

OET 65 TEST REPORT

Product Name	GSM dual band mobile phone	
Model	V32cu	
Marketing name	emporiaCLICK	
FCC ID	ZVP-V32C	
Client	Emporia Telecom USA Inc.	

TA Technology (Shanghai) Co., Ltd.

Report No.: RXA1205-0230SAR01R2

Page 2 of 112

GENERAL SUMMARY

Product Name	GSM dual band mobile phone	Model	V32cu
Report No.	RXA1205-0230SAR01R2	FCC ID	ZVP-V32C
Client	Emporia Telecom USA Inc.		
Manufacturer	Emporia Telecom USA Inc.		
Reference Standard(s) SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.			
KDB 648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05: SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas. This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. Conclusion General Judgment: Pass (Stamp) Date of issue: June 19 th , 2012			
Comment	The test result only responds to the measured sa	mple.	
Approved by	施協中 Director Revised by SAR Manage	Performed	by SAR Engineer

TABLE O	F CONTENT
1. General Information	
1.2. Testing Laboratory	5
1.3. Applicant Information	
1.4. Manufacturer Information	
1.5. Information of EUT	7
1.6. The Maximum SAR _{1g} Values	
1.7. Test Date	
2. SAR Measurements System Configuration	
2.1. SAR Measurement Set-up	
2.2. DASY5 E-field Probe System	
2.2.1. EX3DV4 Probe Specification	
2.2.2. E-field Probe Calibration	
2.3. Other Test Equipment	
2.3.1. Device Holder for Transmitters	
2.3.2. Phantom	
2.4. Scanning Procedure	
2.5. Data Storage and Evaluation	
-	
2.5.2. Data Evaluation by SEMCAD	
3. Laboratory Environment	
4. Tissue-equivalent Liquid	
4.1. Tissue-equivalent Liquid Ingredients	
4.2. Tissue-equivalent Liquid Properties	
5. System Check	
5.1. Description of System Check	
5.2. System Check Results	
6. Operational Conditions during Test	

TA Technology (Shanghai) Co., Ltd. **Test Report**

6.1.

6.2.

6.3.

7.2.

7. 7.1.

6.2.1.

6.2.2.

6.3.1.

7.2.1.

7.2.2.

7.2.3.

Report No.: RXA1205-0230SAR01R2

8.	300MHz to 3GHz Measurement Uncertainty	30
9.	Main Test Instruments	32
AN	NEX A: Test Layout	33
AN	NEX B: System Check Results	36
AN	NEX C: Graph Results	41
AN	NEX D: Probe Calibration Certificate	75
AN	NEX E: D835V2 Dipole Calibration Certificate	86
AN	NEX F: D1900V2 Dipole Calibration Certificate	94
AN	NEX G: DAE4 Calibration Certificate	. 102
AN	NEX H: The EUT Appearances and Test Configuration	. 107

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Yang Weizhong
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	yangweizhong@ta-shanghai.com

1.3. Applicant Information

Company:	Emporia Telecom USA Inc.
Address:	321 E. Glen Ave, Ridgewood
City:	New Jersey
Postal Code:	1
Country:	Unite State

1.4. Manufacturer Information

Company:	Emporia Telecom USA Inc.
Address:	321 E. Glen Ave, Ridgewood
City:	New Jersey
Postal Code:	1
Country:	Unite State

1.5. Information of EUT

General Information

General information				
Device Type:	Portable Device			
Exposure Category:	Uncontrolled Environment / General Population			
State of Sample:	Prototype Unit			
Product Name:	GSM dual band mobile	phone		
IMEI:	359456040537327			
Hardware Version:	V32c_HW_V2.0			
Software Version:	V32c_SW_V1.04			
Antenna Type:	Internal Antenna			
Device Operating Configurations :				
Supporting Mode(s):	GSM 850/GSM 1900; (tested) Bluetooth; (untested)			
Test Modulation:	(GSM)GMSK			
Device Class:	В			
	Max Number of Timeslots in Uplink 4			
GPRS Multislot Class(12):	Max Number of Timeslo	ots in Downlink	4	
	Max Total Timeslot		5	
	Mode Tx (MHz)		Rx (MHz)	
Operating Frequency Range(s):	GSM 850	869.2 ~ 893.8		
	GSM 1900 1850.2 ~ 1909.8 1930.2 ~ 1989.8			
Power Class:	GSM 850: 4, tested with power level 5			
I UWEI UIASS.	GSM 1900: 1, tested with power level 0			
Test Channel: (Low - Middle - High)	128 - 190 - 251 (GSM 850) (tested) 512 - 661 - 810 (GSM 1900) (tested)			

Report No.: RXA1205-0230SAR01R2

Auxiliary Equipment Details

Name	Model	Manufacturer	S/N
Battery	AK-V32	Shenzhen Renergy	1
Dattery		Science&Technology Co.,Ltd	1

Equipment Under Test (EUT) is a GSM dual band mobile phone. The EUT has a GSM antenna that is used for Tx/Rx, and the other is BT antenna that can be used for Tx/Rx. The detail about EUT and Lithium Battery is in chapter 1.5 in this report. SAR are tested for GSM 850, GSM 1900.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR_{1g} Values

Head SAR Configuration

Mode	Channel	Position	SAR _{1g} (W/kg)
GSM 850	Middle/190	Right, Cheek	0.041
GSM 1900	High/810	Right, Cheek	0.103

Body Worn Configuration

Mode	Channel	Position	Separation distance	SAR _{1g} (W/kg)
4Txslots GPRS 850	Middle/190	Towards Ground	15mm	0.515
4Txslots GPRS 1900	High/810	Towards Ground	15mm	0.795

Simultaneous SAR

SAR _{1g} (W/kg) Test Position	GSM 1900	BT	MAX. ΣSAR_{1g}	
Body, Towards Ground	0.795	0	0.795	
Note: 1. Stand alone SAR for BT is not requird. Its SAR is considered 0 in the 1-g SAR				
summing process to determine simultaneous transmission SAR evaluation requirments.				

1.7. Test Date

The test performed from June 4, 2012 to June 6, 2012.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

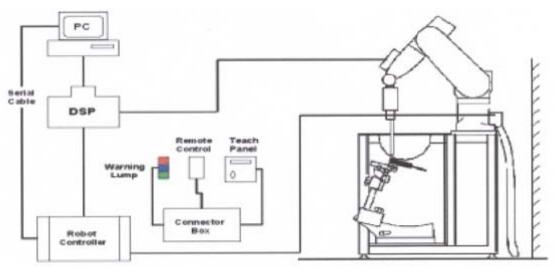


Figure 1 SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

- Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
- Calibration ISO/IEC 17025 calibration service available
- Frequency 10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)

- Dynamic Range 10μ W/g to > 100 mW/g Linearity:
 - \pm 0.2dB (noise: typically < 1 μ W/g)
- Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
- Application High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

Report No.: RXA1205-0230SAR01R2

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta \mathbf{T}}{\Delta \mathbf{t}}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

Report No.: RXA1205-0230SAR01R2

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness2±0.1 mmFilling VolumeApprox. 20 litersDimensions810 x 1000 x 500 mm (H x L x W)AailableSpecial

Figure 5 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid

Report No.: RXA1205-0230SAR01R2

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 5x5x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 8 mm resolution amounting to 175 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 5x5x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	•	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
•	- Crest factor	cf
Media parameters:	- Conductivity	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Report No.: RXA1205-0230SAR01R2

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)
	U _i = input signal of channel i	(i = x, y, z)
	<i>Cf</i> = crest factor of exciting field	(DASY parameter)
	dcp_i = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field p	robes:	$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$	
H-field p	robes:	$H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2}) / f$	
With	Vi	= compensated signal of channel i	(i = x, y, z)
	Norm _i	= sensor sensitivity of channel i	(i = x, y, z)
		[mV/(V/m) ²] for E-field Probes	

ConvF	= sensitivity enhancement in solution			
a _{ij}	= sensor sensitivity factors for H-field probes			
f	= carrier frequency [GHz]			

- E_i = electric field strength of channel i in V/m
- H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

- **E**_{tot} = total field strength in V/m
 - = conductivity in [mho/m] or [Siemens/m]
 - = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 1: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimized and in compliance with requirement of standards.				

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 2 and table 3 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 2: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz		
Water	41.45		
Sugar	56		
Salt	1.45		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9		

MIXTURE%	FREQUENCY(Brain) 1900MHz		
Water	55.242		
Glycol monobutyl	44.452		
Salt	0.306		
Dielectric Parameters	f=1900MHz ε=40.0 σ=1.40		
Target Value	1-1900WINZ 2-40.0 0-1.40		

Report No.: RXA1205-0230SAR01R2

Table 3: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz		
Water	52.5		
Sugar	45		
Salt	1.4		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97		

MIXTURE%	FREQUENCY (Body) 1900MHz		
Water	69.91		
Glycol monobutyl	29.96		
Salt	0.13		
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52		

4.2. Tissue-equivalent Liquid Properties

Frequency	Description	Dielectric Par	Temp		
requency	Description	٤r	σ(s/m)	ĉ	
	Target value	41.50	0.90	22.0	
835MHz	± 5% window	39.43 — 43.58	0.86 — 0.95	22.0	
(head)	Measurement value 2012-6-4	41.4	0.899	21.5	
	Target value	40.00	1.40	22.0	
1900MHz	±5% window	38.00 — 42.00	1.33 — 1.47	22.0	
(head)	Measurement value 2012-6-5	40.8	1.41	21.5	

Table 4: Dielectric Performance of Head Tissue Simulating Liquid

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Temp		
	Description	٤ _r	σ(s/m)	Ċ	
	Target value	55.20	0.97	22.0	
835MHz	±5% window	52.44 — 57.96	0.92 — 1.02	22.0	
(body)	Measurement value 2012-6-4	54.4	0.951	21.5	
1900MHz (body)	Target value	53.30	1.52	22.0	
	±5% window	50.64 — 55.97	1.44 — 1.60	22.0	
	Measurement value 2012-6-4	53.0	1.48	21.5	
	Measurement value 2012-6-6	52.1	1.55	21.5	

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 6 and table 7.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

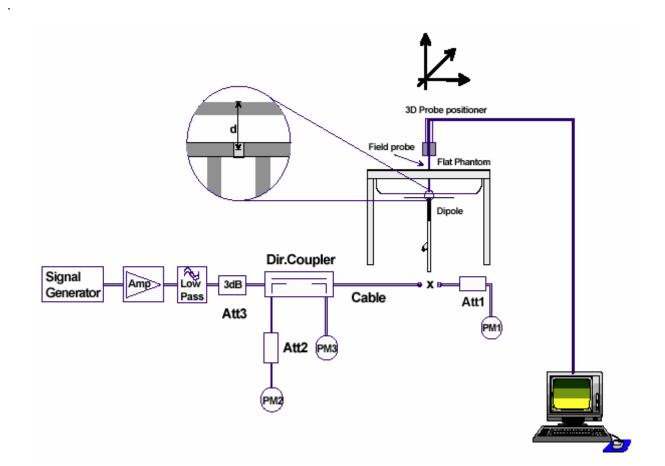


Figure 6 System Check Set-up

5.2. System Check Results

Table 6: System Check in Head Tissue Simulating Liquid

Frequency	Test Date		ectric neters	Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g} (±10% deviation)
		٤ _r	σ(s/m)	(°C)	(W/kg)		
835MHz	2012-6-4	41.4	0.899	21.5	2.36	9.44	9.34 (8.41~10.27)
1900MHz	2012-6-5	40.8	1.41	21.5	9.65	38.60	40.30 (36.27~ 44.33)
Note: 1. The graph results see ANNEX B. 2. Target Values derive from the calibration certificate							

Table 7: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g} (±10% deviation)	
		٤r	σ(s/m)	(°C)		(W/kg)		
835MHz	2012-6-4	54.4	0.951	21.5	2.57	10.28	9.46 (8.51~10.41)	
1000MH-	2012-6-4	012-6-4 53.0 1.48 21.5 9.69	38.76	41.70				
1900MHz	2012-6-6	52.1	1.55	21.5	10.00	40.00	(37.53~45.87)	
Note: 1. The graph results see ANNEX B. 2. Target Values derive from the calibration certificate								

6. Operational Conditions during Test

6.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radiofrequency Channel Number (ARFCN) is allocated to 128, 190 and 251 in the case of GSM 850, to 512, 661 and 810 in the case of GSM 1900. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Positions

6.2.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

6.2.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The distance between the device and the phantom was kept 15mm.

6.3. Test Configuration

6.3.1. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

Table 8: The allowed power reduction in the multi-slot configuration

7. Test Results

7.1. Conducted Power Results

Table 9: Conducted Power Measurement Results

GSM 850		Burst Cond	lucted Pow	er(dBm)		Aver	age power(dBm)		
		Channel 128	Channel 190	Channel 251		Channel 128	Channel 190	Channel 251		
G	SM	32.93	33.11	33.24	-9.03dB	23.9	24.08	24.21		
	1Txslot	32.91	33.08	33.18	-9.03dB	23.88	24.05	24.15		
GPRS	2Txslots	32.85	32.94	33.15	-6.02dB	26.83	26.92	27.13		
(GMSK)	3Txslots	32.79	32.89	33.09	-4.26dB	28.53	28.63	28.83		
	4Txslots	32.74	32.87	33.02	-3.01dB	29.73	29.86	30.01		
		Burst Conducted Power(dBm)				Aver	age power(dBm)		
GSM	1900	Channel	Channel	Channel		Channel	Channel	Channel		
		512	661	810		512	661	810		
G	SM	30.26	30.4	30.57	-9.03dB	21.23	21.37	21.54		
	1Txslot	30.2	30.3	30.5	-9.03dB	21.17	21.27	21.47		
GPRS	2Txslots	30.18	30.24	30.48	-6.02dB	24.16	24.22	24.46		
(GMSK)	3Txslots	30.14	30.21	30.45	-4.26dB	25.88	25.95	26.19		
	4Txslots	30.09	30.19	30.36	-3.01dB	27.08	27.18	27.35		
Note:	Note:									
1) Division	1) Division Factors									
To average the power, the division factor is as follows:										
1Txs	1Txslot = 1 transmit time slot out of 8 time slots									
	=> conducted power divided by (8/1) => -9.03 dB									

2Txslots = 2 transmit time slots out of 8 time slots => conducted power divided by (8/2) => -6.02 dB 3Txslots = 3 transmit time slots out of 8 time slots => conducted power divided by (8/3) => -4.26 dB 4Txslots = 4 transmit time slots out of 8 time slots => conducted power divided by (8/4) => -3.01 dB

2) Average power numbers

The maximum power numbers are marks in bold.

Report No.: RXA1205-0230SAR01R2

Page 26 of 112

7.2. SAR Test Results

7.2.1. GSM 850 (GPRS)

Table 10: SAR Values [GSM 850 (GPRS)]

Limit of SAR		10 g Average 2.0 W/kg	1 g Average 1.6 W/kg	Power Drift ± 0.21 dB	Graph Results				
Different Test Desition	Channel	Measurement	t Result(W/kg)	Power	Results				
Different Test Position	Channel	10 g Average	1 g Average	Drift (dB)					
	Test Pos	ition of Head (Cov	ver Open)						
Left hand, Touch Cheek	Middle/190	0.022	0.032	-0.138	Figure 12				
Left hand, Tilt 15 Degree	Middle/190	0.006	0.008	0.084	Figure 13				
	High/251	0.024	0.038	-0.091	Figure 14				
Right hand, Touch Cheek	Middle/190	0.027	0.041	0.066	Figure 15				
	Low/128	0.023	0.036	-0.011	Figure 16				
Right hand, Tilt 15 Degree	Middle/190	0.006	0.008	-0.034	Figure 17				
Test	position of E	Body (Cover Close	d,Distance 15mm)					
	High/251	0.366	0.515	0.154	Figure 18				
Towards Ground (4Txslots)	Middle/190	0.367	0.515	0.043	Figure 19				
	Low/128	0.316	0.446	-0.003	Figure 20				
	High/251	0.149	0.205	-0.116	Figure 21				
Towards Phantom (4Txslots)	Middle/190	0.137	0.188	-0.073	Figure 22				
	Low/128	0.132	0.181	0.046	Figure 23				
Test position of Body (Cover Open, Distance 15mm)									
	High/251	0.188	0.287	0.027	Figure 24				
Towards Ground (4Txslots)	Middle/190	0.167	0.243	0.031	Figure 25				
	Low/128	0.156	0.229	0.038	Figure 26				

2. Upper and lower frequencies were measured at the worst position for head SAR.

3. The Body SAR test shall be performed at the high, middle and low frequency channels of each operating mode.

4. When multiple slots can be used, SAR should be tested to account for the maximum source-based time-averaged output power.

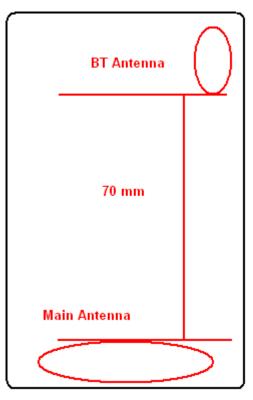
Report No.: RXA1205-0230SAR01R2

Page 27 of 112

7.2.2. GSM 1900 (GPRS)

Table 11: SAR Values [GSM 1900(GPRS)]

Limit of SAR	10 g Average	1 g Average	Power Drift			
		2.0 W/kg	1.6 W/kg	± 0.21 dB	Graph Results	
Different Test Position	Channel	Measurement	t Result(W/kg)	Power		
Different rest Position	Channer	10 g Average	1 g Average	Drift (dB)		
	Test Pos	ition of Head (Cov	/er Open)			
Left hand, Touch Cheek	Middle/661	0.024	0.038	-0.050	Figure 27	
Left hand, Tilt 15 Degree	Middle/661	0.003	0.008	0.040	Figure 28	
	High/810	0.062	0.103	0.040	Figure 29	
Right hand, Touch Cheek	Middle/661	0.039	0.064	0.090	Figure 30	
	Low/512	0.033	0.054	0.050	Figure 31	
Right hand, Tilt 15 Degree	Middle/661	0.009	0.015	-0.077	Figure 32	
Test	t position of B	Body (Cover Close	d,Distance 15mm)		
	High/810	0.303	0.525	0.012	Figure 33	
Towards Ground (4Txslots)	Middle/661	0.278	0.480	-0.036	Figure 34	
	Low/512	0.225	0.389	0.056	Figure 35	
	High/810	0.135	0.223	0.087	Figure 36	
Towards Phantom (4Txslots)	Middle/661	0.119	0.195	0.062	Figure 37	
	Low/512	0.102	0.155	0.047	Figure 38	
Tes	t position of I	Body (Cover Open	, Distance 15mm)	· · · · · ·		
	High/810	0.457	0.795	-0.003	Figure 39	
Towards Ground (4Txslots)	Middle/661	0.416	0.720	-0.091	Figure 40	
	Low/512	0.301	0.522	-0.095	Figure 41	


3. The Body SAR test shall be performed at the high, middle and low frequency channels of each operating mode.

4. When multiple slots can be used, SAR should be tested to account for the maximum source-based time-averaged output power.

Report No.: RXA1205-0230SAR01R2

7.2.3. Bluetooth Function

The distance between BT antenna and GSM antenna is >5cm. The location of the antennas inside EUT is shown in Annex H:

The output power of BT antenna is as following:

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz
GFSK(dBm)	2.52	1.76	1.68
EDR2M-4_DQPSK(dBm)	2.46	1.77	1.62
EDR3M-8DPSK(dBm)	2.48	1.75	1.62

Output Power Thresholds for Unlicensed Transmitters

	2.45	5.15 - 5.35	5.47 - 5.85	GHz				
P _{Ref}	12	6	5	mW				
Device output power should be rounded to the nearest mW to compare with values specified								
in this table.								

Report No.: RXA1205-0230SAR01R2

Stand-alone SAR

According to the output power measurement result and the distance between BT antenna and GSM antenna we can draw the conclusion that:

BT antenna is >5cm from GSM antenna, stand-alone SAR are not required for BT, because the output power of BT transmitter is $\leq 2P_{Ref}$ =13.8dBm.

Simultaneous SAR

About BT and GSM Antenna,

SAR _{1g} (W/kg) Test Position	GSM850	GSM1900	BT	MAX. ΣSAR_{1g}				
Left hand, Touch cheek	0.032	0.038	0	0.038				
Left hand, Tilt 15 Degree	0.008	0.008	0	0.008				
Right hand, Touch cheek	0.041	0.103	0	0.103				
Right hand, Tilt 15 Degree	0.008	0.015	0	0.015				
Body, Towards Ground	0.515	0.795	0	0.795				
Body, Towards Phantom	0.205	0.223	0	0.223				
Note: 1. The value with blue color is the maximum ΣSAR_{1g} Value.								

2. MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

3. Stand alone SAR for BT is not required. Its SAR is considered 0 in the 1-g SAR summing process to determine simultaneous transmission SAR evaluation requirments.

(GSM Antenna SAR_{MAX})0.795 +(BT Antenna SAR_{MAX})0 =0.795 <1.6. So the Simultaneous SAR are not required for BT and GSM antenna.

Page 30 of 112

8. 300MHz to 3GHz Measurement Uncertainty

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u'_i(\%)$	Degree of freedom V _{eff} or v _i		
1	System repetivity	А	0.5	N	1	1	0.5	9		
		Меа	asurement syste	em		-				
2	-probe calibration	В	6.0	N	1	1	6.0	8		
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞		
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞		
6	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞		
7	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8		
8	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	8		
9	-readout Electronics	В	1.0	N	1	1	1.0	8		
10	-response time	В	0	R	$\sqrt{3}$	1	0	∞		
11	-integration time	В	4.32	R	$\sqrt{3}$	1	2.5	8		
12	-noise	В	0	R	$\sqrt{3}$	1	0	8		
13	-RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	8		
14	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8		
15	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8		
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	×		
	Test sample Related									
17	-Test Sample Positioning	А	2.9	N	1	1	2.9	71		
18	-Device Holder Uncertainty	А	4.1	N	1	1	4.1	5		
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞		
		Ph	ysical paramete	er						
20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞		

Report No.: RXA1205-0230SAR01R2

Page 31 of 112

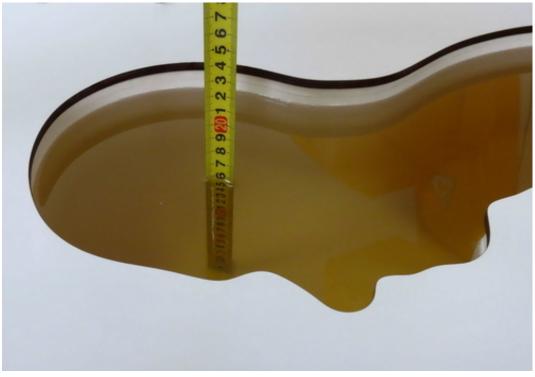
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.64	1.8	8
22	-liquid conductivity (measurement uncertainty)	В	2.5	Ν	1	0.64	1.6	9
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
24	-liquid permittivity (measurement uncertainty)	В	2.5	N	1	0.6	1.5	9
Comb	Combined standard uncertainty		$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$			11.50		
	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$	N k=2		23.00		

9. Main Test Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 12, 2011	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Rec	quested
03	Power meter	Agilent E4417A	GB41291714	March 11, 2012	One year
04	Power sensor	Agilent N8481H	MY50350004	September 25, 2011	One year
05	Power sensor	E9327A	US40441622	September 24, 2011	One year
06	Signal Generator	HP 8341B	2730A00804	September 12, 2011	One year
07	Dual directional coupler	778D-012	50519	March 26, 2012	One year
08	Amplifier	IXA-020	0401	No Calibration Requested	
09	BTS	E5515C	MY48360988	December 2, 2011	One year
10	E-field Probe	EX3DV4	3753	January 4, 2012	One year
11	DAE	DAE4	1291	October 10, 2011	One year
12	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	One year
13	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	One year
14	Temperature Probe	JM222	AA1009129	March 15, 2012	One year
15	Hygrothermograph	WS-1	64591	September 28, 2011	One year

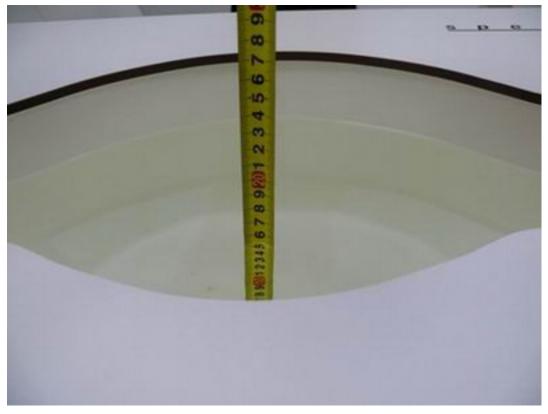
*****END OF REPORT *****

ANNEX A: Test Layout



Picture 1: Specific Absorption Rate Test Layout

Report No.: RXA1205-0230SAR01R2



Picture 2: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)

Picture 3: Liquid depth in the head Phantom (835MHz, 15.3cm depth)

Report No.: RXA1205-0230SAR01R2

Picture 4: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

Picture 5: liquid depth in the head Phantom (1900 MHz, 15.3cm depth)

Report No.: RXA1205-0230SAR01R2

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Date/Time: 6/4/2012 10:34:35 PM Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.899 mho/m; ϵ_r = 41.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.02, 9.02, 9.02); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.53 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.2 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 3.48 W/kg

SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.55 mW/g

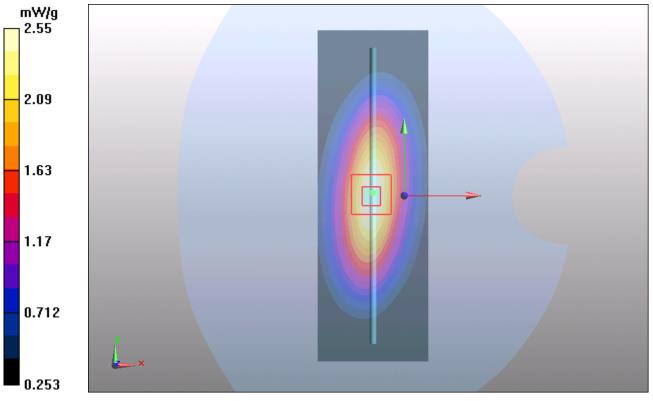


Figure 7 System Performance Check 835MHz 250mW

TA Technology (Shanghai) Co., Ltd. Test Report Report No.: RXA1205-0230SAR01R2

Page 37 of 112

System Performance Check at 835 MHz Body TSL DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Date/Time: 6/4/2012 10:56:26 AM Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.951 mho/m; ϵ_r = 54.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

835 MHZ Dipole/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.77 mW/g

835 MHZ Dipole/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 54.2 V/m; Power Drift = -0.029 dB
Peak SAR (extrapolated) = 3.82 W/kg
SAR(1 g) = 2.57 mW/g; SAR(10 g) = 1.69 mW/g

Maximum value of SAR (measured) = 2.78 mW/g

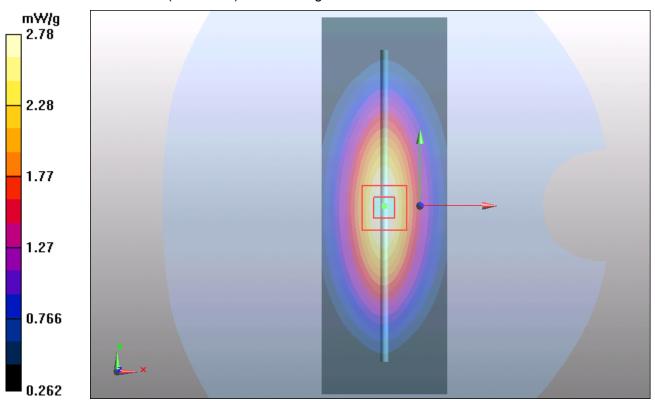


Figure 8 System Performance Check 835MHz 250mW

Report No.: RXA1205-0230SAR01R2

System Performance Check at 1900 MHz Head TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Date/Time: 6/5/2012 10:46:01 AM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ_r = 40.8; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(8.05, 8.05, 8.05); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

1900 MHZ Dipole/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.6 mW/g

1900 MHZ Dipole/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.4 V/m; Power Drift = 0.140 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 9.65 mW/g; SAR(10 g) = 4.96 mW/g

Maximum value of SAR (measured) = 10.9 mW/g

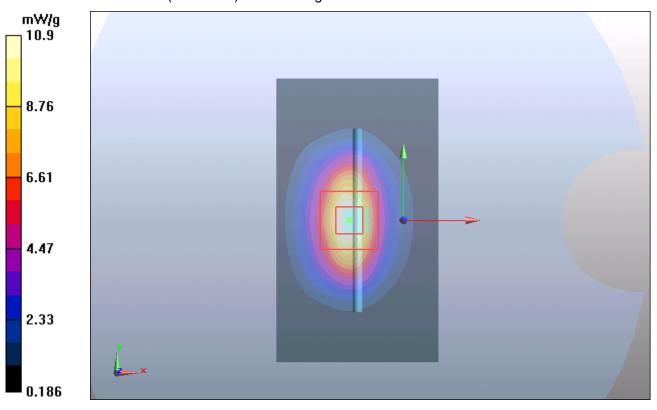


Figure 9 System Performance Check 1900MHz 250mW

Report No.: RXA1205-0230SAR01R2

System Performance Check at 1900 MHz Body TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Date/Time: 6/4/2012 6:37:01 PM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.48 mho/m; ϵ_r = 53; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.1 V/m; Power Drift = 0.174 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.69 mW/g; SAR(10 g) = 5.06 mW/g

Maximum value of SAR (measured) = 11 mW/g

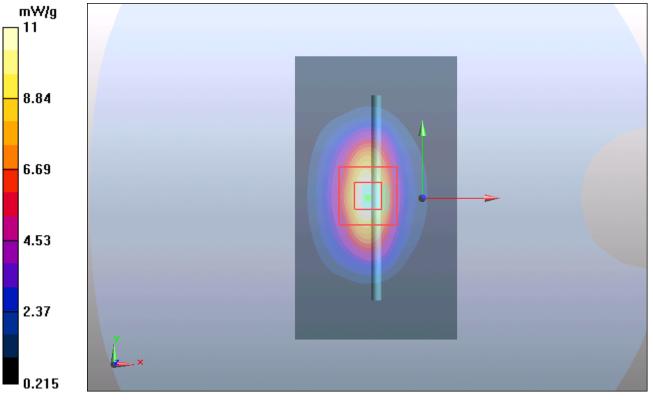
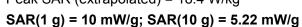


Figure 10 System Performance Check 1900MHz 250Mw


Report No.: RXA1205-0230SAR01R2

System Performance Check at 1900 MHz Body TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Date/Time: 6/6/2012 11:47:22 AM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.55 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.9 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 18.4 W/kg

Maximum value of SAR (measured) = 11.2 mW/g

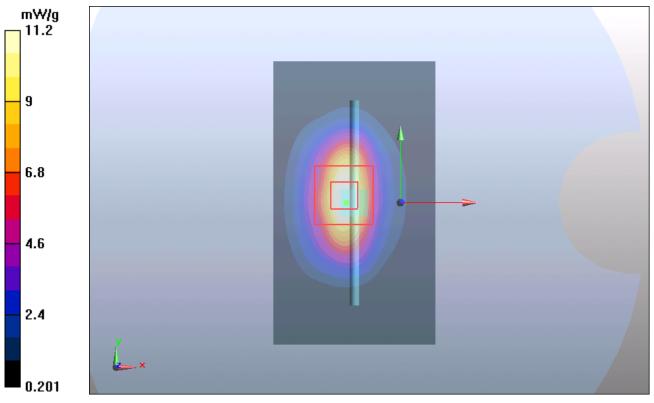
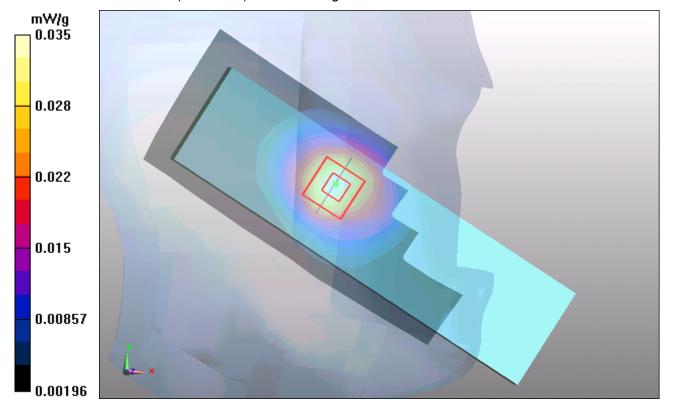
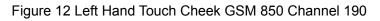


Figure 11 System Performance Check 1900MHz 250Mw

ANNEX C: Graph Results


GSM 850 Left Cheek Middle (Cover Open)


Date/Time: 6/4/2012 11:55:54 PM Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; σ = 0.9 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.02, 9.02, 9.02); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Cheek Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.034 mW/g

Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.37 V/m; Power Drift = -0.138 dB Peak SAR (extrapolated) = 0.046 W/kg SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.022 mW/g

Maximum value of SAR (measured) = 0.035 mW/g

Page 42 of 112

GSM 850 Left Tilt Middle (Cover Open)

Date/Time: 6/5/2012 9:52:05 AM Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; σ = 0.9 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.02, 9.02, 9.02); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Tilt Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.00892 mW/g

Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.48 V/m; Power Drift = 0.084 dB Peak SAR (extrapolated) = 0.010 W/kg SAR(1 g) = 0.00807 mW/g; SAR(10 g) = 0.0058 mW/g

Maximum value of SAR (measured) = 0.00842 mW/g

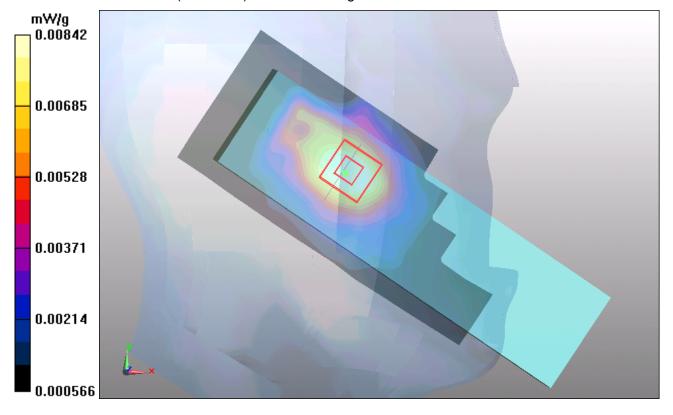
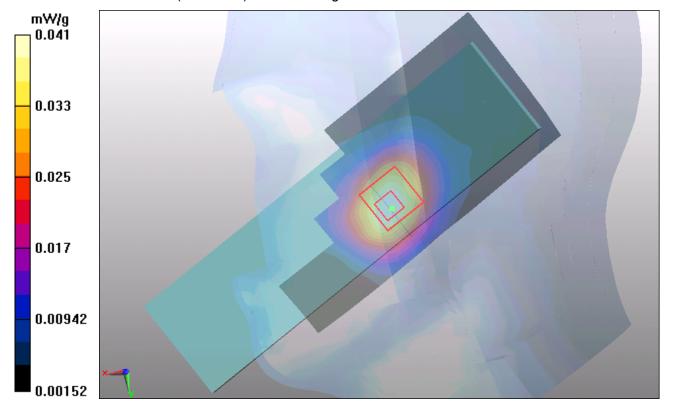


Figure 13 Left Hand Tilt 15° GSM 850 Channel 190

Page 43 of 112

GSM 850 Right Cheek High (Cover Open)


Date/Time: 6/5/2012 10:12:53 AM Communication System: GSM; Frequency: 848.8 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 849 MHz; σ = 0.913 mho/m; ϵ_r = 41.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.02, 9.02, 9.02); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd. Test Report

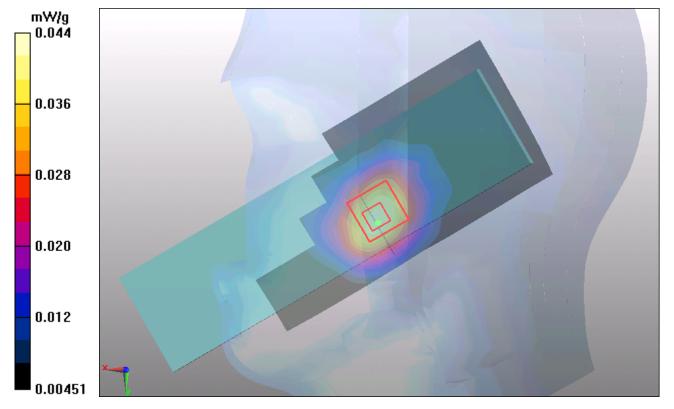
Cheek High/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.040 mW/g

Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.09 V/m; Power Drift = -0.091 dB Peak SAR (extrapolated) = 0.060 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.024 mW/g

Maximum value of SAR (measured) = 0.041 mW/g

Page 44 of 112

GSM 850 Right Cheek Middle (Cover Open)


Date/Time: 6/4/2012 11:13:45 PM Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; σ = 0.9 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.02, 9.02, 9.02); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd. Test Report

Cheek Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.041 mW/g

Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.28 V/m; Power Drift = 0.066 dB Peak SAR (extrapolated) = 0.064 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.027 mW/g

Maximum value of SAR (measured) = 0.044 mW/g

Report No.: RXA1205-0230SAR01R2

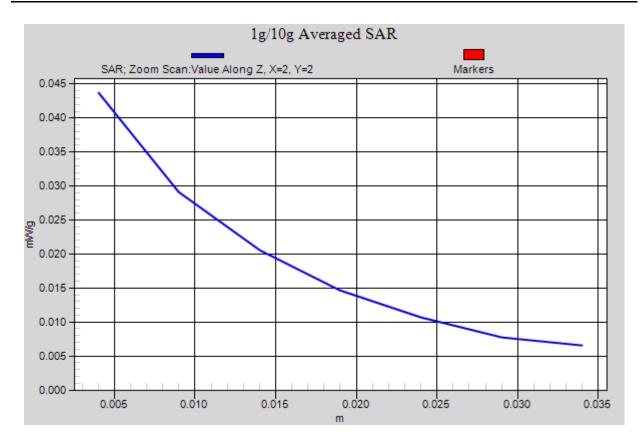


Figure 15 Right Hand Touch Cheek GSM 850 Channel 190

Report No.: RXA1205-0230SAR01R2

Page 46 of 112

GSM 850 Right Cheek Low (Cover Open)

Date/Time: 6/5/2012 10:27:35 AM Communication System: GSM; Frequency: 824.2 MHz;Duty Cycle: 1:8.30042 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.887 mho/m; ϵ_r = 41.5; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.02, 9.02, 9.02); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Cheek Low/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.039 mW/g **Cheek Low/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.29 V/m; Power Drift = -0.011 dB Peak SAR (extrapolated) = 0.056 W/kg

SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.023 mW/g

Maximum value of SAR (measured) = 0.039 mW/g

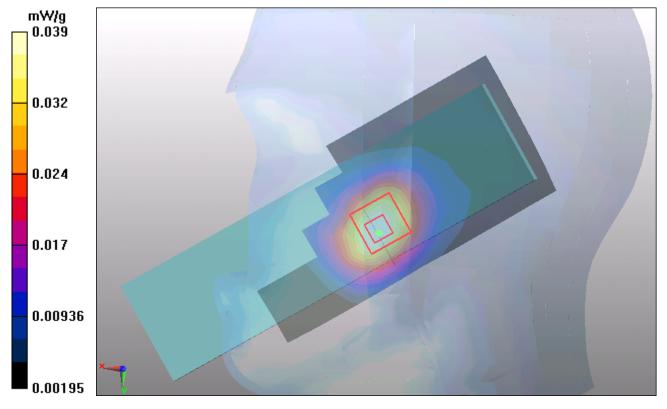


Figure 16 Right Hand Touch Cheek GSM 850 Channel 128

Page 47 of 112

GSM 850 Right Tilt Middle (Cover Open)

Date/Time: 6/4/2012 11:35:07 PM Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; σ = 0.9 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.02, 9.02, 9.02); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Tilt Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.00887 mW/g

Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.39 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.00791 mW/g; SAR(10 g) = 0.00568 mW/g Maximum value of SAR (measured) = 0.00824 mW/g

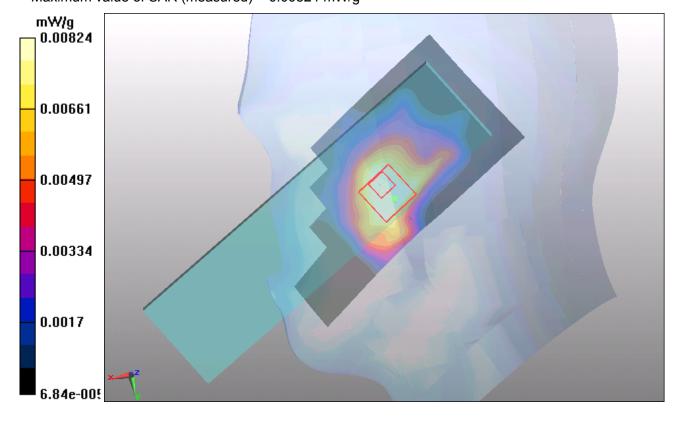
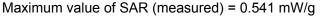


Figure 17 Right Hand Tilt 15° GSM 850 Channel 190

Page 48 of 112


GSM 850 GPRS (4Txslots) Towards Ground High (Cover Closed)

Date/Time: 6/4/2012 11:45:41 AM Communication System: GPRS 4TX; Frequency: 848.8 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 849 MHz; σ = 0.971 mho/m; ϵ_r = 54.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.613 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.4 V/m; Power Drift = 0.154 dB Peak SAR (extrapolated) = 0.674 W/kg SAR(1 g) = 0.515 mW/g; SAR(10 g) = 0.366 mW/g

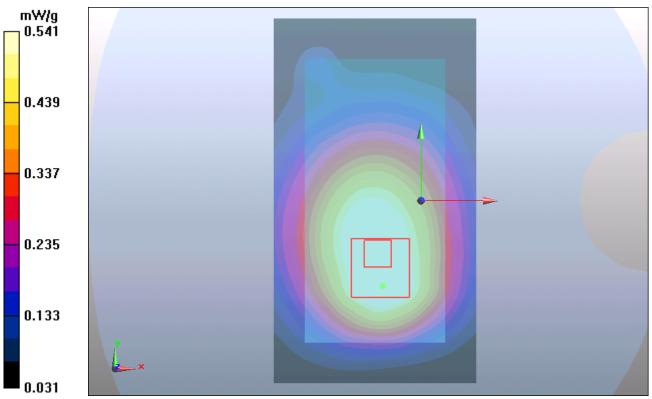
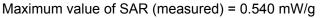
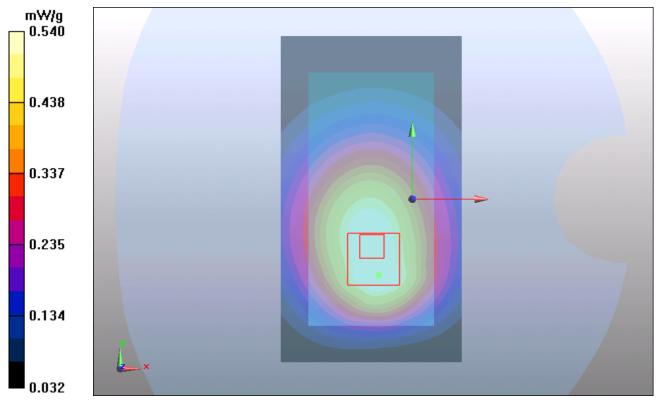


Figure 18 Body, Towards Ground, GSM 850 GPRS (4Txslots) Channel 251

Page 49 of 112


GSM 850 GPRS (4Txslots) Towards Ground Middle (Cover Closed)


Date/Time: 6/4/2012 11:30:05 AM Communication System: GPRS 4TX; Frequency: 836.6 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 837 MHz; σ = 0.954 mho/m; ϵ_r = 54.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.576 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.6 V/m; Power Drift = 0.043 dB Peak SAR (extrapolated) = 0.689 W/kg SAR(1 g) = 0.515 mW/g; SAR(10 g) = 0.367 mW/g

Report No.: RXA1205-0230SAR01R2

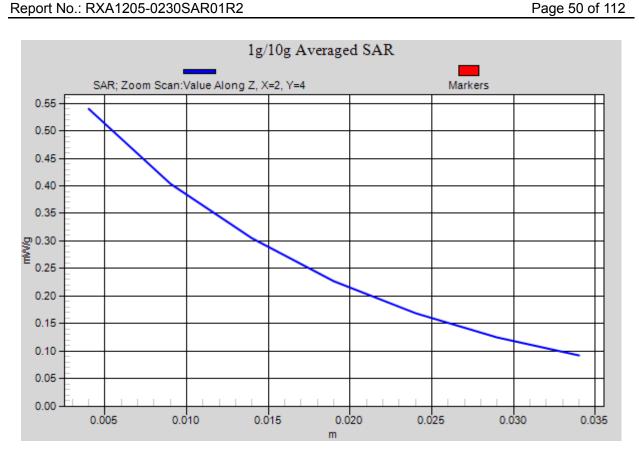
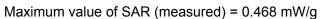


Figure 19 Body, Towards Ground, GSM 850 GPRS (4Txslots) Channel 190

TA Technology (Shanghai) Co., Ltd. Test Report

Page 51 of 112


GSM 850 GPRS (4Txslots) Towards Ground Low (Cover Closed)

Date/Time: 6/4/2012 12:01:22 PM Communication System: GPRS 4TX; Frequency: 824.2 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.939 mho/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.477 mW/g

Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.7 V/m; Power Drift = -0.00306 dB Peak SAR (extrapolated) = 0.593 W/kg SAR(1 g) = 0.446 mW/g; SAR(10 g) = 0.316 mW/g

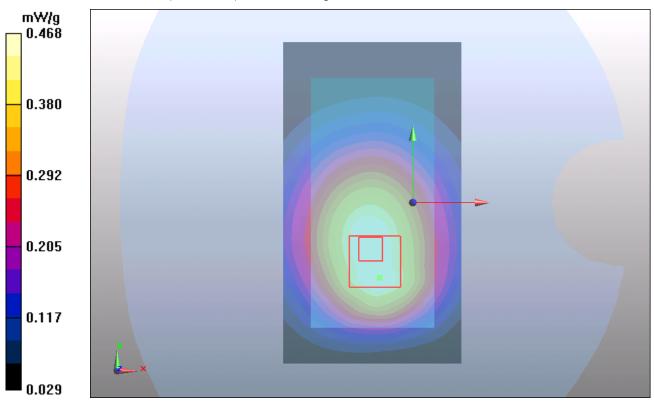


Figure 20 Body, Towards Ground, GSM 850 GPRS (4Txslots) Channel 128

Page 52 of 112

GSM 850 GPRS (4Txslots) Towards Phantom High (Cover Closed)

Date/Time: 6/4/2012 1:03:37 PM Communication System: GPRS 4TX; Frequency: 848.8 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 849 MHz; σ = 0.971 mho/m; ϵ_r = 54.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Phantom High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.227 mW/g

Towards Phantom High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 15.5 V/m; Power Drift = -0.116 dB Peak SAR (extrapolated) = 0.270 W/kg SAR(1 g) = 0.205 mW/g; SAR(10 g) = 0.149 mW/g

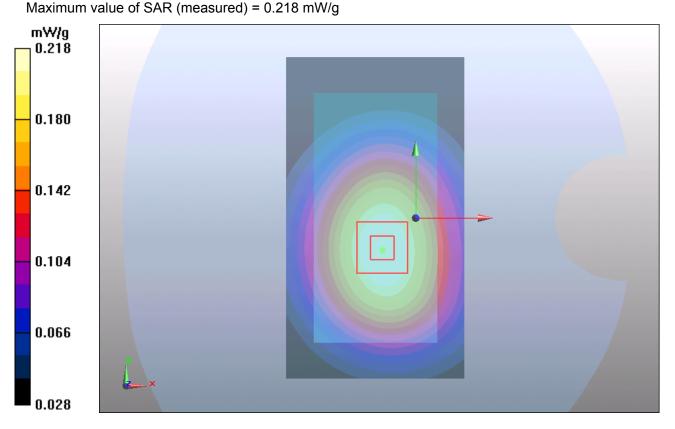


Figure 21 Body, Towards Phantom, GSM 850 GPRS (4Txslots) Channel 251

Page 53 of 112

GSM 850 GPRS (4Txslots) Towards Phantom Middle (Cover Closed)

Date/Time: 6/4/2012 1:21:53 PM Communication System: GPRS 4TX; Frequency: 836.6 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 837 MHz; σ = 0.954 mho/m; ϵ_r = 54.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.470 mW/g

Towards Phantom Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.3 V/m; Power Drift = -0.073 dB Peak SAR (extrapolated) = 0.244 W/kg SAR(1 g) = 0.188 mW/g; SAR(10 g) = 0.137 mW/g

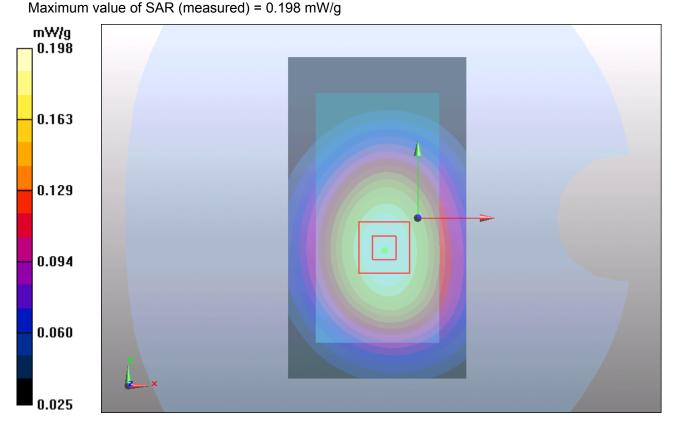
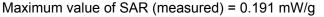


Figure 22 Body, Towards Phantom, GSM 850 GPRS (4Txslots) Channel 190

Test Report Report No.: RXA1205-0230SAR01R2

Page 54 of 112

GSM 850 GPRS (4Txslots) Towards Phantom Low (Cover Closed)


Date/Time: 6/4/2012 12:19:06 PM Communication System: GPRS 4TX; Frequency: 824.2 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.939 mho/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd.

Towards Phantom Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.192 mW/g

Towards Phantom Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 13.7 V/m; Power Drift = 0.046 dB Peak SAR (extrapolated) = 0.237 W/kg SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.132 mW/g

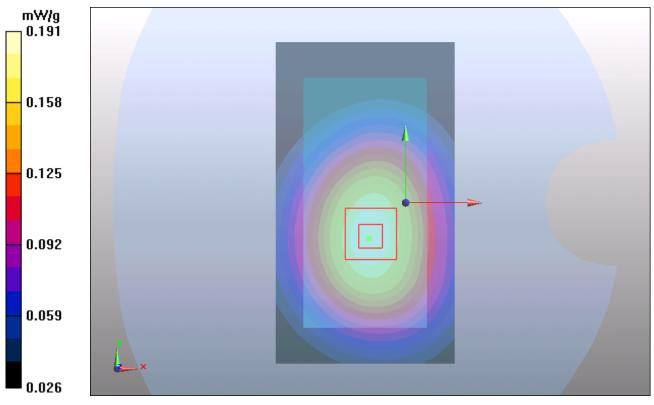


Figure 23 Body, Towards Phantom, GSM 850 GPRS (4Txslots) Channel 128

Page 55 of 112

GSM 850 GPRS (4Txslots) Towards Ground High (Cover Open)

Date/Time: 6/4/2012 2:06:56 PM Communication System: GPRS 4TX; Frequency: 848.8 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 849 MHz; σ = 0.971 mho/m; ϵ_r = 54.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd. Test Report

Towards Ground High/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.289 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.33 V/m; Power Drift = 0.027 dB Peak SAR (extrapolated) = 0.592 W/kg SAR(1 g) = 0.287 mW/g; SAR(10 g) = 0.188 mW/g

Maximum value of SAR (measured) = 0.281 mW/g

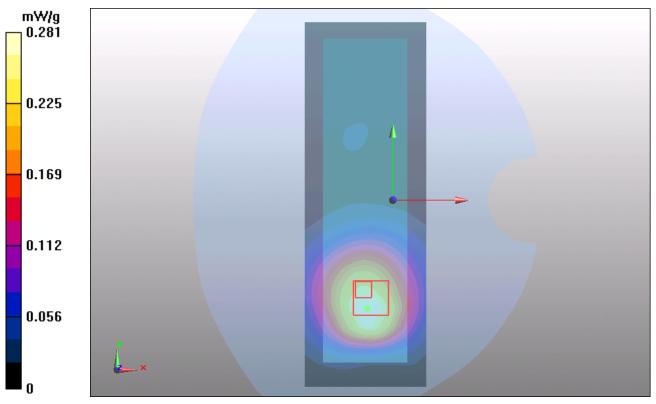


Figure 24 Body, Towards Ground, GSM 850 GPRS (4Txslots) Channel 251

Page 56 of 112

GSM 850 GPRS (4Txslots) Towards Ground Middle (Cover Open)

TA Technology (Shanghai) Co., Ltd. Test Report

Date/Time: 6/4/2012 1:47:15 PM Communication System: GPRS 4TX; Frequency: 836.6 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 837 MHz; σ = 0.954 mho/m; ϵ_r = 54.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.279 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.5 V/m; Power Drift = 0.031 dB Peak SAR (extrapolated) = 0.345 W/kg SAR(1 g) = 0.243 mW/g; SAR(10 g) = 0.167 mW/g

Maximum value of SAR (measured) = 0.255 mW/g

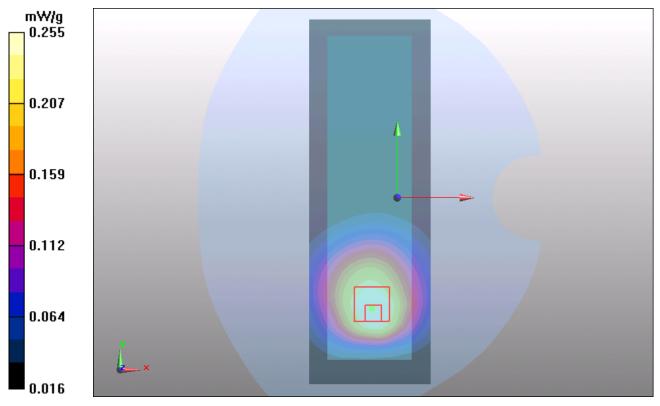
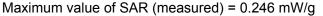


Figure 25 Body, Towards Ground, GSM 850 GPRS (4Txslots) Channel 190

Page 57 of 112

GSM 850 GPRS (4Txslots) Towards Ground Low (Cover Open)


Date/Time: 6/4/2012 2:30:49 PM Communication System: GPRS 4TX; Frequency: 824.2 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.939 mho/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(9.18, 9.18, 9.18); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd. Test Report

Towards Ground Low/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.274 mW/g

Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 3.79 V/m; Power Drift = 0.038 dB Peak SAR (extrapolated) = 0.332 W/kg SAR(1 g) = 0.229 mW/g; SAR(10 g) = 0.156 mW/g

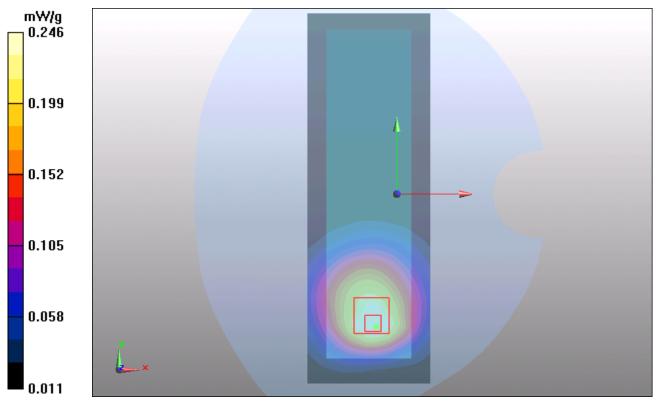
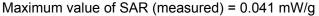


Figure 26 Body, Towards Ground, GSM 850 GPRS (4Txslots) Channel 128

Page 58 of 112


GSM 1900 Left Cheek Middle (Cover Open)

Date/Time: 6/5/2012 11:27:06 AM Communication System: GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 40.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(8.05, 8.05, 8.05); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd. Test Report

Cheek Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.048 mW/g

Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.833 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.055 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.024 mW/g

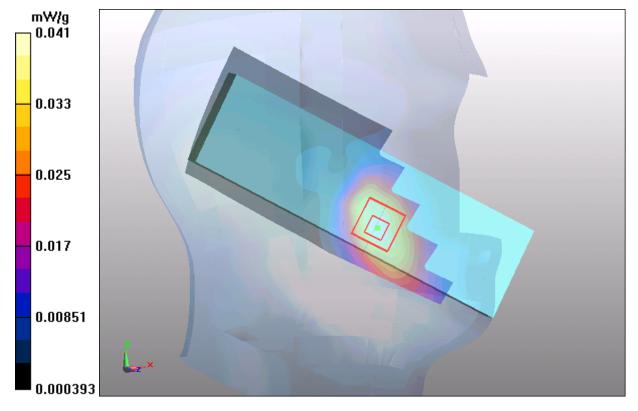


Figure 27 Left Hand Touch Cheek GSM 1900 Channel 661

Page 59 of 112

GSM 1900 Left Tilt Middle (Cover Open)

Date/Time: 6/5/2012 11:43:33 AM Communication System: GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 40.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(8.05, 8.05, 8.05); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd. Test Report

Tilt Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.014 mW/g

Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.21 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.021 W/kg SAR(1 g) = 0.00757 mW/g; SAR(10 g) = 0.00346 mW/g

Maximum value of SAR (measured) = 0.0078 mW/g

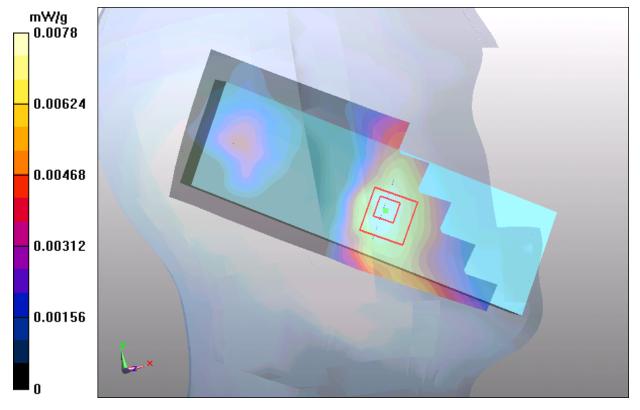
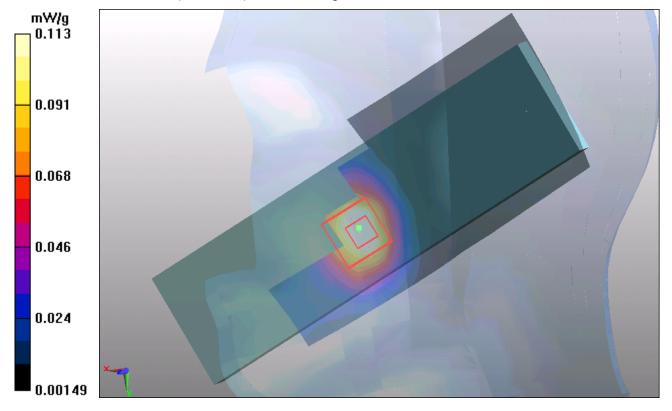


Figure 28 Left Hand Tilt 15° GSM 1900 Channel 661

Test Report Report No.: RXA1205-0230SAR01R2

Page 60 of 112

GSM 1900 Right Cheek High (Cover Open)


Date/Time: 6/5/2012 2:28:54 PM Communication System: GSM; Frequency: 1909.8 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 1910 MHz; σ = 1.42 mho/m; ϵ_r = 40.8; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(8.05, 8.05, 8.05); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd.

Cheek High/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.126 mW/g

Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.692 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.155 W/kg SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.062 mW/g

Maximum value of SAR (measured) = 0.113 mW/g

Report No.: RXA1205-0230SAR01R2

Page 61 of 112

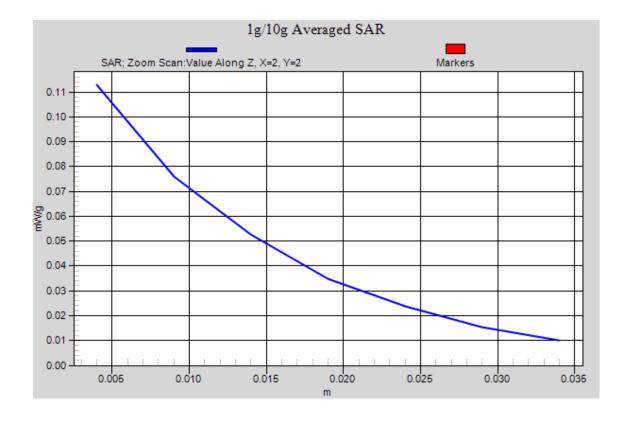


Figure 29 Right Hand Touch Cheek GSM 1900 Channel 810

TA Technology (Shanghai) Co., Ltd. Test Report

Page 62 of 112

GSM 1900 Right Cheek Middle (Cover Open)

Date/Time: 6/5/2012 2:05:11 PM Communication System: GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 40.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(8.05, 8.05, 8.05); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Cheek Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.076 mW/g

Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.699 V/m; Power Drift = 0.090 dB Peak SAR (extrapolated) = 0.097 W/kg SAR(1 g) = 0.064 mW/g; SAR(10 g) = 0.039 mW/g

Maximum value of SAR (measured) = 0.069 mW/g

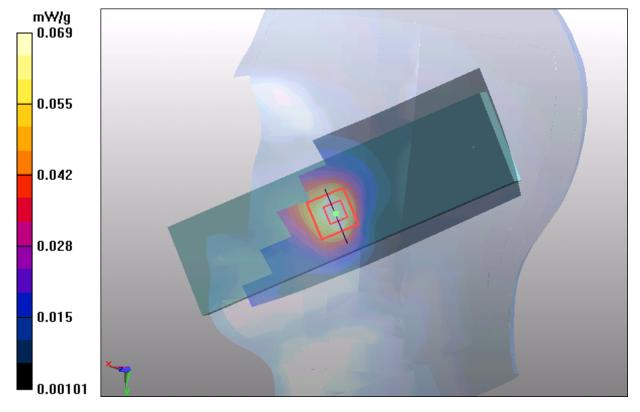
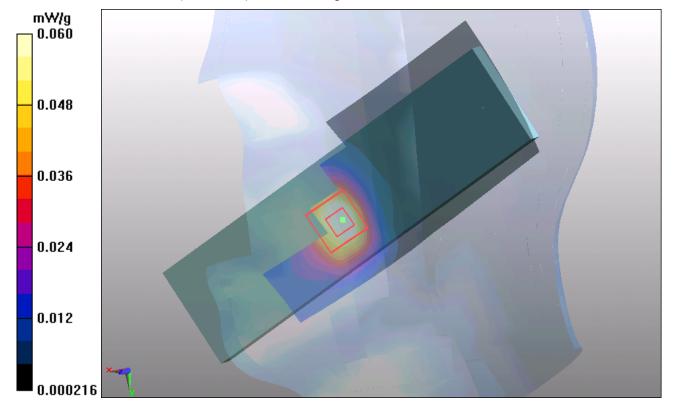
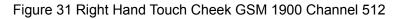


Figure 30 Right Hand Touch Cheek GSM 1900 Channel 661

Report No.: RXA1205-0230SAR01R2


GSM 1900 Right Cheek Low (Cover Open)


Date/Time: 6/5/2012 2:44:01 PM Communication System: GSM; Frequency: 1850.2 MHz;Duty Cycle: 1:8.30042 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.37 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(8.05, 8.05, 8.05); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Cheek Low/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.066 mW/g

Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.900 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.081 W/kg SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.033 mW/g

Maximum value of SAR (measured) = 0.060 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 64 of 112

GSM 1900 Right Tilt Middle (Cover Open)

Date/Time: 6/5/2012 2:59:28 PM Communication System: GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 40.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(8.05, 8.05, 8.05); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Tilt Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.018 mW/g

Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.09 V/m; Power Drift = -0.077 dB Peak SAR (extrapolated) = 0.023 W/kg SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.00905 mW/g

Maximum value of SAR (measured) = 0.016 mW/g

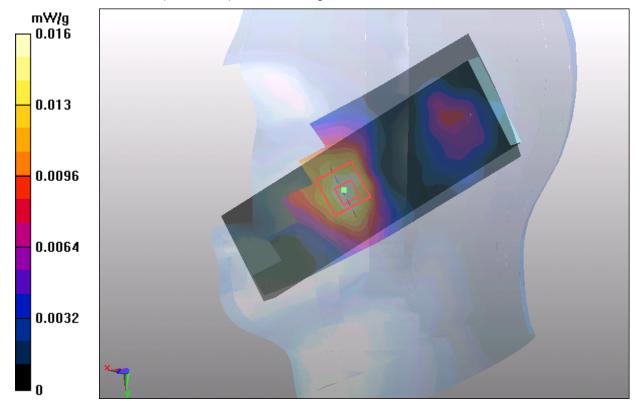
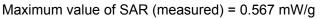


Figure 32 Right Hand Tilt 15° GSM 1900 Channel 661

Page 65 of 112


GSM 1900 GPRS (4Txslots) Towards Ground High (Cover Closed)

Date/Time: 6/4/2012 7:35:32 PM Communication System: GPRS 4TX; Frequency: 1909.8 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1910 MHz; σ = 1.49 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.578 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11 V/m; Power Drift = 0.012 dB Peak SAR (extrapolated) = 0.871 W/kg SAR(1 g) = 0.525 mW/g; SAR(10 g) = 0.303 mW/g

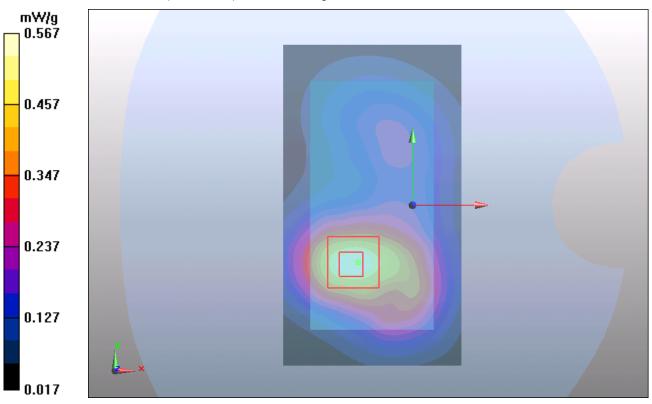


Figure 33 Body, Towards Ground, GSM 1900 GPRS (4Txslots) Channel 810

Page 66 of 112

GSM 1900 GPRS (4Txslots) Towards Ground Middle (Cover Closed)

Date/Time: 6/4/2012 7:20:54 PM Communication System: GPRS 4TX; Frequency: 1880 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1880 MHz; σ = 1.47 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.535 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 0.802 W/kg SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.278 mW/g

```
Maximum value of SAR (measured) = 0.522 mW/g
```

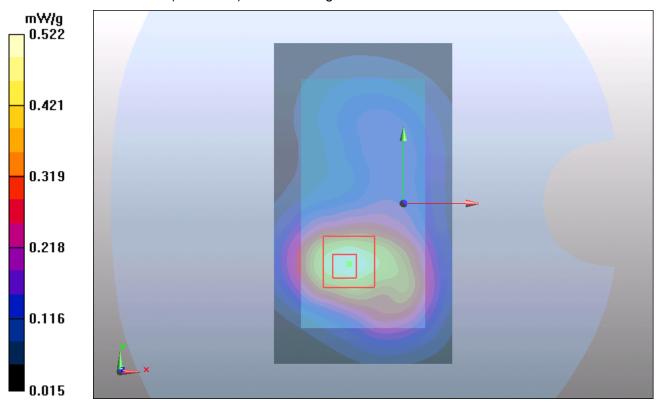


Figure 34 Body, Towards Ground, GSM 1900 GPRS (4Txslots) Channel 661

TA Technology (Shanghai) Co., Ltd. Test Report

Page 67 of 112

GSM 1900 GPRS (4Txslots) Towards Ground Low (Cover Closed)

Date/Time: 6/4/2012 7:50:46 PM Communication System: GPRS 4TX; Frequency: 1850.2 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.46 mho/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.432 mW/g

Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 9.07 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 0.646 W/kg SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.225 mW/g

Maximum value of SAR (measured) = 0.422 mW/g

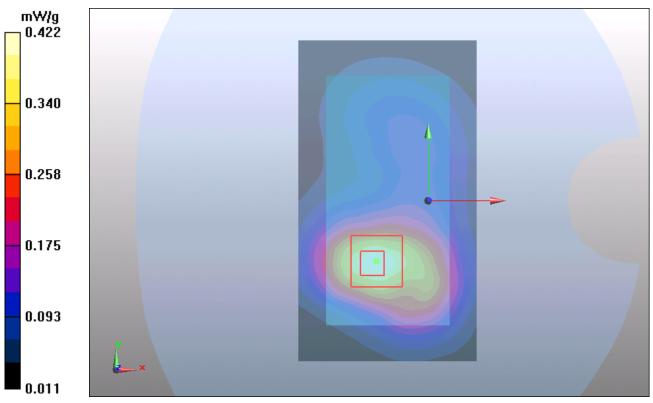


Figure 35 Body, Towards Ground, GSM 1900 GPRS (4Txslots) Channel 512

Page 68 of 112

GSM 1900 GPRS (4Txslots) Towards Phantom High (Cover Closed)

TA Technology (Shanghai) Co., Ltd. Test Report

Date/Time: 6/4/2012 9:13:42 PM Communication System: GPRS 4TX; Frequency: 1909.8 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1910 MHz; σ = 1.49 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Phantom High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.248 mW/g

Towards Phantom High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 9.05 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 0.357 W/kg SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.135 mW/g

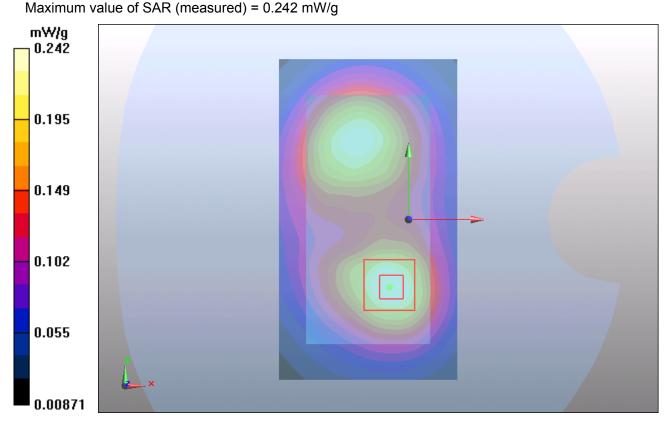


Figure 36 Body, Towards Phantom, GSM 1900 GPRS (4Txslots) Channel 810

GSM 1900 GPRS (4Txslots) Towards Phantom Middle (Cover Closed)

TA Technology (Shanghai) Co., Ltd. Test Report

Date/Time: 6/4/2012 8:59:00 PM Communication System: GPRS 4TX; Frequency: 1880 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1880 MHz; σ = 1.47 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.216 mW/g

Towards Phantom Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.73 V/m; Power Drift = 0.062 dB Peak SAR (extrapolated) = 0.306 W/kg SAR(1 g) = 0.195 mW/g; SAR(10 g) = 0.119 mW/g

Maximum value of SAR (measured) = 0.212 mW/g

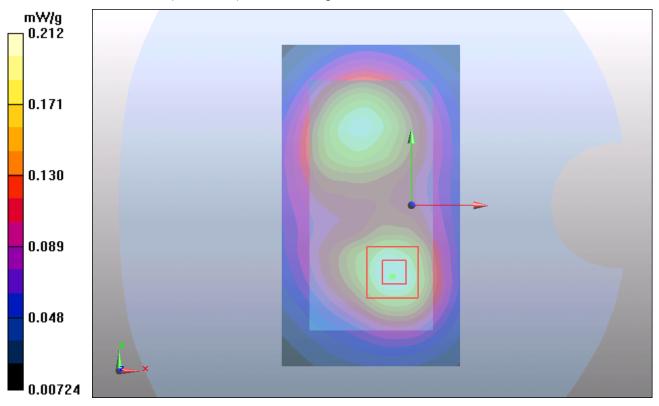


Figure 37 Body, Towards Phantom, GSM 1900 GPRS (4Txslots) Channel 661

Page 70 of 112

GSM 1900 GPRS (4Txslots) Towards Phantom Low (Cover Closed)

Date/Time: 6/4/2012 8:44:18 PM Communication System: GPRS 4TX; Frequency: 1850.2 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.46 mho/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

TA Technology (Shanghai) Co., Ltd. Test Report

Towards Phantom Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.173 mW/g

Towards Phantom Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.25 V/m; Power Drift = 0.047 dB Peak SAR (extrapolated) = 0.227 W/kg SAR(1 g) = 0.155 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.166 mW/g

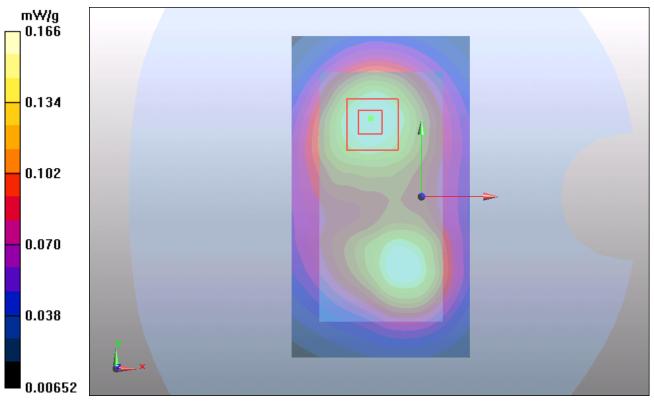
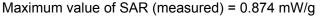
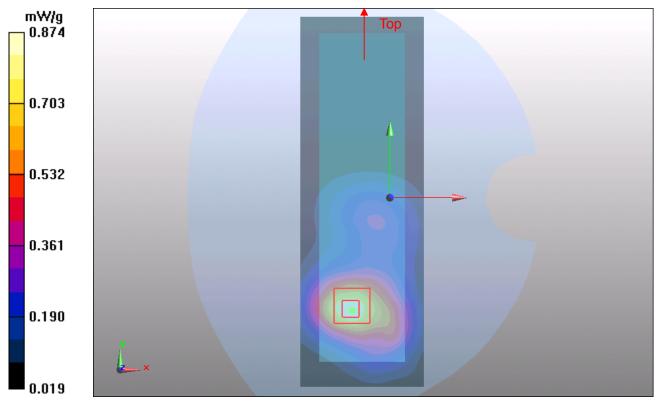


Figure 38 Body, Towards Phantom, GSM 1900 GPRS (4Txslots) Channel 512

Page 71 of 112

GSM 1900 GPRS (4Txslots) Towards Ground High (Cover Open)


TA Technology (Shanghai) Co., Ltd. Test Report


Date/Time: 6/6/2012 12:32:25 PM Communication System: GPRS 4TX; Frequency: 1909.8 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1910 MHz; σ = 1.56 mho/m; ε_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground High/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.896 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12 V/m; Power Drift = -0.00297 dB Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 0.795 mW/g; SAR(10 g) = 0.457 mW/g

Report No.: RXA1205-0230SAR01R2

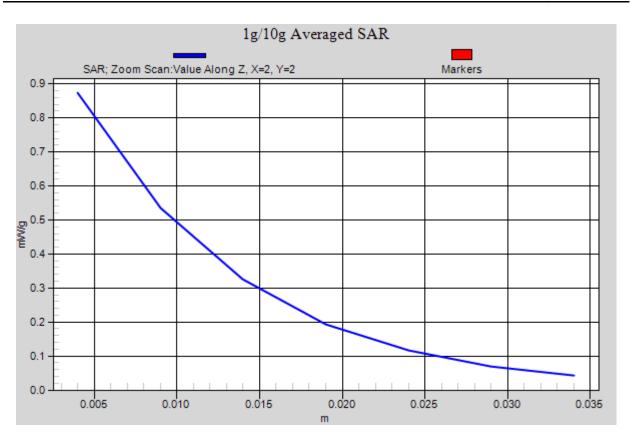


Figure 39 Body, Towards Ground, GSM 1900 GPRS (4Txslots) Channel 810

Page 73 of 112

GSM 1900 GPRS (4Txslots) Towards Ground Middle (Cover Open)

Date/Time: 6/6/2012 12:13:28 PM Communication System: GPRS 4TX; Frequency: 1880 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Middle/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.826 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.9 V/m; Power Drift = -0.091 dB Peak SAR (extrapolated) = 1.2 W/kg SAR(1 g) = 0.720 mW/g; SAR(10 g) = 0.416 mW/g

```
Maximum value of SAR (measured) = 0.790 \text{ mW/g}
```

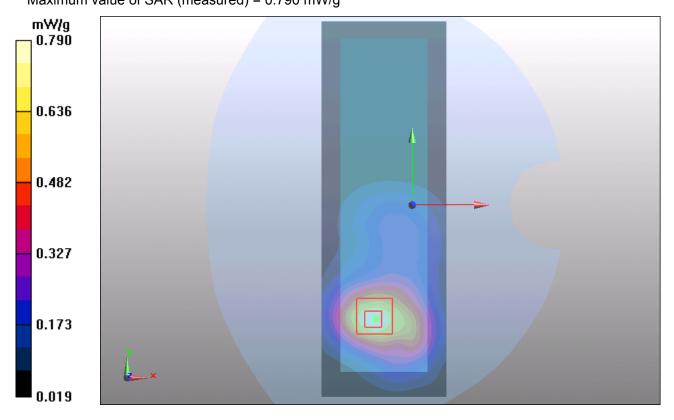


Figure 40 Body, Towards Ground, GSM 1900 GPRS (4Txslots) Channel 661

TA Technology (Shanghai) Co., Ltd. Test Report

Page 74 of 112

GSM 1900 GPRS (4Txslots) Towards Ground Low (Cover Open)

Date/Time: 6/6/2012 12:50:54 PM Communication System: GPRS 4TX; Frequency: 1850.2 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.51 mho/m; ϵ_r = 52.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3753; ConvF(7.57, 7.57, 7.57); Calibrated: 1/4/2012 Electronics: DAE4 Sn1291; Calibrated: 10/10/2011 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Towards Ground Low/Area Scan (51x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.592 mW/g

Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.74 V/m; Power Drift = -0.095 dB Peak SAR (extrapolated) = 0.873 W/kg SAR(1 g) = 0.522 mW/g; SAR(10 g) = 0.301 mW/g

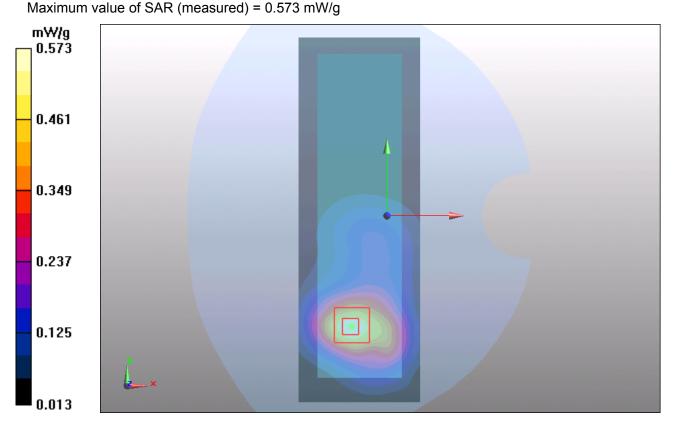


Figure 41 Body, Towards Ground, GSM 1900 GPRS (4Txslots) Channel 512

ANNEX D: Probe Calibration Certificate

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zu	ory of	Hac MBA CRUBRATO S	Schweizerischer Kalibrierdi Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accred The Swiss Accreditation Serv Multilateral Agreement for the	ice is one of the signatorie	s to the EA	No.: SCS 108
Client Auden	eter official	Certificate No:	EX3-3753_Jan12
CALIBRATION	CERTIFICATI	E	
Object	EX3DV4 - SN:37	53	
Calibration procedure(s)		QA CAL-14.v3, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
The measurements and the un	certainties with confidence p	onal standards, which realize the physical units robability are given on the following pages and	are part of the certificate.
This calibration certificate docu The measurements and the un	ments the traceability to natio certainties with confidence pro- lucted in the closed laborator		are part of the certificate.
This calibration certificate docu The measurements and the un All calibrations have been cond Calibration Equipment used (M	ments the traceability to natio pertainties with confidence pr lucted in the closed laborator &TE critical for calibration)	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C (are part of the certificate. and humidity < 70%.
This calibration certificate docu The measurements and the un All calibrations have been cond	ments the traceability to natio certainties with confidence pro- lucted in the closed laborator	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Calibration
This calibration certificate docu The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards	ments the traceability to natio pertainties with confidence pro- lucted in the closed laborator &TE critical for calibration)	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C (are part of the certificate. and humidity < 70%.
This calibration certificate docu The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B	ments the traceability to natio certainties with confidence pro- lucted in the closed laborator &TE critical for calibration)	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power mater E4419B Power sensor E4412A	ments the traceability to natio certainties with confidence pro- lucted in the closed laborator &TE critical for calibration) ID G841293874 MY41498087	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power mater E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ments the traceability to natio certainties with confidence pro- lucted in the closed laborator &TE critical for calibration) ID G841293874 MY41498087 SN: S5054 (3c) SN: S5086 (206) SN: S5129 (306)	cobability are given on the following pages and ny facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-11 (No. ES3-3013_Dec11)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 Dec-12
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power mater E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ments the traceability to natio certainties with confidence pro- lucted in the closed laborator &TE critical for calibration) ID G841293874 MY41498087 SN: S5054 (3c) SN: S5086 (206) SN: S5129 (306)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01370)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
This calibration certificate docu The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards Power mater E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	ments the traceability to native certainties with confidence provide the closed laborator attraction (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-11 (No. ES3-3013_Dec11) 3-May-11 (No. DAE4-654_May11)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 May-12
This calibration certificate docu The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards Power mater E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ments the traceability to native certainties with confidence provide the closed laborator attraction and the closed laborator attraction attrac	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-11 (No. ES3-3013_Dec11) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 May-12 Scheduled Check
This calibration certificate docu The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards Power mater E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ments the traceability to native certainties with confidence pro- acted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 3013 SN: 654 ID US3642U01700	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 20-Mar-11 (No. 217-01370) <td>are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 May-12 Scheduled Check In house check: Apr-13</td>	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 May-12 Scheduled Check In house check: Apr-13
This calibration certificate docu The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards Power mater E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ments the traceability to native certainties with confidence provide the closed laborator attraction and the closed laborator attraction attrac	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-11 (No. ES3-3013_Dec11) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 May-12 Scheduled Check
This calibration certificate docu The measurements and the unit All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ments the traceability to native certainties with confidence pro- acted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 3013 SN: 654 ID US3642U01700	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 20-Mar-11 (No. 217-01370) <td>are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 May-12 Scheduled Check In house check: Apr-13</td>	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 May-12 Scheduled Check In house check: Apr-13
This calibration certificate docu The measurements and the un All calibrations have been cond Calibration Equipment used (M Primary Standards Power mater E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ments the traceability to nati- certainties with confidence pro- lucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (206) SN: S5129 (306) SN: S5129 (306) SN: 3013 SN: 654 ID US3642U01700 US37390585	cobability are given on the following pages and ry facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-11 (No. ES3-3013_Dec11) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-11)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-12 May-12 Scheduled Check In house check: Apr-13 In house check: Oct-12

Page 1 of 11

Report No.: RXA1205-0230SAR01R2

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

CRUBRAT

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

F

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003 IEC 62209-1, *Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- b) proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3753 Jan12

Page 2 of 11

Page 77 of 112

EX3DV4 - SN:3753

January 4, 2012

Probe EX3DV4

SN:3753

Manufactured: March 16, 2010 Calibrated: January 4, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3753_Jan12

Page 3 of 11

EX3DV4-SN:3753

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Basic Calibration Parameters

(22)	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.33	0.49	0.53	± 10.1 %
DCP (mV) ^B	103.0	96.0	100.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	119.0	±2.7 %
			Y	0.00	0.00	1.00	115.7	
			Z	0.00	0.00	1.00	116.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^{*} The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^{*} Numerical linearization parameter: uncertainty not required.
 ^{*} Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 4 of 11

EX3DV4- SN:3753

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.43	9.43	9.43	0.39	0.87	± 12.0 %
835	41.5	0.90	9.02	9.02	9.02	0.39	0.79	± 12.0 %
1750	40.1	1.37	8.37	8.37	8.37	0.10	1.14	± 12.0 %
1900	40.0	1.40	8.05	8.05	8.05	0.54	0.70	± 12.0 %
2000	40.0	1.40	7.94	7.94	7.94	0.10	0.89	± 12.0 %
2450	39.2	1.80	6.89	6.89	6.89	0.34	0.90	± 12.0 %
5200	36.0	4.66	4.83	4.83	4.83	0.36	1.80	± 13.1 %
5300	35.9	4.76	4.58	4.58	4.58	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.63	4.63	4.63	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.23	4.23	4.23	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.26	4.26	4.26	0.50	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ⁷ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Page 5 of 11

EX3DV4- SN:3753

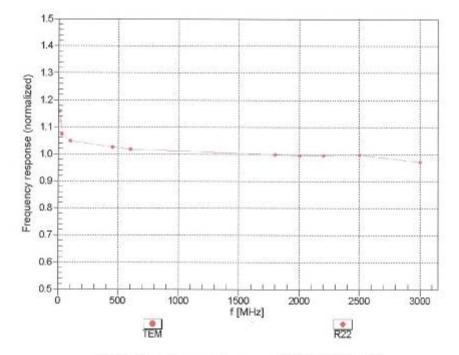
January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.29	9.29	9.29	0.30	1.11	± 12.0 %
835	55.2	0.97	9.18	9.18	9.18	0.47	0.85	± 12.0 %
1750	53.4	1.49	8.00	8.00	8.00	0.62	0.69	± 12.0 %
1900	53.3	1.52	7.57	7.57	7.57	0.31	0.93	± 12.0 %
2000	53.3	1.52	7.52	7.52	7.52	0.48	0.76	± 12.0 %
2300	52.9	1.81	7.20	7.20	7.20	0.49	0.75	± 12.0 %
2450	52.7	1.95	7.03	7.03	7.03	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.75	6.75	6.75	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.04	6.04	6.04	0.29	1.45	± 13.1 %
5200	49.0	5.30	4.30	4.30	4.30	0.50	1.90	± 13.1 %
5300	48.9	5.42	3.96	3.96	3.96	0.60	1.90	± 13.1 %
5500	48.6	5.65	3.67	3.67	3.67	0.60	1.90	± 13.1 %
5600	48.5	5.77	3.36	3.36	3.36	0.70	1.90	± 13.1 %
5800	48.2	6.00	3.86	3.86	3.86	0.60	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
⁶ At frequencies below 3 GHz, the validity of tissue parameters (*c* and *σ*) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*c* and *σ*) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

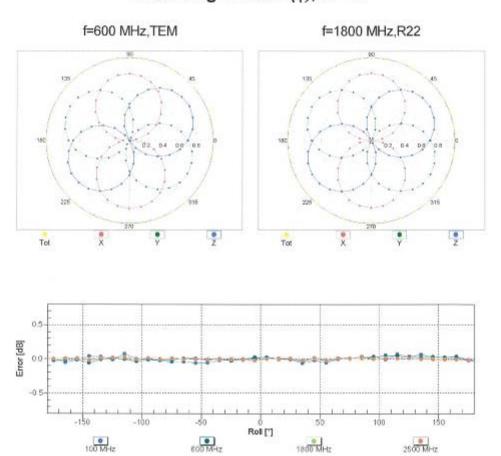

Page 6 of 11

Report No.: RXA1205-0230SAR01R2

EX3DV4-SN:3753

January 4, 2012

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Page 7 of 11

TA Technology (Shanghai) Co., Ltd. Test Report Report No.: RXA1205-0230SAR01R2

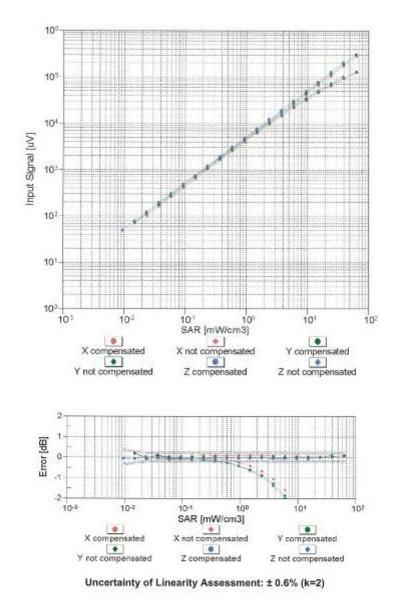
EX3DV4-- SN:3753

January 4, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

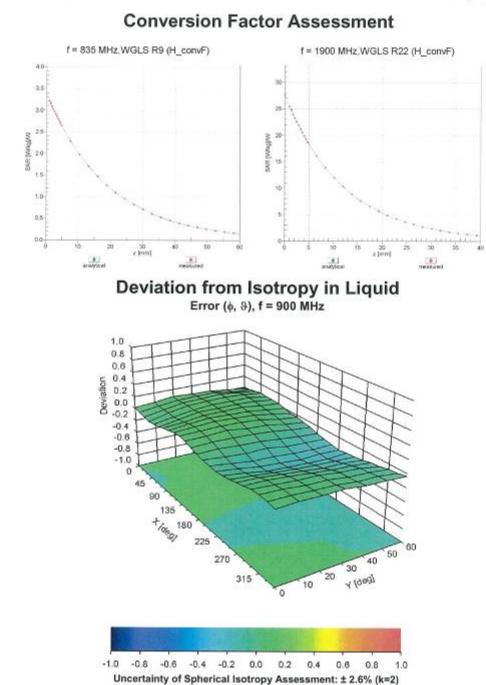
Certificate No: EX3-3753_Jan12

Page 8 of 11


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Report No.: RXA1205-0230SAR01R2

EX3DV4-- SN:3753


January 4, 2012

Certificate No: EX3-3753_Jan12

Page 9 of 11

EX3DV4-- SN:3753

January 4, 2012

Certificate No: EX3-3753_Jan12

Page 10 of 11

EX3DV4- SN:3753

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3753_Jan12

Page 11 of 11

Page 86 of 112

ANNEX E: D835V2 Dipole Calibration Certificate

ccredited by the Swiss Accredit he Swiss Accreditation Servic	e is one of the signatorie	s to the EA	n No.: SCS 108
Iultilateral Agreement for the r			o: D835V2-4d020_Aug11
CALIBRATION		And a second sec	
Object	D835V2 - SN: 4d		NE NO EMPERANCES
Calibration procedure(s)	QA CAL-05.v8		
	Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 26, 2011		
The measurements and the unco	artainties with confidence p	onal standards, which realize the physical ur robability are given on the following pages a y facility: environment temperature (22 ± 3)°	nd are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	artainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages any facility: environment temperature (22 ± 3)°	nd are part of the certificate. °C and humidity < 70%.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	artainties with confidence p cted in the closed laborato TE critical for calibration)	robability are given on the following pages any facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate. 'C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704	robability are given on the following pages as y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. 'C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	artainties with confidence p cted in the closed laborato TE critical for calibration)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. 'C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages as y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. 'C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	nd are part of the certificate. 'C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	nd are part of the certificate. 'C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	robability are given on the following pages as y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-05	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 - ID # MY41092317	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
The measurements and the unco	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 = ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. 217-01371) 29-Apr-11 (No. 283-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-05	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 3205 SN: 601 - ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D835V2-4d020_Aug11

Page 1 of 8

Report No.: RXA1205-0230SAR01R2

Page 87 of 112

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS C C BRATS

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d020_Aug11

Report No.: RXA1205-0230SAR01R2

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Contraction of the second states of the second stat	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.52 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	1×.
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW inpút power	1.59 mW / g

Certificate No: D835V2-4d020_Aug11

Report No.: RXA1205-0230SAR01R2

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 jΩ	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 jΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

2

Manufactured by	SPEAG
Manufactured on	April 22, 2004

Certificate No: D835V2-4d020_Aug11

Page 4 of 8

Report No.: RXA1205-0230SAR01R2

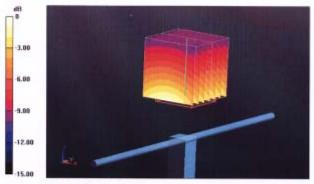
Page 90 of 112

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

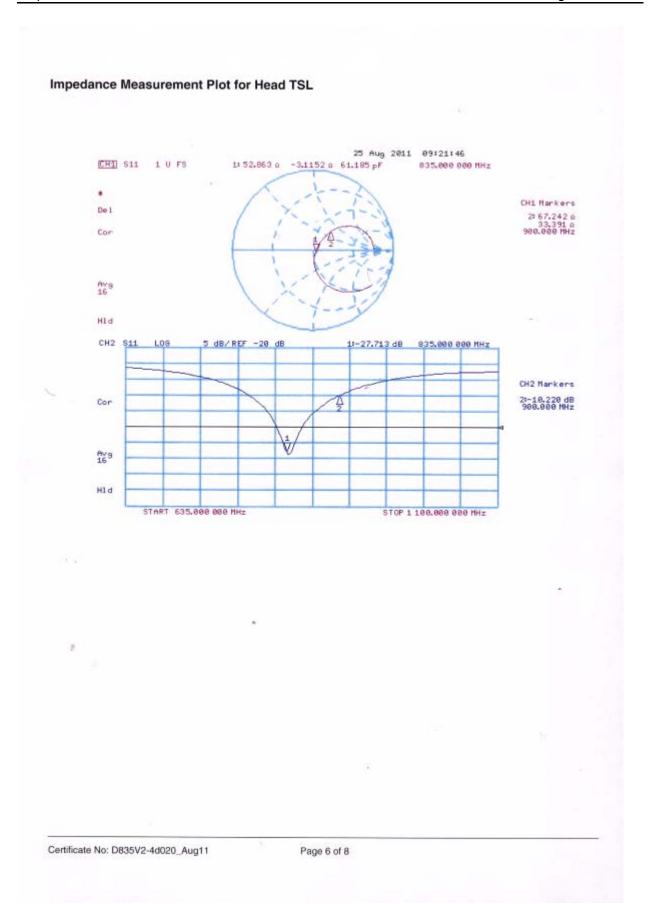

Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

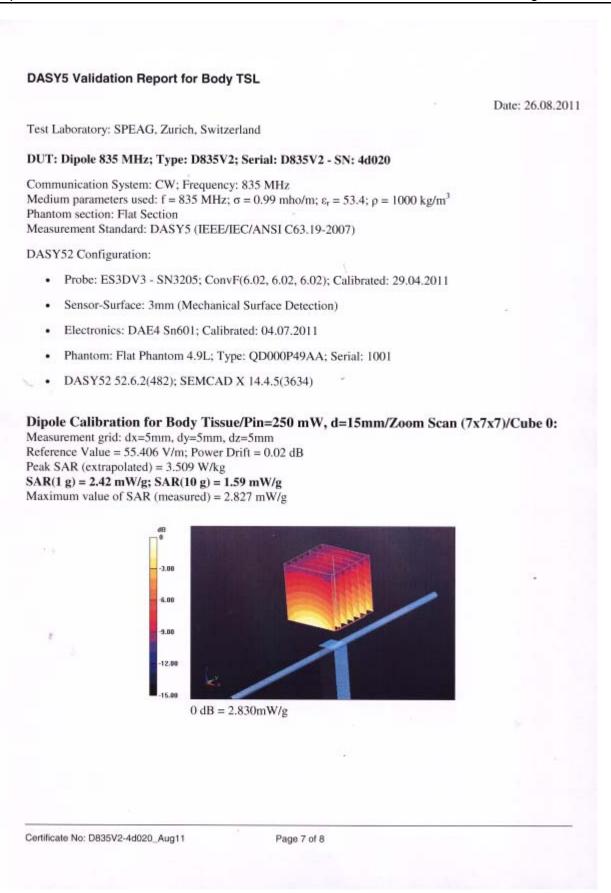
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.930 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.421 W/kg SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.708 mW/g

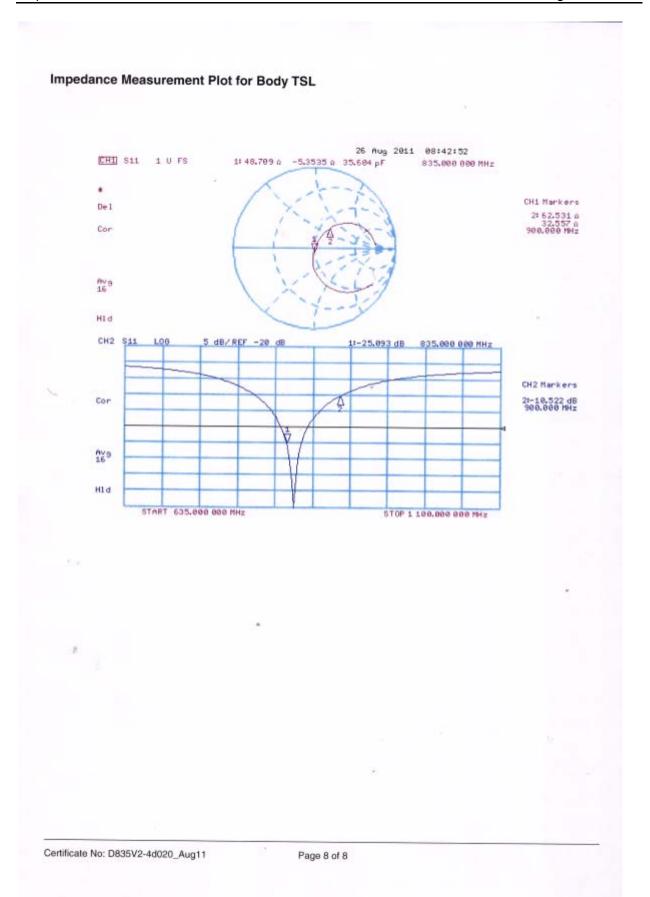

 $0 \, dB = 2.710 \, mW/g$

Certificate No: D835V2-4d020_Aug11

Page 5 of 8


Report No.: RXA1205-0230SAR01R2

Page 91 of 112


Report No.: RXA1205-0230SAR01R2

Page 92 of 112

Report No.: RXA1205-0230SAR01R2

Page 93 of 112

Page 94 of 112

ANNEX F: D1900V2 Dipole Calibration Certificate

Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Primary Standards D # Power meter EPM-442A GB37480704 Power sensor HP 8481A GB37480704 Reference Probe ES3DV3 SN: 56066 (20b) SN: 601 04-Jul-11 (No. 217-01367) SN: 601 04-Jul-11 (No. 217-01377) Apr-12 SN: 601 SN: 601 04-Jul-11 (No. 217-01377) Apr-12 SN: 601 D# Check Date (in house) Scheduled Check Scheduled Check Power sensor HP 8481A MY41092317 RF generator RBS SMT-06 N005 Name Function VB37390585 S4206 18-0et-01 (in house check Oct-09) In house check: Oct-11 In house check: Oct-10 Name Function Signature Calibrated by: Name Function <	Engineering AG eughausstrasse 43, 8004 Zuric	h, Switzerland	HAC MRA (2 V z)	Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Market Market Description Sentiticate No: D1900V2-5d060_Aug CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d060 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (s)). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Primary Standards 10 # Cal Date (Certificate No.) Scheduled Calibration Oct-11 Primary Standards 10 # Cal Date (Certificate No.) Scheduled Calibration Oct-11 Primary Standards 10 # Cal Date (Certificate No.) Scheduled Calibration Oct-11 Primary Standards 10 # Cal Date (Certificate No.) Scheduled Calibration Oct-11 Primary Standards 10 # Cal Date (Certificate No.) Scheduled Calibration Oct-11 Primary Standards 10 # Cal Date (Certificate No.) Scheduled Calibration Oct-11 Primary Standards N: 3205 29 Apr 11 (No. 217-01286) Oct-11 Oprimary Standards	he Swiss Accreditation Servic	e is one of the signatori	es to the EA	on No.: SCS 108
Object D1900V2 - SN: 5d060 Calibration procedure(s) CA CAL-05,v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Point Standards Prover sensor HP 4841A UB37480704 06-Och10 (No. 217-01266) Och11 Prover sensor HP 4841A Sis 5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Shi: S047.2 (0527 29-Mar-11 (No. 217-01367) Apr-12 Shi: 50506 (20b) Shi: 50507 Apr-112 Shi: S047.2 (0527 29-Mar-11 (No. 217-01367) Apr-12 Shi: 5047.2 (0527 29-Mar-11 (No. 217-01367) Apr-12 Shi: S047.2 (0527 29-Mar-11 (No. 217-01367) Apr-12 Shi: 5047.2 (0527 29-Mar-11 (No. 217-01367) Apr-12 Shi: S047.2 (0527 2				No: D1900V2-5d060_Aug1
Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards 10 # Paterone 20 dB Attenuator SN: 56066 (20b) 29-Mar-11 (No. 217-01266) Oct-11 Paterone 20 dB Attenuator SN: 56066 (20b) 29-Mar-11 (No. 217-01367) Apr-12 SN: 3005 29-Mar-11 (No. E33-3205_Apr11) Apr-12 SN: 3005 29-Mar-11 (No. E33-3205_Apr11) Apr-12 SN: 3005 29-Mar-11 (No. E33-3205_Apr11) Apr-12 SN: 3005 10 - Check Date (in house) Scheduled Check Power sensor HP 8481A M327392317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 Secondary Standards 10 - Check Date (in house) Scheduled Check Power sensor HP 8481A M327390585 S4206 18-Oct-01 (in house check Oct-09)	CALIBRATION O	CERTIFICATE		
Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Editoration (MaTE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A G837480704 66-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8431A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Paterence 20 dB Attenuator SN: 55086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 SN: 601 04-Jul-11 (No. 217-01371) Apr-12 OAE4 ID # Check Date (in house) Scheduled Check Power sensor HP 8431A MY41092317 18-Oct-20 (in house check Oct-09) In house check: Oct-11 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8431A MY41092317 18-Oct-20 (in house check Oct-09) In house check: Oct-11 Signature US37390585 S4206 18-Oct-01 (in	Object	D1900V2 - SN: 5	5d060	A CONTRACTOR OF THE OWNER
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)		dure for dipole validation kits ab	oove 700 MHz
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	August 31, 2011		Ender States and the second
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: \$5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: \$5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: \$205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-11 Calibrated by: Name Function Signature	This calibration certificate docum	ents the traceability to nat	ional standards, which realize the physical u	nits of measurements (SI).
Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: \$5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: \$5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: \$205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Name Function Signature Calibrated by: Name Function Signature	The measurements and the unce All calibrations have been conduc	rtainties with confidence p	robability are given on the following pages a	and are part of the certificate.
Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 55086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 55086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 SN: 5047.2 / 06327 29-Mar-11 (No. 217-01367) Apr-12 SN: 5047.2 / 06327 29-Apr-11 (No. 217-01367) Apr-12 SN: 5047.2 / 06327 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 SN: 5047.2 / 06327 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 SN: 5047 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-11 Calibrated by: Name Function Signature Calibrated by: Name Function Signature	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1	rtainties with confidence p sted in the closed laborato FE critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3)	ind are part of the certificate.
Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Reference Probe ES3DV3 SN: S047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 No005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Calibrated by: Name Function Signature Calibrated by: Laboratory Technician D-With	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards	rtainties with confidence p sted in the closed laborato FE critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	ind are part of the certificate. *C and humidity < 70%, Scheduled Calibration
Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 In house check: Oct-11 Name Function Signature Date by: Name Function Signature	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	rtainties with confidence p sted in the closed laborato FE critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11
Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Calibrated by: Name Function Signature Dimce Iliev Laboratory Technician D-With	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence p sted in the closed laborato FE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 N0005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-11 Calibrated by: Name Function Signature Dimce Iliev Laboratory Technician D-Wittee	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence p ted in the closed laborato FE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
Power sensor HP 8481A MY41092317 18-Oct-02 (In house check Oct-09) In house check: Oct-11 AF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Dimoe Illiev Laboratory Technician D-Wittee	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination	rtainties with confidence p ted in the closed laborato FE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 -
Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 AF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Vetwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Dimoe Illiev Laboratory Technician D-Wittee	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p ted in the closed laborato FE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
AF generator R&S SMT-06 Network Analyzer HP 8753E 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 In house check: Oct-11 Name Function Signature Dimce Illev Laboratory Technician D-Yeith	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4	rtainties with confidence p ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Dimce Iliev Laboratory Technician D-Yeilly	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	rtainties with confidence p ted in the closed laborato ID # GB37480704 US37292783 SN: S5086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID #	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
Calibrated by: Dimoe Iliev Laboratory Technician D-Bitu	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence p ted in the closed laborato ID # GB37480704 US37292783 SN: S5086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 3205 SN: 601 ID # MY41092317	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
Calibrated by: Dimoe Iliev Laboratory Technician D-Bitu	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p ted in the closed laborato FE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibrated by: Dimce Iliev Laboratory Technician D-Bitur	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p ted in the closed laborato FE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Ind are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Approved by: Katja Pokovic Technical Manager	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p ted in the closed laborato FE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-01)	Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
the the	The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborato ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Ind are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D1900V2-5d060_Aug11

Page 1 of 8

Report No.: RXA1205-0230SAR01R2

Page 95 of 112

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
- measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d060_Aug11

Report No.: RXA1205-0230SAR01R2

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.30 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mhō/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d060_Aug11

Report No.: RXA1205-0230SAR01R2

Page 97 of 112

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω + 7.5 jΩ	
Return Loss	- 22.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 7.9 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

2

Manufactured by	SPEAG		
Manufactured on	December 10, 2004		

Certificate No: D1900V2-5d060_Aug11

Page 4 of 8

Report No.: RXA1205-0230SAR01R2

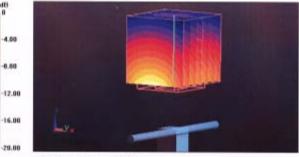
Page 98 of 112

Date: 30.08.2011

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

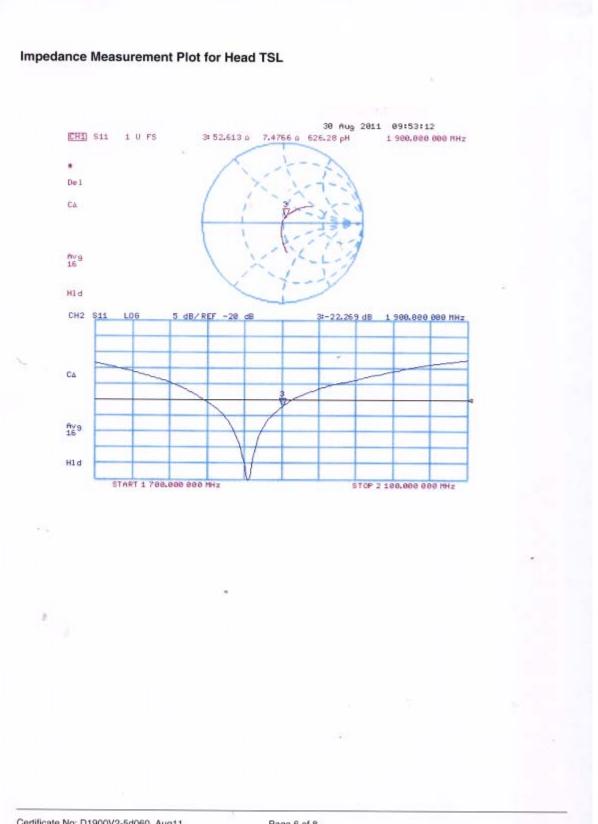

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.636 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 18.535 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g Maximum value of SAR (measured) = 12.600 mW/g



 $0 \, dB = 12.600 \, mW/g$

Certificate No: D1900V2-5d060_Aug11

Page 5 of 8

Report No.: RXA1205-0230SAR01R2

Certificate No: D1900V2-5d060_Aug11

Page 6 of 8

Report No.: RXA1205-0230SAR01R2

Page 100 of 112

DASY5 Validation Report for Body TSL Date: 31.08.2011 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) ٠ Electronics: DAE4 Sn601; Calibrated: 04.07.2011 ٠ Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 . DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) . Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = -0.0099 dB Peak SAR (extrapolated) = 18.663 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g Maximum value of SAR (measured) = 13.397 mW/g 4.00 -8.00 12.00

 $0 \, dB = 13.400 \, mW/g$

16.0

Certificate No: D1900V2-5d060_Aug11

Page 7 of 8

Report No.: RXA1205-0230SAR01R2

Impedance Measurement Plot for Body TSL 31 Aug 2011 09:02:03 CHI S11 1 U FS 7.9434 g 665.38 pH 3: 47.348 g 1 900.000 000 MHz ٠ De 1 CA Av 9 H1d CH2 LOG \$11 5 dB/REF -20 dB 31-21.336 dB 1 900.000 000 MHz CA Ava 16 Hld START 1 700.000 000 HHz STOP 2 100,000 000 MHz 2 Certificate No: D1900V2-5d060_Aug11 Page 8 of 8

Page 101 of 112

ANNEX G: DAE4 Calibration Certificate

Accredited by the Swiss Accredit The Swiss Accreditation Servic Autiliateral Agreement for the r	e is one of the signatories	to the EA	litation No.: SCS 108
fultilateral Agreement for the r			
THC Changha		ertificates	
lient TMC Shangha	i (Auden)	Certific	cate No: DAE4-1291 Oct11
ANNERS AND ANNERS AND A		Received and the second se	
CALIBRATION (CERTIFICATE		
Object	DAE4 - SD 000 D	04 BJ - SN: 1291	
Calibration procedure(s)	QA CAL-06.v23 Calibration proces	lure for the data acquisitior	electronics (DAE)
Calibration date:	October 10, 2011		
		······································	
		nal standards, which realize the phys	(170) stars and an an an and a stimula (171)
		1 1 mm	
The measurements and the units	ertainties with confidence pro	obability are given on the following pe	
			ges and are part of the certificate.
		bability are given on the following pa facility: environment temperature (2)	ges and are part of the certificate.
All calibrations have been condu	cted in the closed laboratory		ges and are part of the certificate.
All calibrations have been condu Calibration Equipment used (M&	cted in the closed laboratory	facility: environment temperature (2)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%.
All calibrations have been condu Calibration Equipment used (M& Primary Standards	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration
All calibrations have been condu Calibration Equipment used (M& Primary Standards	cted in the closed laboratory	facility: environment temperature (2)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration
	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (In house)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (In house)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (In house)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (In house)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (In house)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	TE critical for calibration)	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (In house)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	toted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 08-Jun-11 (in house check)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jun-12.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	TE critical for calibration)	facility: environment temperature (2) <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 08-Jun-11 (in house check) Function	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jun-12.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	toted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004 Name	facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 08-Jun-11 (in house check)	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jun-12.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	ID # ID # SN: 0810278 ID # SE UMS 006 AB 1004	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (In house) 08-Jun-11 (In house check) Function Technician	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jun-12.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	toted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004 Name	facility: environment temperature (2) <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 08-Jun-11 (in house check) Function	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jun-12.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # ID # SN: 0810278 ID # SE UMS 006 AB 1004	facility: environment temperature (2) Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (In house) 08-Jun-11 (In house check) Function Technician	ages and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jun-12.

Report No.: RXA1205-0230SAR01R2

Page 103 of 112

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

- SWISS SP Z CR Z Z SWISS S
 - S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swise Celibration Service

Swiss Calibration Service

Accreditation No.: SCS 108

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1291_Oct11

Page 2 of 5

Report No.: RXA1205-0230SAR01R2

Page 104 of 112

DC Voltage Measurement

A/D - Converter Resolution nominal

 $\begin{array}{rrrr} \mbox{High Range:} & 1LSB = & 6.1 \mu V \ , & \mbox{full range} = & -100...+300 \ mV \\ \mbox{Low Range:} & 1LSB = & 61 nV \ , & \mbox{full range} = & -1......+3mV \\ \mbox{DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec} \end{array}$

Calibration Factors	x	Y	z
High Range	402.618 ± 0.1% (k=2)	403.311 ± 0.1% (k=2)	403.219 ± 0.1% (k=2)
Low Range	3.97373 ± 0.7% (k=2)	3.93305 ± 0.7% (k=2)	3.99084 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	309.0 ° ± 1 °
Senneeter Angle to be used in DAGT system	309.0 II

Page 3 of 5

Report No.: RXA1205-0230SAR01R2

Page 105 of 112

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.4	-0.94	-0.00
Channel X + Input	20001.34	2.24	0.01
Channel X - Input	-19997.31	2.39	-0.01
Channel Y + Input	199994.7	2.28	0.00
Channel Y + Input	20000.26	0.46	0.00
Channel Y - Input	-19999.51	0.09	-0.00
Channel Z + Input	200005.6	-0.41	-0.00
Channel Z + Input	20000.09	0.09	0.00
Channel Z - Input	-20000.54	-0.94	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.1	-0.04	-0.00
Channel X + Input	200.47	0.57	0.29
Channel X - Input	-198.59	1.41	-0.70
Channel Y + Input	1999.8	-0.20	-0.01
Channel Y + Input	200.06	-0.04	-0.02
Channel Y - Input	-200.07	-0.07	0.03
Channel Z + Input	2000.0	-0.04	-0.00
Channel Z + Input	199.87	-0.13	-0.07
Channel Z - Input	-200.32	-0.12	0.06

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

• •	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	9.31	7.38
	- 200 "	-5.70	-7.73
Channel Y	200	13.16	13.22
	- 200	-15.11	-15.12
Channel Z	200	-15.99	-16.16
	- 200	14.64	14.71

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		3.83	-1.00
Channel Y	200	1.58	-	4.89
Channel Z	200	3.00	1.27	-

Certificate No: DAE4-1291_Oct11

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16025	15514
Channel Y	15811	15983
Channel Z	16040	14624

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-1.78	-3.14	0.35	0.47
Channel Y	-1.26	-4.20	-0.42	0.45
Channel Z	-1.77	-2.71	-0.62	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

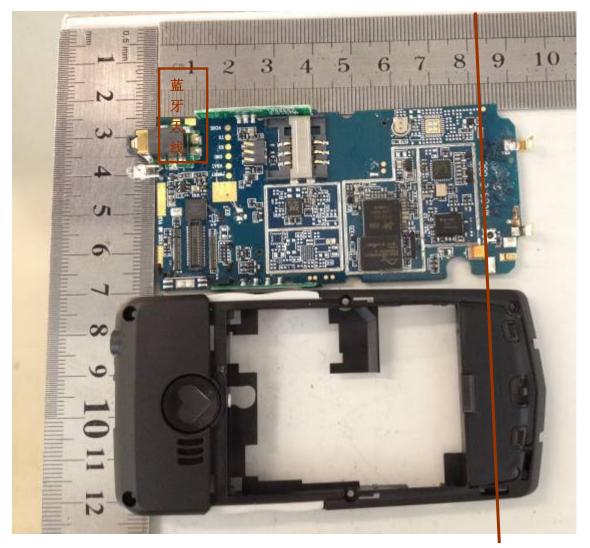
Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

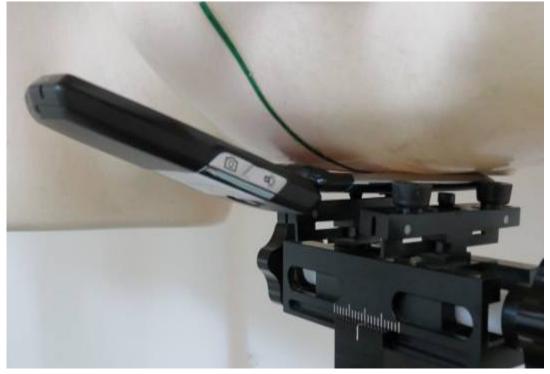
ANNEX H: The EUT Appearances and Test Configuration

a-1:Open


a-2:Closed

Report No.: RXA1205-0230SAR01R2

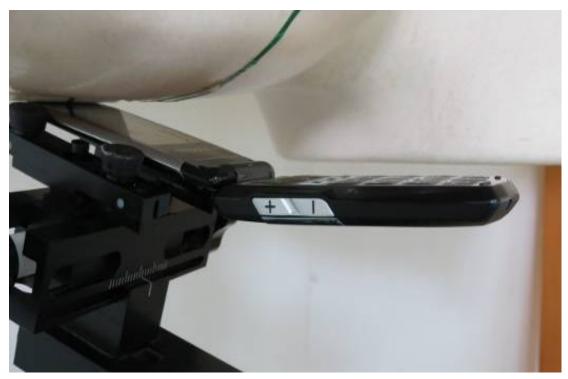
Page 108 of 112


b: Battery

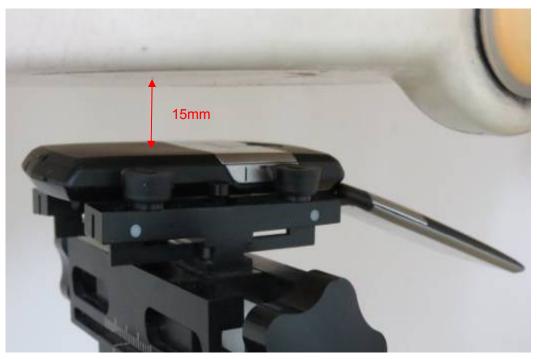
c: Back View Picture 6: Constituents of EUT

2G 天线

Report No.: RXA1205-0230SAR01R2


Picture 7: Left Hand Touch Cheek Position

Picture 8: Left Hand Tilt 15 Degree Position


Picture 9: Right Hand Touch Cheek Position

Picture 10: Right Hand Tilt 15 Degree Position

Picture 11: Body, The EUT display towards ground, the distance from EUT to the bottom of the Phantom is 15mm (Closed)

Picture 12: Body, The EUT display towards ground, the distance from EUT to the bottom of the Phantom is 15mm (Open)

Picture 13: Body, The EUT display towards phantom, the distance from EUT to the bottom of the Phantom is 15mm (Closed)