

MPE Calculation

Applicant:	Coulisse B.V.
Address:	Vonderweg 48, 7468 DC Enter, THE NETHERLANDS
Product:	DC Tubular Motor
FCC ID:	ZY4CMD02
Model No.:	CMD-02
Reference RF report #	709502228929-00A

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1,500	/	/	f/1500	30		
1,500–100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

Calculation method for 433.92MHz

Calculate the EIRP from the radiated field strength in the far field using Equation (22):

$$\text{EIRP} = E_{\text{Meas}} + 20\log(d_{\text{Meas}}) - 104.7$$

where

EIRP	is the equivalent isotropically radiated power, in dBm
E_{Meas}	is the field strength of the emission at the measurement distance, in $dB\mu V/m$
dMeas	is the measurement distance, in m

NOTE—Because this equation yields the identical result whether the field strength is extrapolated using the default 20 dB/decade of distance extrapolation factor, or the field strength is not extrapolated for distance, this equation can generally be applied directly (with no further correction) to determine EIRP. In some cases, a different distance correction factor may be required; see 9.1.

EMC_SHA_F_R_02.06E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 1 of 2 Rev. 20.00

(22)

Report No: 709502228929-00B

For 433.92MHz.

Field Strength (EMeas):	93.79(dBuV/m)
	(f=433.92 MHz)
Measurement Distance(dMeas):	3 (m)
Equivalent Isotropically Radiated Power(EIRP):	-1.36dBm

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm²);

PG = -1.36dBm=0.7311mW (in appropriate units, e.g., mW);

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

The max power density 0.7311/4 π R²= 1.4552*10⁻⁴(mW/cm²) < 0.28928 (mW/cm²)

Result: Compliant

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

EMC_SHA_F_R_02.06E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600 Page 2 of 2 Rev. 20.00