

MPE Calculation

Applicant:	Coulisse B.V.
Address:	Vonderweg 48, 7468 DC Enter, THE NETHERLANDS
Product:	Tubular motor
FCC ID:	ZY4CM03E
Model No.:	CM-03-E
Reference RF report #	709502115326-00, 709502115366-00

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1,500	/	/	f/1500	30		
1,500–100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

EMC_SHA_F_R_02.06E

For 2.4GHz BLE (Report number: 709502115326-00) Calculated Data: line antenna

Maximum peak output power at antenna input terminal (dBm):	7.10			
Maximum peak output power at antenna input terminal (mW):	5.13			
Prediction distance (cm):	20			
Antenna Gain, typical (dBi):	3.5			
Maximum Antenna Gain (numeric):	2.2387			
The worst case is power density at predication frequency at 20 cm (mW/cm ²):	0.0023			
MPE limit for general population exposure at prediction frequency (mW/cm ²):	1.0			

The max power density 0.0023 (mW/ cm^2) < 1 (mW/ cm^2) Result: Compliant

For 2.4GHz Thread (Report number: 709502115366-00)

Calculated Data: line antenna

Maximum peak output power at antenna input terminal (dBm):	6.63
Maximum peak output power at antenna input terminal (mW):	4.60
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	3.5
Maximum Antenna Gain (numeric):	2.2387
The worst case is power density at predication frequency at 20 cm (mW/cm ²):	0.0020
MPE limit for general population exposure at prediction frequency (mW/cm ²):	1.0

The max power density 0.0020 (mW/ $cm^2)$ < 1 (mW/ $cm^2)$ Result: Compliant

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Prepared by:

Reviewed by:

Jiaki Xu

Cheng Huali

Tested by:

Hui TONG

Jiaxi XU

EMC Section Manager

Date: 2022-02-11

EMC_SHA_F_R_02.06E

EMC Project Engineer

Date: 2022-02-11

Huali CHENG EMC Test Engineer Date: 2022-02-11

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 2 of 2 Rev. 20.00