

7.5. PEAK OUTPUT POWER

7.5.1. LIMITS

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.5.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Calibration Due
Power Meter	Anritsu	ML2495A	1204003	02/21/2016	02/20/2017
Power Sensor	Anritsu	MA2411B	1126150	02/21/2016	02/20/2017

7.5.3. TEST PROCEDURES (please refer to measurement standard)

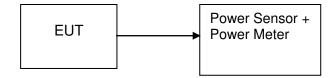
9.1.1 RBW ≥ *DTS* bandwidth

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the *DTS bandwidth*.

- a) Set the RBW \geq *DTS* bandwidth.
- b) Set VBW \geq 3 RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

9.1.2 Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the *DTS bandwidth*.


- a) Set the RBW = 1 MHz.
- b) Set the VBW ≥ 3 RBW
- c) Set the span \geq 1.5 x DTS bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

9.1.3 PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

7.5.4. TEST SETUP

7.5.5. TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 8	302.11b (Aı	ntenna 0)
-------------------	-------------	-----------

Low Mid	2412 2437	20.47	0.11143			PASS
Mid	2437	20.04				1700
IIII		20.94	0.12417	Peak	1	PASS
High	2462	21.64	0.14588			PASS
Low	2412	17.33	0.05408			PASS
Mid	2437	17.97	0.06266	AVG	1	PASS
High	2462	18.57	0.07194			PASS
Test mode	e: IEEE 802	2.11b (Antenna	i 1)			

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Peak / AVG	Limit (W)	Result
Low	2412	21.56	0.14322			PASS
Mid	2437	21.22	0.13243	Peak	1	PASS
High	2462	20.86	0.12190			PASS
Low	2412	18.65	0.07328			PASS
Mid	2437	18.12	0.06486	AVG	1	PASS
High	2462	17.81	0.06039			PASS

Test mode: IEEE 802.11g (Antenna 0)

Channel	Frequency (MHz)	Output Power (dBm) (W)		Peak / AVG	Limit (W)	Result
Low	2412	23.75	0.23714			PASS
Mid	2437	24.78	0.30061	Peak	1	PASS
High	2462	22.39	0.17338			PASS
Low	2412	15.66	0.03681			PASS
Mid	2437	18.04	0.06368	AVG	1	PASS
High	2462	14.42	0.02767			PASS

Compliance Certification Services (Shenzhen) Inc. Report No.: C160606Z02-RP1-3

Channel	Frequency (MHz)	Output Power Output Power (dBm) (W)		Peak / AVG	Limit (W)	Result
Low	2412	24.11	0.25763			PASS
Mid	2437	24.26	0.26669	Peak	1	PASS
High	2462	23.91	0.24604			PASS
Low	2412	17.73	0.05929			PASS
Mid	2437	18.04	0.06368	AVG	1	PASS
High	2462	16.61	0.04581			PASS

Test mode: IEEE 802.11n HT20 MHz(Combine with Antenna 0 and Antenna 1)

Channel	Frequency (MHz)	Q	utput Powe (dBm)	Output Power	Peak / AVG	Limit	Result	
	(11112)	Antenna 0	Antenna 1	Total	(W)	AVG	(W)	
Low	2412	22.56	21.81	25.21	0.33201			PASS
Mid	2437	24.22	23.61	26.94	0.49386	Peak	1	PASS
High	2462	23.53	22.57	26.09	0.40614			PASS
Low	2412	14.46	14.14	17.31	0.05387			PASS
Mid	2437	17.17	17.09	20.14	0.10329	AVG	1	PASS
High	2462	15.7 9	15.05	18.45	0.06992			PASS

Test mode: IEEE 802.11n HT40 MHz(Combine with Antenna 0 and Antenna 1)

Channel	Frequency (MHz)	C	output Powe (dBm)	Output Power	Peak / AVG	Limit (W)	Result	
		Antenna 0	Antenna 1	Total	(W)	AVG	(**)	
Low	2422	21.15	20.43	23.82	0.24072			PASS
Mid	2437	24.92	23.72	27.37	0.54596	Peak	1	PASS
High	2452	23.24	22.20	25.76	0.37682			PASS
Low	2422	12.97	12.38	15.70	0.03711			PASS
Mid	2437	16.92	17.43	20.19	0.10454	AVG	1	PASS
High	2452	15.33	14.46	17.93	0.06204			PASS

7.6. BAND EDGES MEASUREMENT

7.6.1. LIMITS

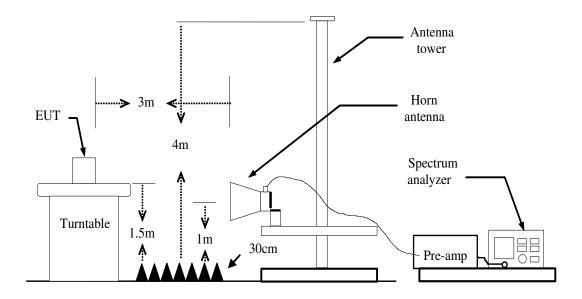
According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

7.6.2. TEST INSTRUMENTS

	Radiated I	Emission Test	Site 966(2)		
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	02/21/2016	02/20/2017
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/21/2016	02/20/2017
Amplifier	EMEC	EM330	060661	03/18/2016	03/17/2017
High Noise Amplifier	Agilent	8449B	3008A01838	02/21/2016	02/20/2017
Loop Antenna	COM-POWER	AL-130	121044	09/25/2015	09/24/2016
Bilog Antenna	SCHAFFNER	CBL6143	5082	02/21/2016	02/20/2017
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02/28/2016	02/27/2017
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	02/28/2016	02/27/2017
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R
Controller	СТ	N/A	N/A	N.C.R	N.C.R
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2016	02/20/2017
Test S/W	FARAD		LZ-RF / CCS	S-SZ-3A2	·

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

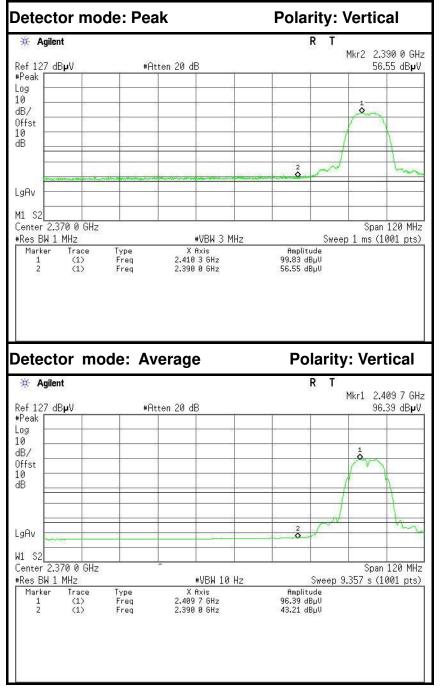
2. The FCC Site Registration number is 101879.


3. N.C.R = No Calibration Required.

7.6.3. TEST PROCEDURES (please refer to measurement standard)

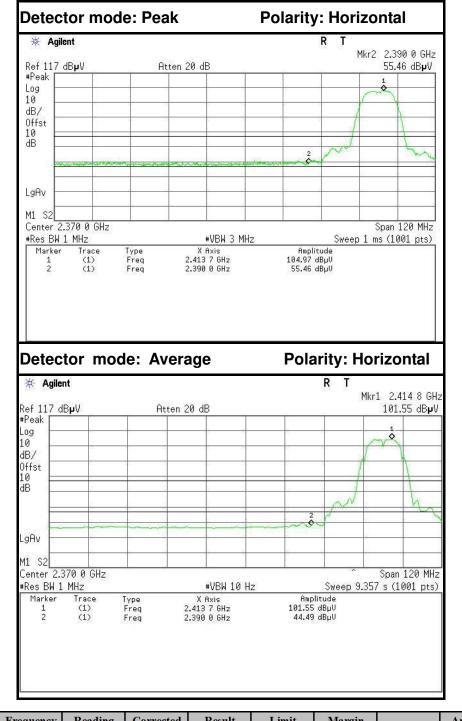
- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO / Detector=PEAK
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are

7.6.4. TEST SETUP

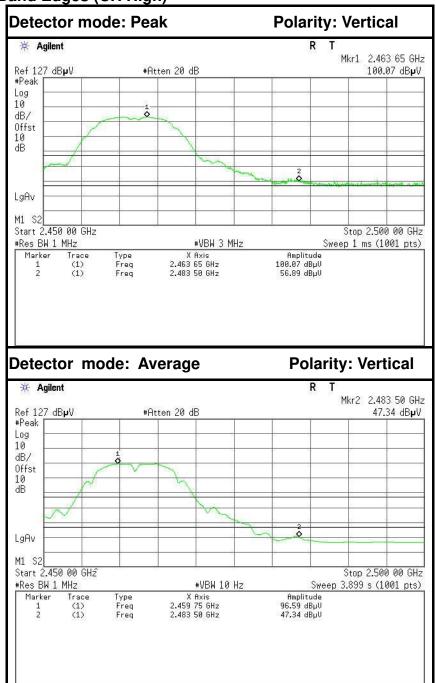


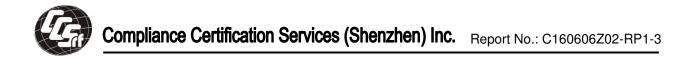
7.6.5. TEST RESULTS

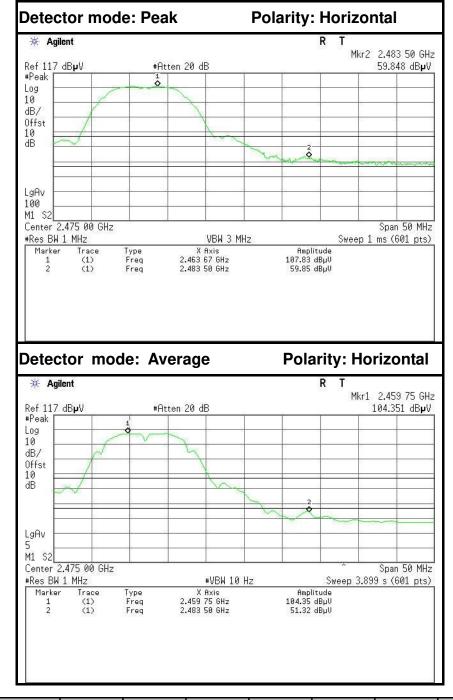
Test Plot


IEEE 802.11b mode (Antenna 0)

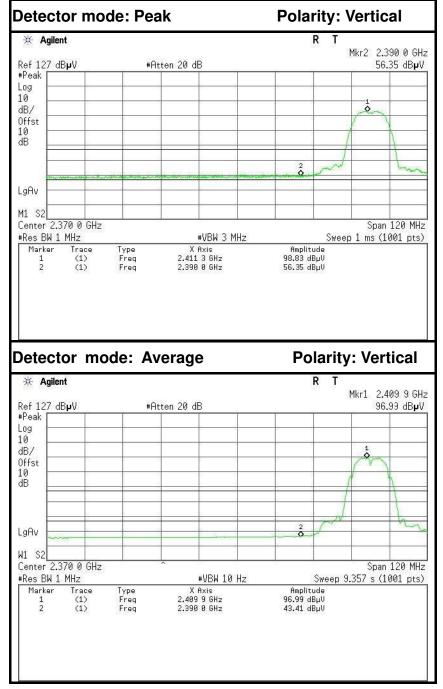
Band Edges (CH Low)


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	49.95	-6.60	56.55	74.00	-17.45	Peak	Vertical
2	2390.0000	36.61	-6.60	43.21	54.00	-10.79	Average	Vertical

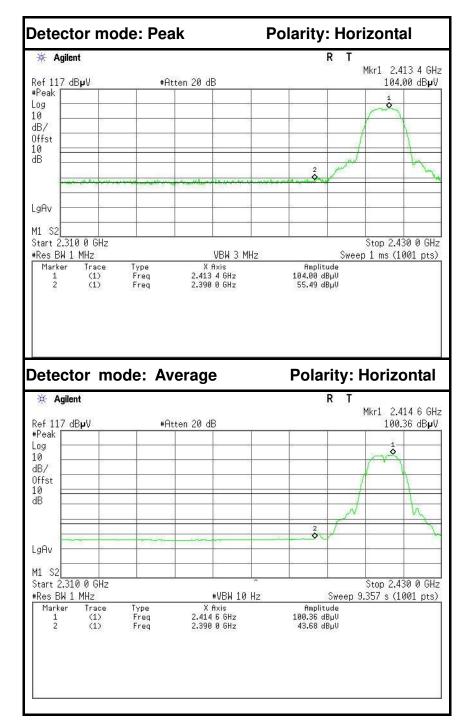



No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	48.86	-6.60	55.46	74.00	-18.54	Peak	Horizontal
2	2390.0000	37.89	-6.60	44.49	54.00	-9.51	Average	Horizontal

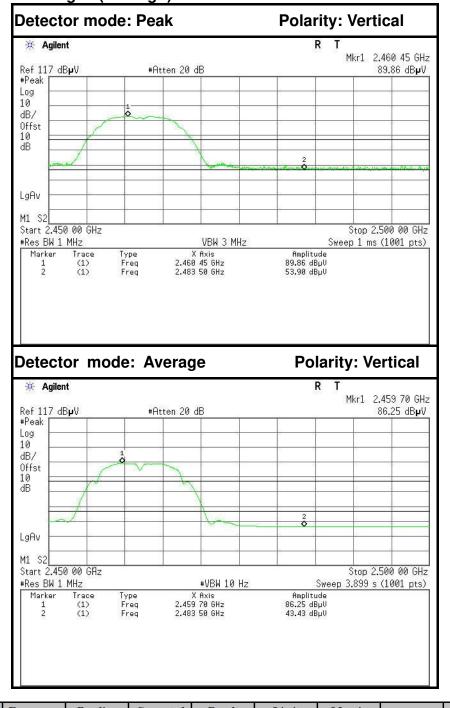
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	50.65	-6.24	56.89	74.00	-17.11	Peak	Vertical
2	2483.5000	41.10	-6.24	47.34	54.00	-6.66	Average	Vertical

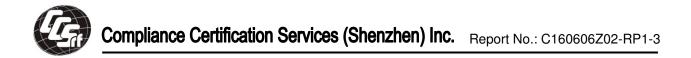


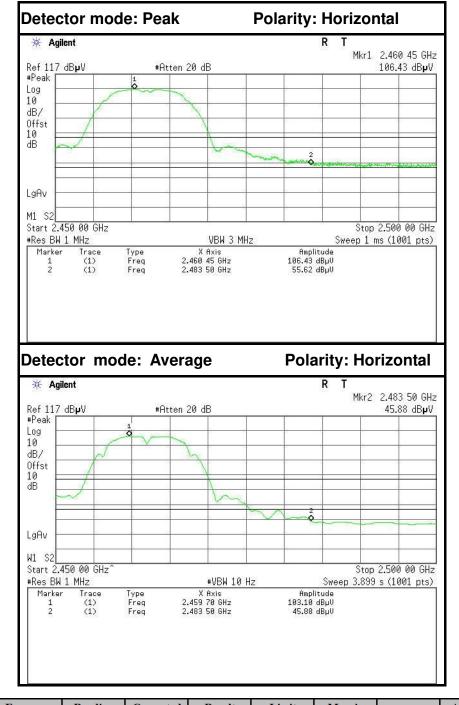
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	53.61	-6.24	59.85	74.00	-14.15	Peak	Horizontal
2	2483.5000	45.08	-6.24	51.32	54.00	-2.68	Average	Horizontal


IEEE 802.11b mode (Antenna 1)

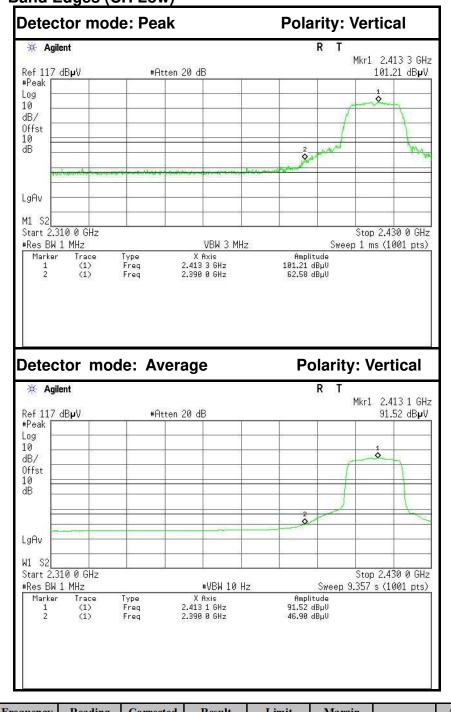
Band Edges (CH Low)


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	49.75	-6.60	56.35	74.00	-17.65	Peak	Vertical
2	2390.0000	36.81	-6.60	43.41	54.00	-10.59	Average	Vertical

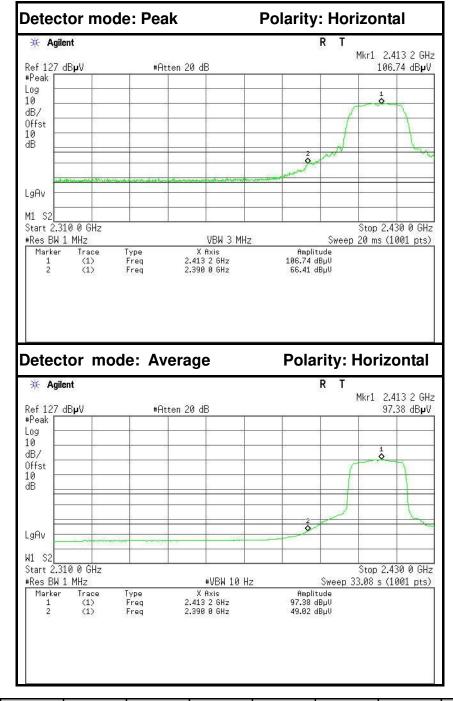



No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	48.89	-6.60	55.49	74.00	-18.51	Peak	Horizontal
2	2390.0000	37.08	-6.60	43.68	54.00	-10.32	Average	Horizontal

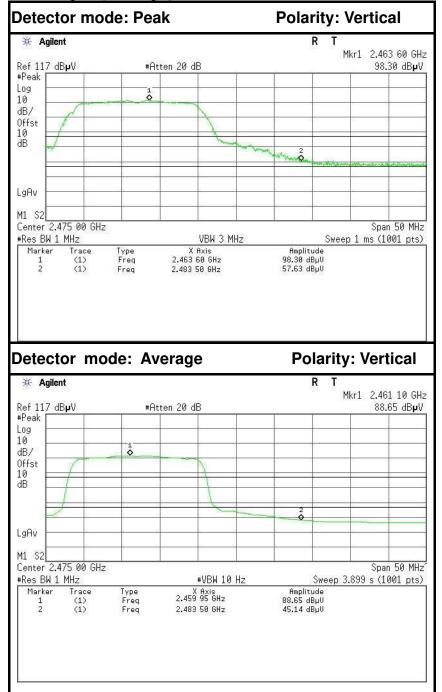
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	47.66	-6.24	53.90	74.00	-20.10	Peak	Vertical
2	2483.5000	37.19	-6.24	43.43	54.00	-10.57	Average	Vertical

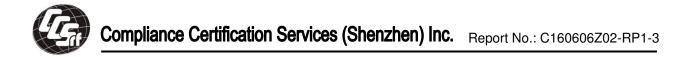


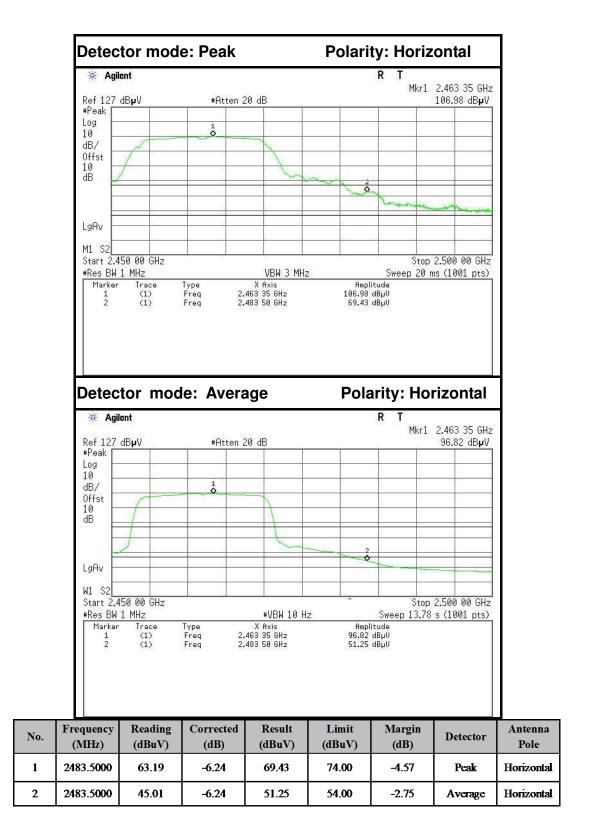
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	49.38	-6.24	55.62	74.00	-18.38	Peak	Horizontal
2	2483.5000	39.64	-6.24	45.88	54.00	-8.12	Average	Horizontal

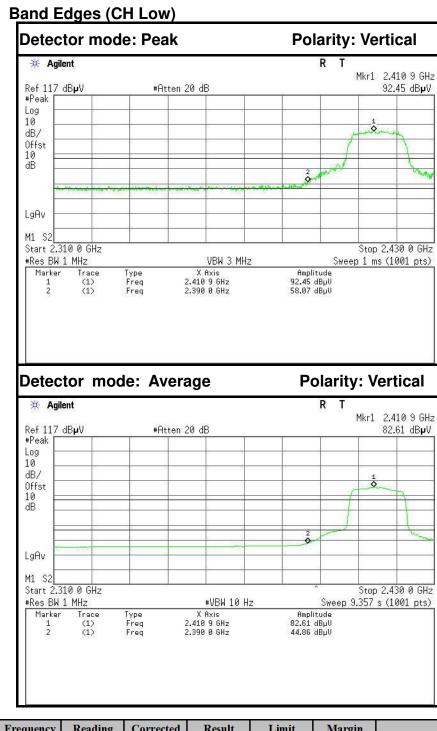

IEEE 802.11g mode (Antenna 0)

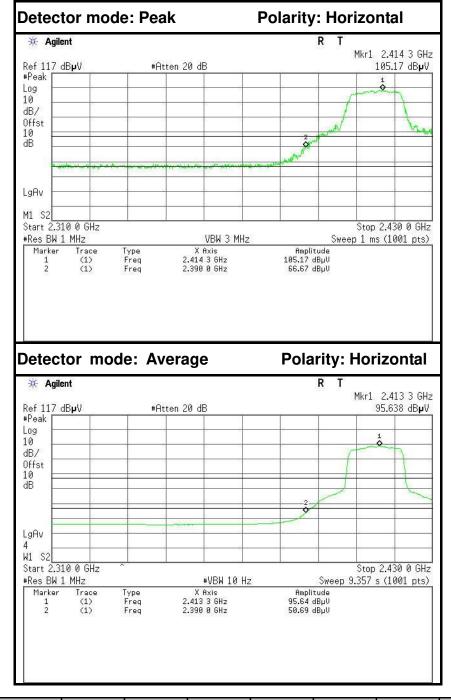
Band Edges (CH Low)


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	55.98	-6.60	62.58	74.00	-11.42	Peak	Vertical
2	2390.0000	40.30	-6.60	46.90	54.00	-7.10	Average	Vertical

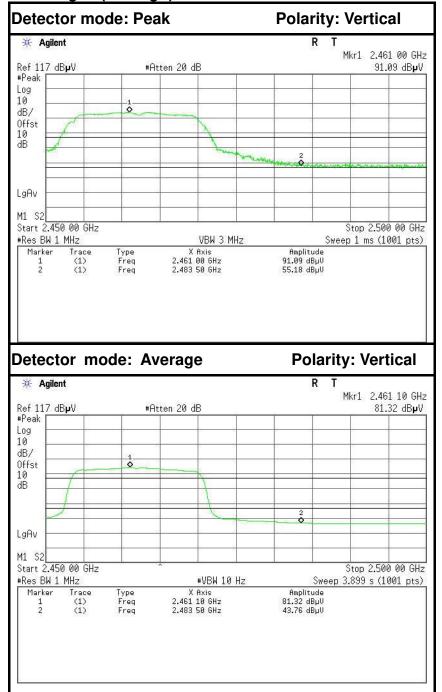


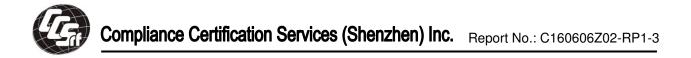

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	59.81	-6.60	66.41	74.00	-7.59	Peak	Horizontal
2	2390.0000	42.42	-6.60	49.02	54.00	-4.98	Average	Horizontal

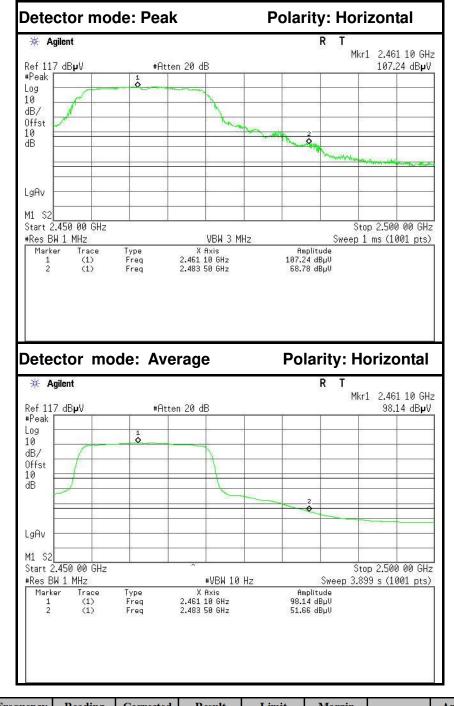

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	51.39	-6.24	57.63	74.00	-16.37	Peak	Vertical
2	2483.5000	38.90	-6.24	45.14	54.00	-8.86	Average	Vertical



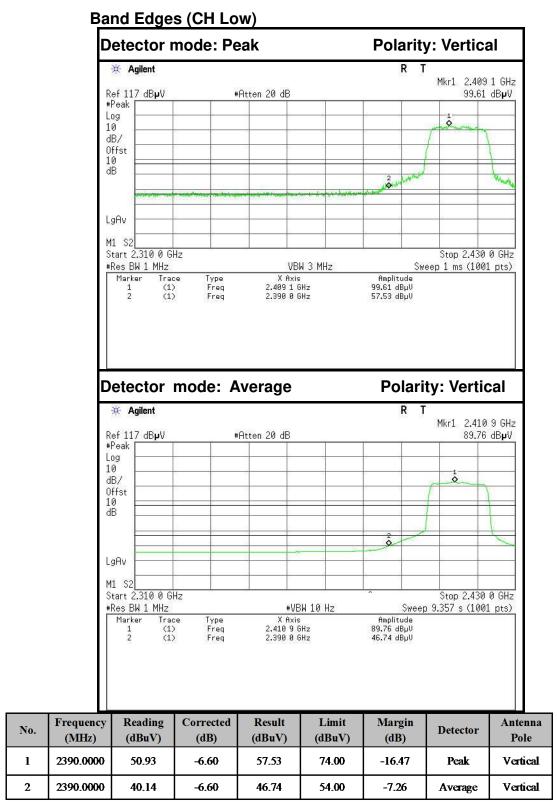
IEEE 802.11g mode (Antenna 1)

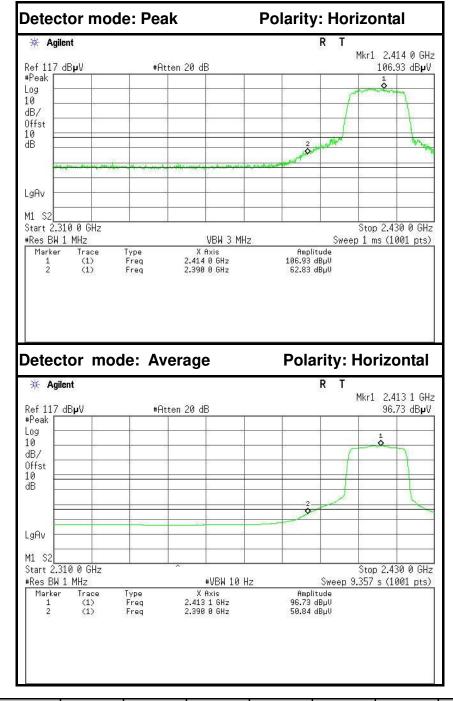

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	51.47	-6.60	58.07	74.00	-15.93	Peak	Vertical
2	2390.0000	38.26	-6.60	44.86	54.00	-9.14	Average	Vertical



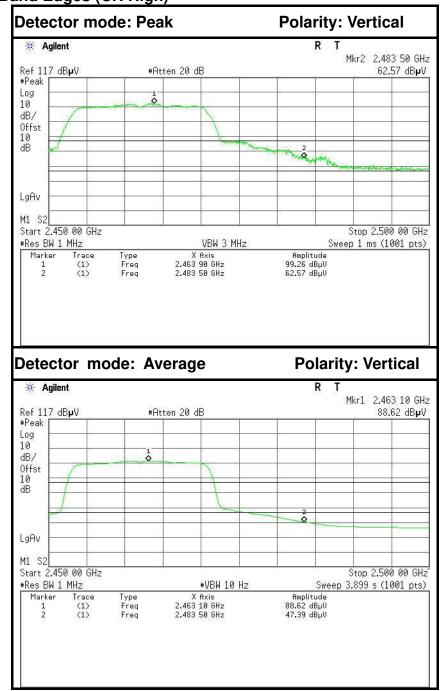

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	60.07	-6.60	66.67	74.00	-7.33	Peak	Horizontal
2	2390.0000	44.09	-6.60	50.69	54.00	-3.31	Average	Horizontal

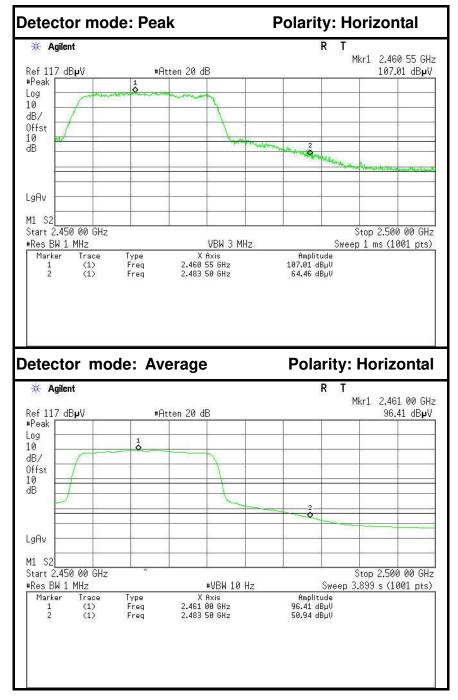
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	48.94	-6.24	55.18	74.00	-18.82	Peak	Vertical
2	2483.5000	37.52	-6.24	43.76	54.00	-10.24	Average	Vertical



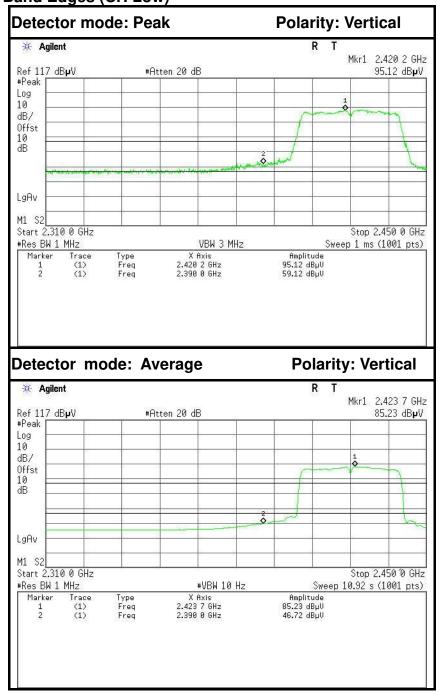

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	62.54	-6.24	68.78	74.00	-5.22	Peak	Horizontal
2	2483.5000	45.42	-6.24	51.66	54.00	-2.34	Average	Horizontal

IEEE 802.11n HT20 MHz mode (Combine with Antenna 0 and Antenna 1)

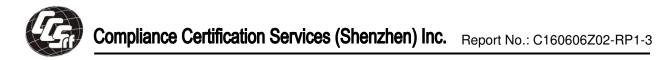


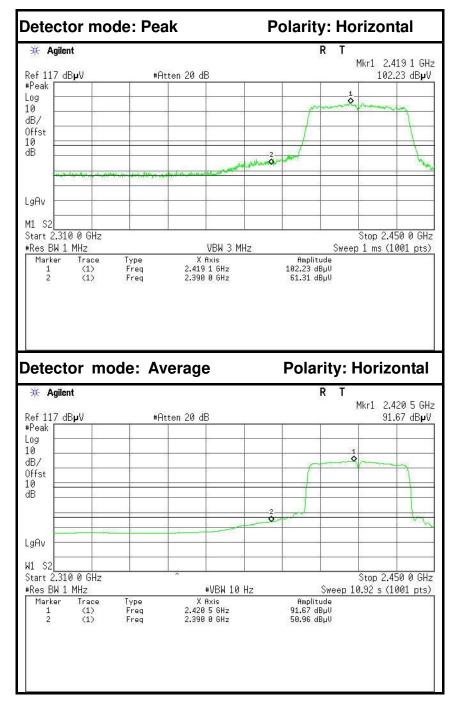

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	56.23	-6.60	62.83	74.00	-11.17	Peak	Horizontal
2	2390.0000	44.24	-6.60	50.84	54.00	-3.16	Average	Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	56.33	-6.24	62.57	74.00	-11.43	Peak	Vertical
2	2483.5000	41.15	-6.24	47.39	54.00	-6.61	Average	Vertical

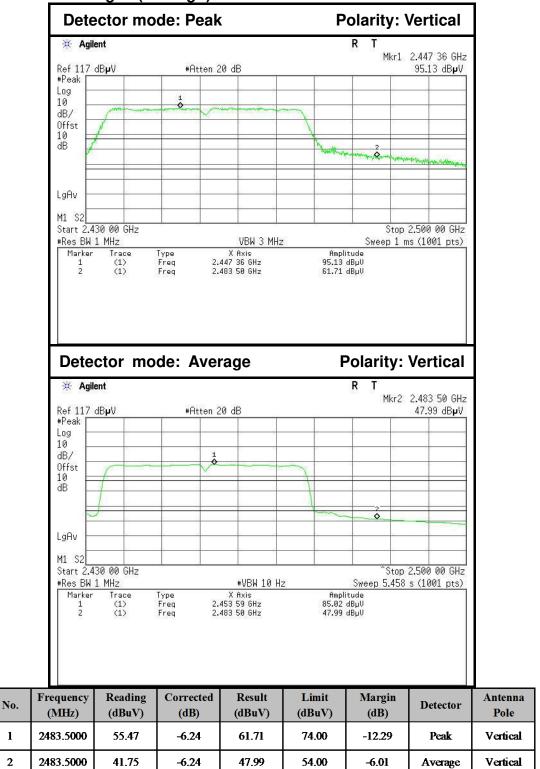


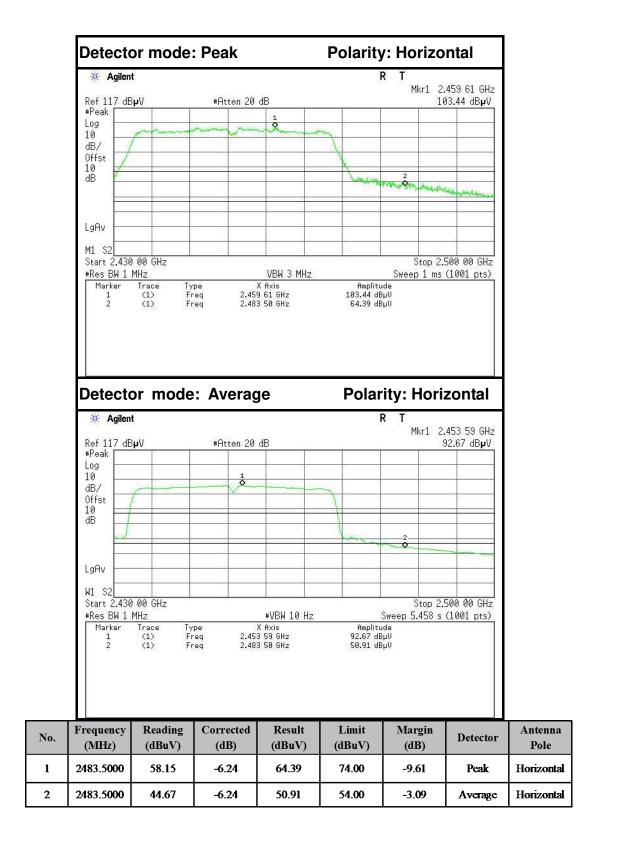
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	58.22	-6.24	64.46	74.00	-9.54	Peak	Horizontal
2	2483.5000	44.70	-6.24	50.94	54.00	-3.06	Average	Horizontal




IEEE 802.11n HT40 MHz mode (Combine with Antenna 0 and Antenna 1)

Band Edges (CH Low)


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	52.52	-6.60	59.12	74.00	-14.88	Peak	Vertical
2	2390.0000	40.12	-6.60	46.72	54.00	-7.28	Average	Vertical



No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	54.71	-6.60	61.31	74.00	-12.69	Peak	Horizontal
2	2390.0000	44.36	-6.60	50.96	54.00	-3.04	Average	Horizontal

7.7. PEAK POWER SPECTRAL DENSITY MEASUREMENT

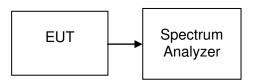
7.7.1. LIMITS

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

7.7.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Calibration Due
Spectrum Analyzer	Agilent	N9010A	MY52221469	02/21/2016	02/20/2017


7.7.3. TEST PROCEDURES (please refer to measurement standard)

§15.247(e)specifies a conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission. The same method as used to determine the conducted output power shall be used to determine the power spectral density (i.e.,if peak-detected fundamental power was measured then use the peak PSD procedure and if average fundamental power was measured then use the average PSD procedure).

10.2 Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.7.4. TEST SETUP

7.7.5. TEST RESULTS

No non-compliance noted

<u>Test Data</u>

Test mode: IEEE 802.11b (Antenna 0)

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-12.986		PASS
Mid	2437	-12.237	8	PASS
High	2462	-12.066		PASS

Test mode: IEEE 802.11b (Antenna 1)

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-11.584		PASS
Mid	2437	-11.810	8	PASS
High	2462	-12.230		PASS

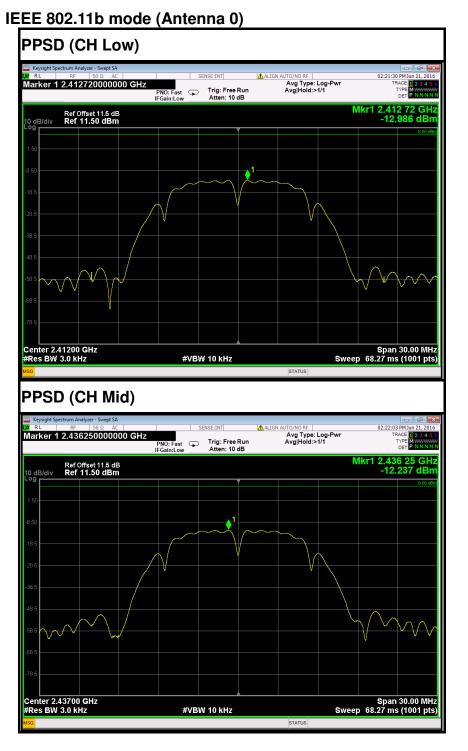
Test mode: IEEE 802.11g (Antenna 0)

Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
2412	-13.165		PASS
2437	-10.779	8	PASS
2462	-14.601		PASS
	(MHz) 2412 2437	(MHz) (dBm) 2412 -13.165 2437 -10.779	(MHz) (dBm) (dBm) 2412 -13.165 2437 -10.779 8

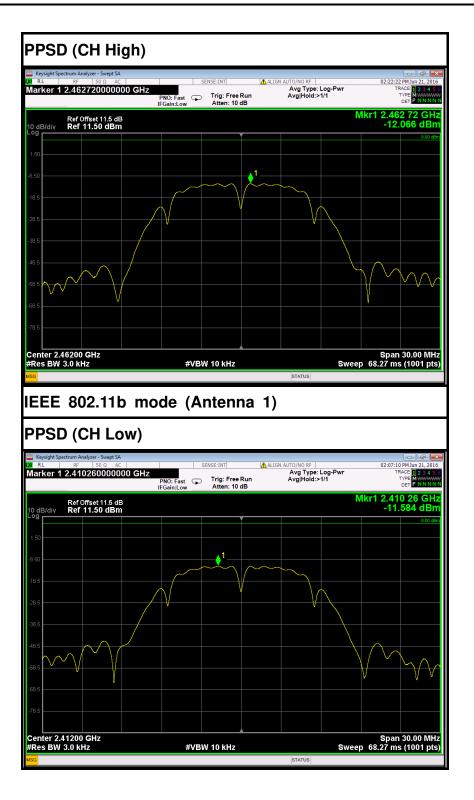
Test mode: IEEE 802.11g (Antenna 1)

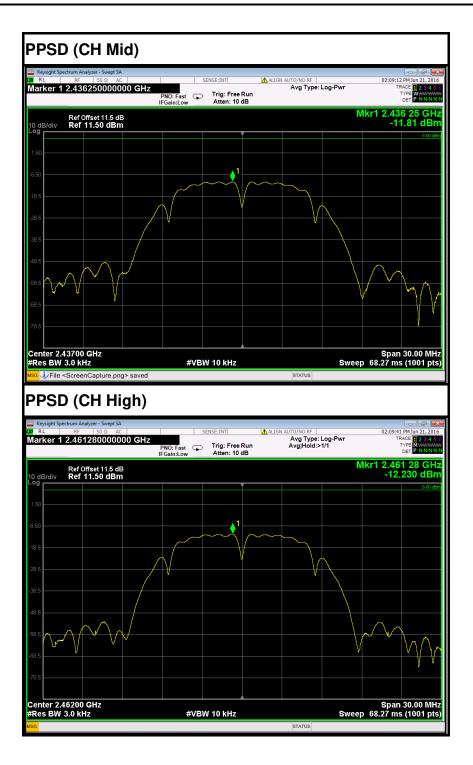
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-12.346		PASS
Mid	2437	-10.909	8	PASS
High	2462	-11.063		PASS

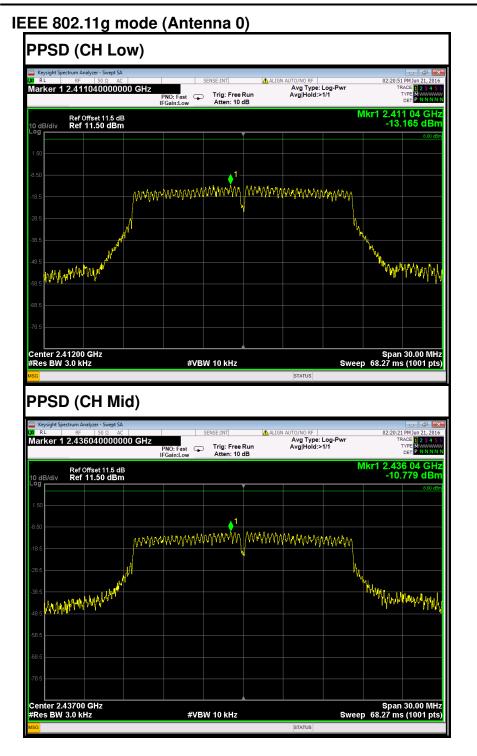
Ohennel	Frequency		PPSD (dBm)		Limit		Limit	
Channel	(MHz)	Antenna 0	Antenna 1	Total	(dBm)	Test Result		
Low	2412	-8.257	-13.460	-7.112	8	PASS		
Mid	2437	-11.018	-11.035	-8.016		PASS		
High	2462	-12.093	-12.551	-9.306		PASS		
Test mode	· IFFF 802	11n HT40 MHz	(Combine wi	th Δntenna 0	and Antenn	a 1)		

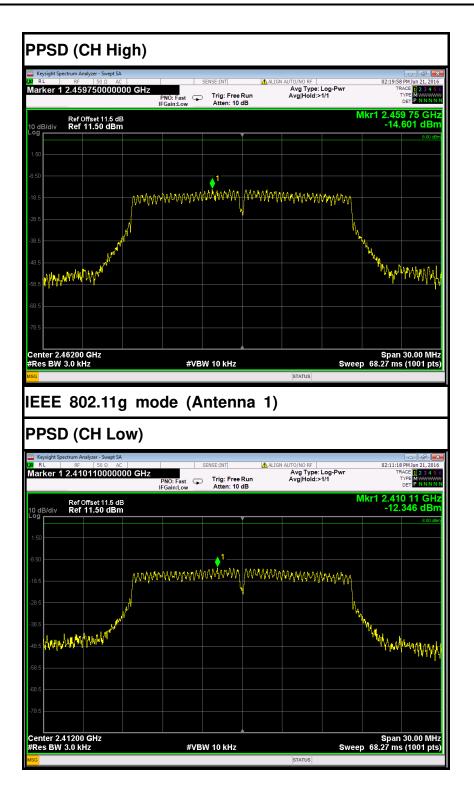

Test mode: IEEE 802.11n HT20 MHz (Combine with Antenna 0 and Antenna 1)

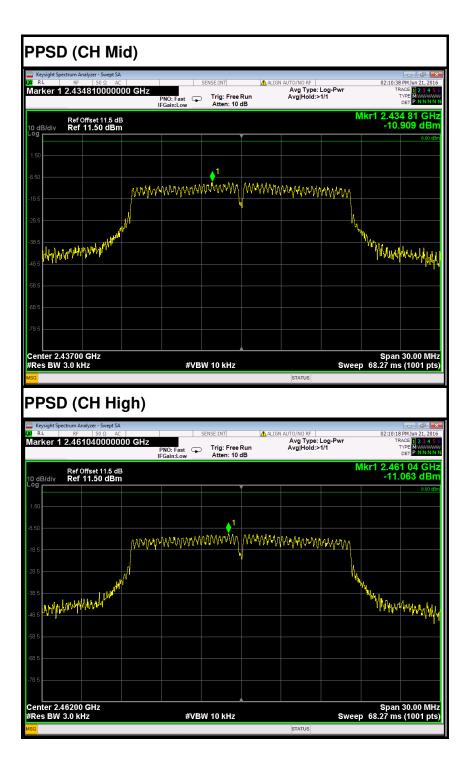
Test mode: IEEE 802.11n HT40 MHz (Combine with Antenna 0 and Antenna 1)

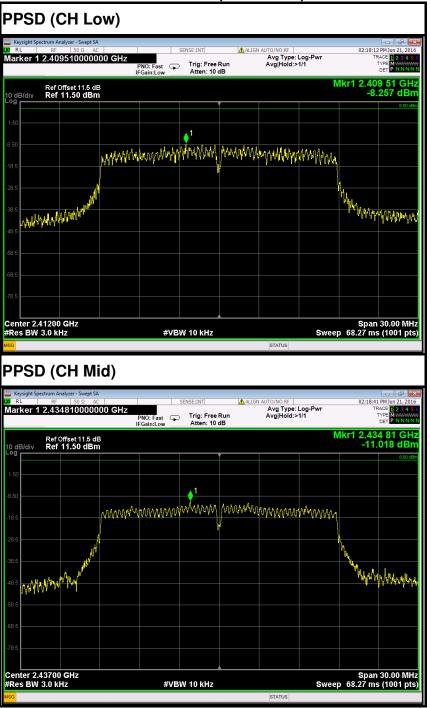

Channel	Frequency (MHz)		PPSD (dBm)	Limit (dBm)	Test Result	
	(101112)	Antenna 0	Antenna 1	Total	(ubiii)	
Low	2422	-15.642	-17.873	-13.605		PASS
Mid	2437	-11.493	-13.055	-9.194	8	PASS
High	2452	-15.479	-16.076	-12.757		PASS

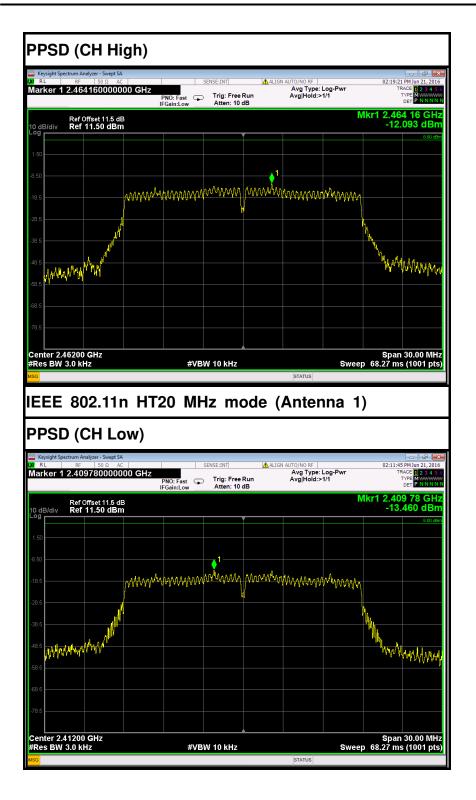

Test Plot

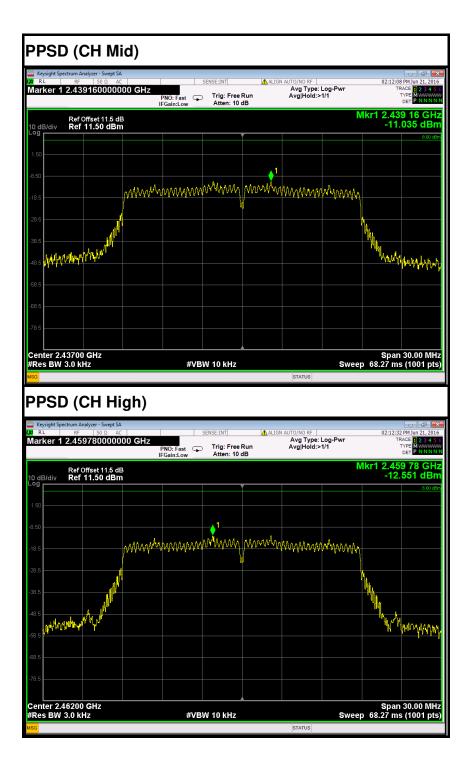




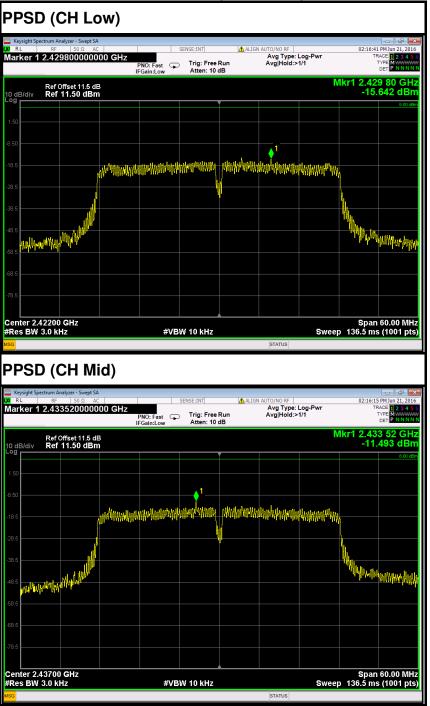


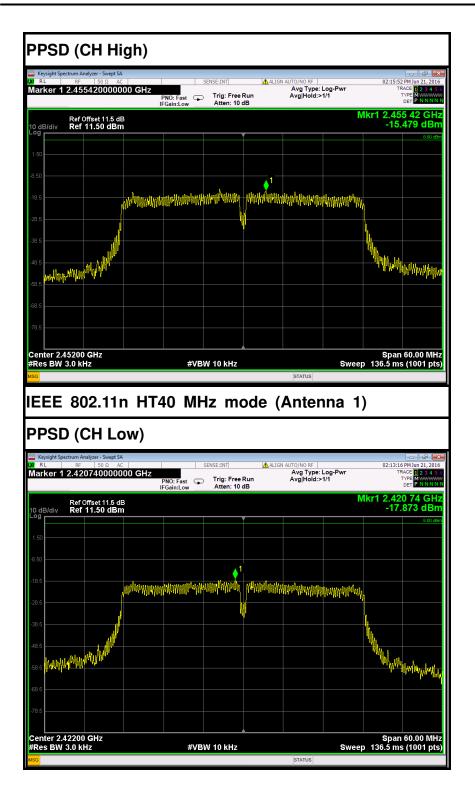






IEEE 802.11n HT20 MHz mode (Antenna 0)





IEEE 802.11n HT40 MHz mode (Antenna 0)

eysight Spectrum Analyzer - Swept S LL RF 50 Ω /	SA AC	SENSE:INT	ALIGN AUTO/NO RF	ے۔ 02:13:49 PM Jun 21, 2
rker 1 2.435740000	PNO: F	ast 🕞 Trig: Free R	un Avg Type: L un Avg Hold:>1	_og-Pwr TRACE 1 2 3 4
Ref Offset 11.5 c	IFGain:	Low Atten: 10 di	D	Mkr1 2.435 74 G -13.055 dE
B/div Ref 11.50 dB				-13.055 GE 8.00
		1		
	ANN	Munder Man	dayahayahahahayahahahahahahahah	hendelengen
		 		
	,			Y
Where we				"" Why any for
;				
nter 2.43700 GHz es BW 3.0 kHz		#VBW 10 kHz		Span 60.00 M Sweep 136.5 ms (1001 p
				Sweep 130.3 ms (1001 p
PSD (CH H	igh)		STATUS	3weep 130.3 his (1001 p
eysight Spectrum Analyzer - Swept S LL RF 50 Ω A	AAC 000 GHz	sENSE:INT ast Trig: Free R .cow Atten: 10 di	ALIGN AUTO/NO RF Avg Type: L un Avg[Hold:>	02:14:18 PM Jun 21,2 og-Pwr TRACE 12 3
eysight Spectrum Analyzer - Swept S RE RF 50 Ω A rker 1 2.4507400000	AC OOO GHZ PNO: F IFGain: IB	ast 👝 🛛 Trig: Free R	ALIGN AUTO/NO RF Avg Type: L un Avg[Hold:>	02:14:18 PM Jun 21,2
exight Spectrum Analyzer - Swept S LL RF [50 Ω A rker 1 2.4507400000 Ref Offset 11.5 c Ref 11.50 dBr	AC OOO GHZ PNO: F IFGain: IB	ast 👝 🛛 Trig: Free R	ALIGN AUTO/NO RF Avg Type: L un Avg[Hold:>	02:14:18 PM Jun 21, 2 .og-Pwr TRACE 223 1/1 Tree 21 0 ctr 9 MM 11 2.450 74 G
sysight Spectrum Analyzer - Swept S LL RF 50 Ω A rker 1 2.4507400000 Ref Offset 11.5 c B/div Ref 11.50 dB	AC OOO GHZ PNO: F IFGain: IB	ast 👝 🛛 Trig: Free R	ALIGN AUTO/NO RF Avg Type: L un Avg[Hold:>	02:14:18 PM Jun 21, 2 .og-Pwr TRACE 2 2 1/1 Tree 2 0 CT 2
exight Spectrum Analyzer - Swept 3 L RF 50 G A rker 1 2.450740000 Ref Offset 11.5 B/div Ref 11.50 dBr	AC OOO GHZ PNO: F IFGain: IB	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: un Avg Hold:> B	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 TRACE [12:3 02:14:18 PM Jun 21,2 02:14:18
sysight Spectrum Analyzer - Swept S L RF 50 Ω A ker 1 2.4507400000 Ref Offset 11.5 c B/div Ref 11.50 dBr	iA 000 GHz PNO: F IFGain: IB m	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: L un Avg[Hold:>	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 TRACE [12:3 02:14:18 PM Jun 21,2 02:14:18
syight Spectrum Analyzer - Swept S L RF 50 G / / ker 1 2.450740000 Ref Offset 11.5 c B/div Ref 11.50 dBr	iA 000 GHz PNO: F IFGain: IB m	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: un Avg Hold:> B	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 TRACE [12:3 02:14:18 PM Jun 21,2 02:14:18
syight Spectrum Analyzer - Swept S L RF S0 A ker 1 2.4507400000 Ref Offset 11.5 c B/div Ref 11.50 dBr	iA 000 GHz PNO: F IFGain: IB m	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: un Avg Hold:> B	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 TRACE [12:3 02:14:18 PM Jun 21,2 02:14:18
exight Spectrum Analyzer - Swept S L RF 50 C A rker 1 2.4507400000 Ref Offset 11.5 c B/div Ref 11.50 dBr	iA 000 GHz PNO: F IFGain: IB m	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: un Avg Hold:> B	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 00-PWr TRACE DET Mkr1 2.450 74 G -16.076 dE 000 000 000 000 000 000 000 0
syight Spectrum Analyzer - Swept S L RF S0 A ker 1 2.4507400000 Ref Offset 11.5 c B/div Ref 11.50 dBr	iA 000 GHz PNO: F IFGain: IB m	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: un Avg Hold:> B	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 TRACE [12:3 02:14:18 PM Jun 21,2 02:14:18
exight Spectrum Analyzer - Swept 3 L	iA 000 GHz PNO: F IFGain: IB m	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: un Avg Hold:> B	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 00-PWr TRACE DET Mkr1 2.450 74 G -16.076 dE 000 000 000 000 000 000 000 0
exight Spectrum Analyzer - Swept S 1	iA 000 GHz PNO: F IFGain: IB m	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: un Avg Hold:> B	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 00-PWr TRACE DET Mkr1 2.450 74 G -16.076 dE 000 000 000 000 000 000 000 0
Ref Offset 11.5 o (B/div Ref 11.50 dB)	iA 000 GHz PNO: F IFGain: IB m	ast Trig: Free R Atten: 10 di	ALIGN AUTO/NO RF Avg Type: un Avg Hold:> B	02:14:18 PM Jun 21,2 02:14:18 PM Jun 21,2 00-PWr TRACE DET Mkr1 2.450 74 G -16.076 dE 000 000 000 000 000 000 000 0