Report No: 709502115325-00A

MPE Calculation

Applicant:	Coulisse B.V.
Address:	Vonderweg 48, 7468 DC Enter, THE NETHERLANDS
Product:	Tubular motor
FCC ID:	ZY4CM03B
Model No.:	CM-03
Reference RF report #	709502115325-00

According to subpart 15.247(i) and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1,500	/	/	f/1500	30		
1,500–100,000	1	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm²);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Report No: 709502115325-00A

Calculated Data: Integral Antenna

For 2.4GHz BLE (Report number: 709502115325-00)

Maximum peak output power at antenna input terminal (dBm):	-3.14
Maximum peak output power at antenna input terminal (mW):	0.49
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	3.5
Maximum Antenna Gain (numeric):	2.24
The worst case is power density at predication frequency at 20 cm (mW/cm²):	0.0002
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.00

The max power density 0.0002 (mW/cm 2) < 1 (mW/cm 2)

Result: Compliant

EMC Section Manager

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by: Prepared by: Tested by:

Hui TONG Jiaxi XU

EMC Project Engineer

Date: 01-05, 2022 Date: 01-05, 2022

Cheng Huali

EMC Test Engineer

Date: 01-05, 2022