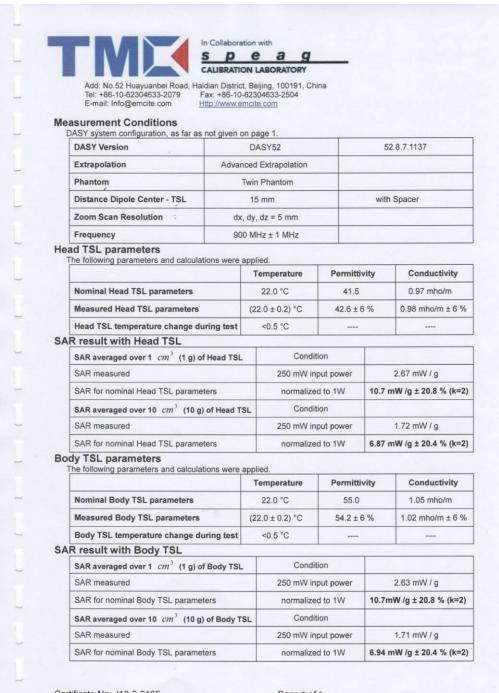
c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

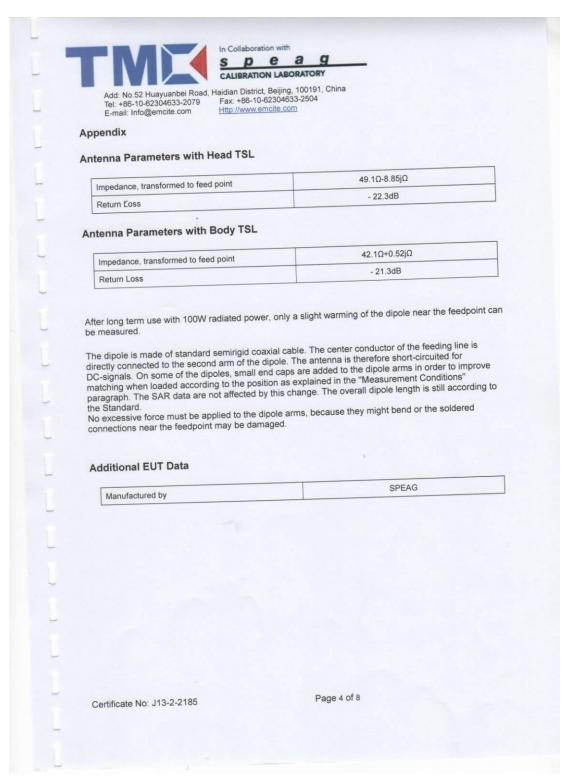
- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.


The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-2185

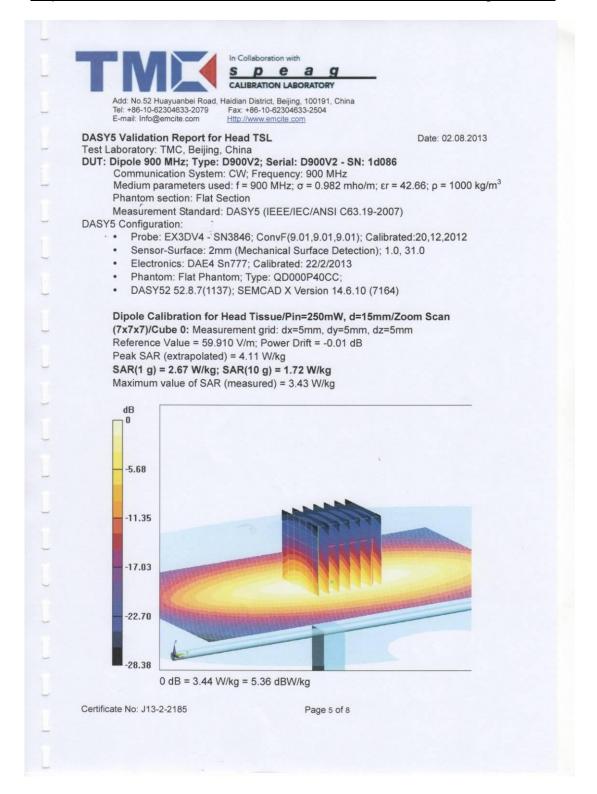
Page 2 of 8

Report NO: TS201506021 Page 62 / 78

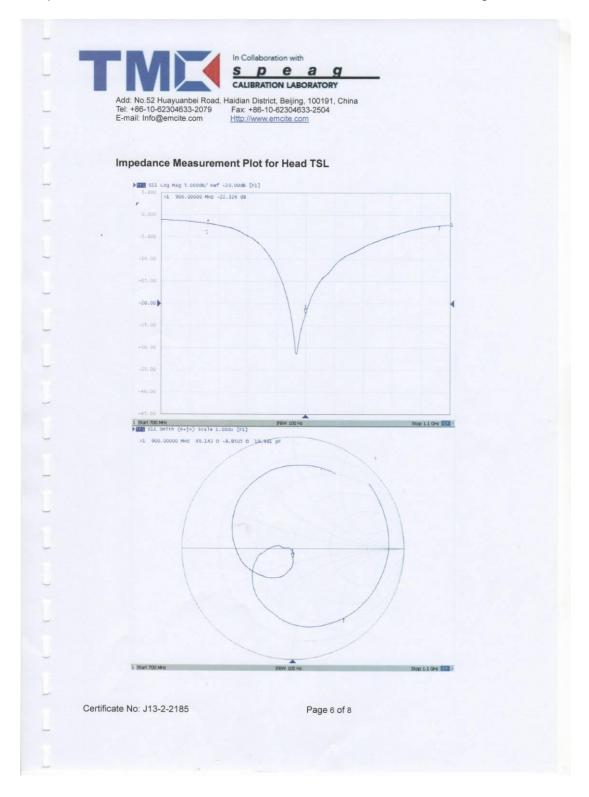


Certificate No: J13-2-2185

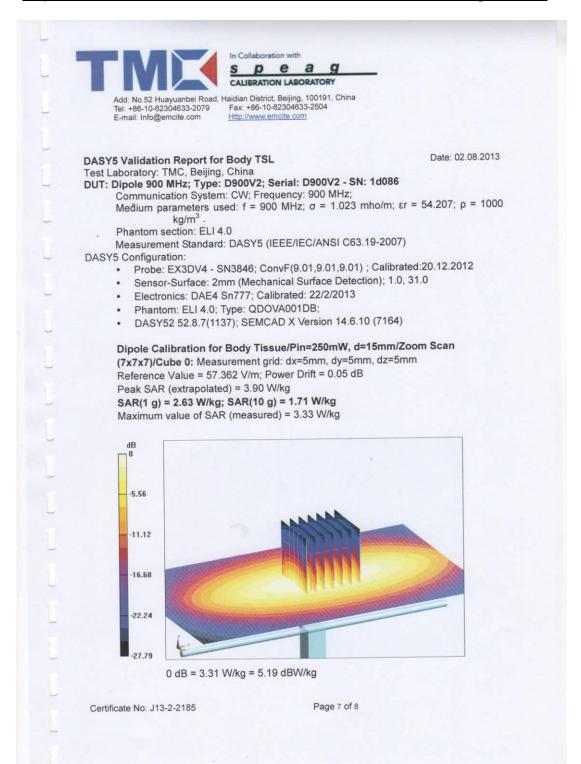
Page 3 of 8



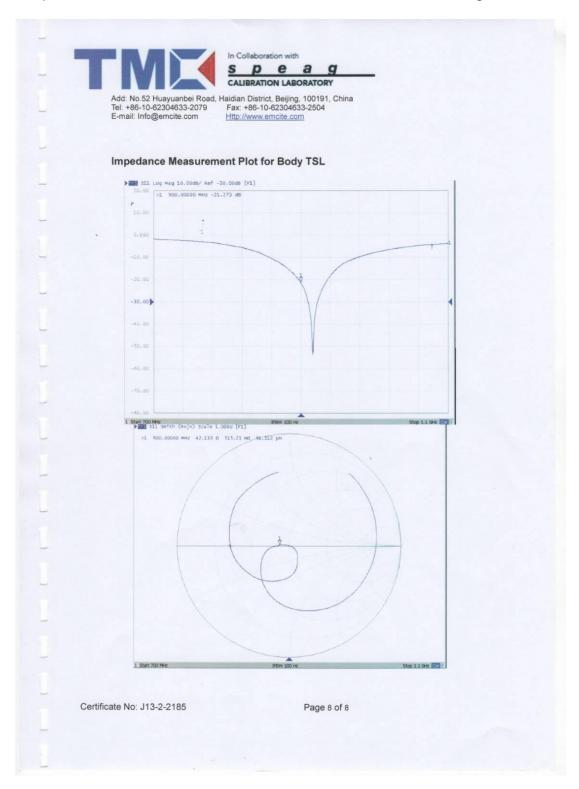
Report NO: TS201506021 Page 63 / 78



Report NO: TS201506021 Page 64 / 78



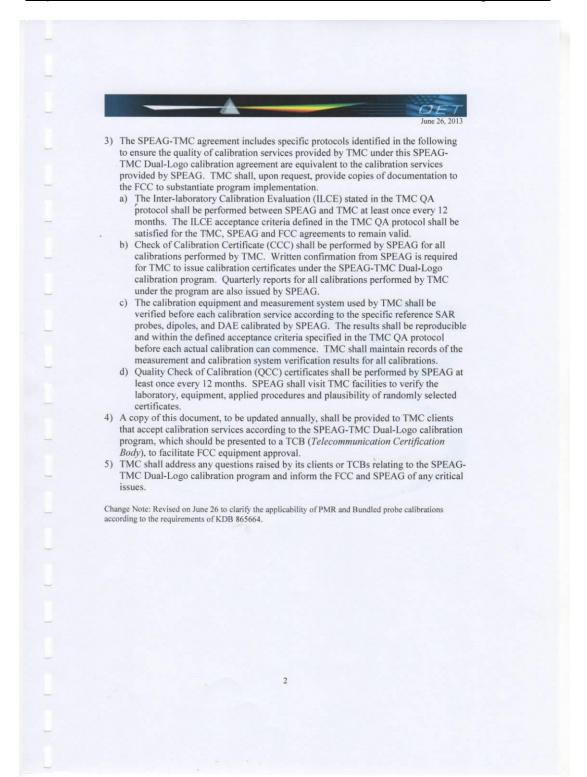
Report NO: TS201506021 Page 65 / 78



Report NO: TS201506021 Page 66 / 78

Report NO: TS201506021 Page 67 / 78

Report NO: TS201506021 Page 68 / 78


Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following.

- The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - iii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

Report NO: TS201506021 Page 69 / 78

Report NO: TS201506021 Page 70 / 78

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

CALIBRATION (CERTIFICATE		
Object	D1900V2 - SN: 5	id194	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	January 07, 2015	5	
	ortginting with confidence o	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been condu	cted in the closed laborator	ry facility: environment temperature (22 ± 3)*1	
All calibrations have been condu Calibration Equipment used (M&	cted in the closed laborator	ry facility: environment temperature (22 \pm 3)*1	C and humidity < 70%.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	TE critical for calibration) ID # GB37480704	ry facility: environment temperature (22 ± 3)*1 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	C and humidity < 70%. Scheduled Calibration Oct-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	ry facility: environment temperature (22 ± 3)*1 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	C and humidity < 70%. Scheduled Celibration Oct-15 Oct-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 MY41092317	ry facility: environment temperature (22 ± 3)*1 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	ry facility: environment temperature (22 ± 3)*1 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor HP 8461A Power sensor HP 8461A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2706327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-15 Oct-15 Apr-15 Apr-15
All calibrations have been conducted (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	ry facility: environment temperature (22 ± 3)*1 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	TE critical for calibration) ID # GB37480704 US37296783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-0198) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5068 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Or-Oct-14 (No. 217-02021) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attorustor Type-N mismatch combination Reference Probe ES3	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2005 SN: 601 ID # 100005 US37390686 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-02021) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. ESS-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Celibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attorustor Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5056 (20k) SN: 5047.2 / 06327 SN: 601 ID # 100005 US37390685 S4206	ry facility: environment temperature (22 ± 3)*1 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house chack: Oct-16
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2005 SN: 601 ID # 100005 US37390686 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02029) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-02021) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. 217-01921) 30-Dec-14 (No. ESS-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Celibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D1900V2-5d194_Jan15

Page 1 of 8

Report NO: TS201506021 Page 71 / 78

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

I/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d194_Jan15

Page 2 of 8

Report NO: TS201506021 Page 72 / 78

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

*	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL Condition		
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.31 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Report NO: TS201506021 Page 73 / 78

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7 Ω + 4.9 Ω	
Return Loss	- 24.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω + 5.1 jΩ
Return Loss	- 25.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 06, 2014

Certificate No: D1900V2-5d194_Jan15

Page 4 of 8

Report NO: TS201506021 Page 74 / 78

DASY5 Validation Report for Head TSL

Date: 07.12.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d194

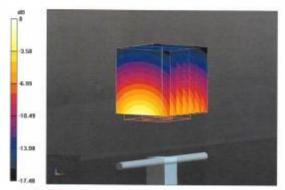
Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

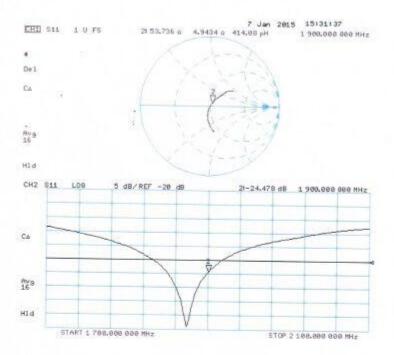
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.35 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.32 W/kg

Maximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg = 11.04 dBW/kg

Certificate No: D1900V2-5d194_Jan15


Page 5 of 8

Report NO: TS201506021

Page 75 / 78

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d194_Jan15

Page 6 of 8

Report NO: TS201506021 Page 76 / 78

DASY5 Validation Report for Body TSL

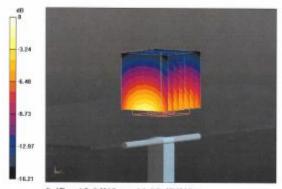
Date: 07.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d194

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ S/m; $\epsilon_c = 53.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

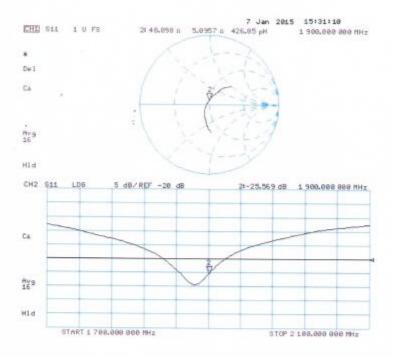

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.88 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (measured) = 12.6 W/kg


0 dB = 12.6 W/kg = 11.00 dBW/kg

Report NO: TS201506021

Page 77 / 78

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d194_Jan15

Page 8 of 8

Report NO: TS201506021 Page 78 / 78

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(Registration No. CNAS L6487)

Shenzhen Sunway Communication Co., Ltd. Testing Center

1/F., Building A, SDG Info Port, Kefeng Road, Hi-Tech Park,

Nanshan District, Shenzhen, Guangdong, China

is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence of testing.

The scope of accreditation is detailed in the attached appendices bearing the same registration number as above. The appendices form an integral part of this certificate.

Date of Issue: 2013-10-29 Date of Expiry: 2016-10-28

Date of Initial Accreditation: 2013-10-29

Date of Update: 2013-10-29

其建学

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment (CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment, CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA) and Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).

No.CNASAL2

0008227