

FCC SAR TEST REPORT

Report No: STS1805317H01

Issued for

TCL TECHNOLY ELECTRONICS(HUIZHOU) CO., LTD.

SEC 37,ZHONGKAI HIGH-TECH DEVELOPMENT ZONE HUIZHOU City GUANGDONG Province China 516006.

Product Name:	SBM-U-BW,WBUW			
Brand Name:	SAMSUNG, WiSilica			
Model Name:	SLP-B211BWUXWW, WBUW			
Series Model:	N/A			
FCC ID:	ZVA-IOT-S-SBM-U-B			
	ANSI/IEEE Std. C95.1			
Test Standard:	FCC 47 CFR Part 2 (2.1093)			
	IEEE 1528: 2013			
Max. Report	Body: 0.573 W/kg			
SAR (1g):	and, and a mind			

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Test Report Certification

Product description

Product name...... SBM-U-BW,WBUW

Brand name SAMSUNG, WiSilica

Model name SLP-B211BWUXWW, WBUW

Series Model N/A

ANSI/IEEE Std. C95.1-1992

Standards..... FCC 47 CFR Part 2 (2.1093)

IEEE 1528: 2013

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test:

Date of Issue 04 July 2018

Test Result..... Pass

Testing Engineer : Jan 13 u

(Aaron Bu)

Technical Manager :

(John Zou)

Authorized Signatory:

(Vita Li)

Table of Contents

1.General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Factory	5
2.Test Standards And Limits	6
3. SAR Measurement System	7
3.1 Definition Of Specific Absorption Rate (SAR)	7
3.2 SAR System	7
4. Tissue Simulating Liquids	10
4.1 Simulating Liquids Parameter Check	10
5. SAR System Validation	12
5.1 Validation System	12
5.2 Validation Result	12
6. SAR Evaluation Procedures	13
6.1 SAR Scan General Requirements	13
6.2 SAR Measurement Procedure	14
6.3 Area & Zoom Scan Procedures	14
7. EUT Antenna Location Sketch	15
7.1 SAR test exclusion consider table	16
8. EUT Test Position	17
8.1 Hotspot mode exposure position condition	17
8.2 USB connector Orientations Implemented on Laptop Computers	17
8.3 Simple Dongle Test Procedures	17
8.4 Dongles with Swicel or Rotating Connectors	18
9. Uncertainty	19
9.1 Measurement Uncertainty	19
9.2 System validation Uncertainty	21
10. Conducted Power Measurement	23
10.1 Test Result	23
10.2 Tune-up Power	23
10.3 SAR Test Exclusions Applied	24
11. EUT And Test Setup Photo	25
11.1 EUT Photo	25
11.2 Setup Photo	28
12. SAR Result Summary	32
12.1 Body and Hotspot SAR	32
13. Equipment List	34
Appendix A. System Validation Plots	35
Appendix B. SAR Test Plots	39
Appendix C. Probe Calibration And Dipole Calibration Report	41

1.General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

i.i Lo i Description							
Product Name		SBM-U-BW,WBUW					
Brand Name		SAMSUNG, WiSilica					
Model Name		1BWUXWW, WBUW					
Series Model	N/A						
FCC ID	ZVA-IOT	-S-SBM-U-B					
Model Difference	Only diffe	erence in brand name					
Device Category	Portable						
Product stage	Production	on unit					
RF Exposure Environment	General I	Population / Uncontrolled					
Hardware Version	N/A						
Software Version	N/A	N/A					
Frequency Range		WLAN 802.11b/g/n(HT20/40):2412~2462MHz Bluetooth:2402~ 2480MHz					
Max. Reported	Band	Mode	Body (W/kg)				
SAR(1g):	DTS	WLAN	0.573				
(Limit:1.6W/kg)	DTS	Bluetooth Note	0.133				
1-g Sum SAR			0.706				
F00 F in t Ol	Part 15 S	Spread Spectrum Transmit	tter (DSS)				
FCC Equipment Class	Digital Tr	ansmission System (DTS)					
Operating Mode:	WLAN: 8 BLE	WLAN: 802.11 b/g/n(HT20/40);					
Antenna Specification:	BT,WLA	N: PCB Antenna					
DTM Mode:	Not Supp	oort					
Note:							

Note

- 1. Bluetooth SAR was estimated
- 2. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

CNAS Registration No.: L7649 FCC Registration No.: 625569 IC Registration No.: 12108A A2LA Certificate No.: 4338.01

Report No.: STS1805317H01

2.Test Standards And Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 447498 D02 v02r01	SAR Procedures for Dongle Xmtr
6	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
7	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
8	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

3. SAR Measurement System

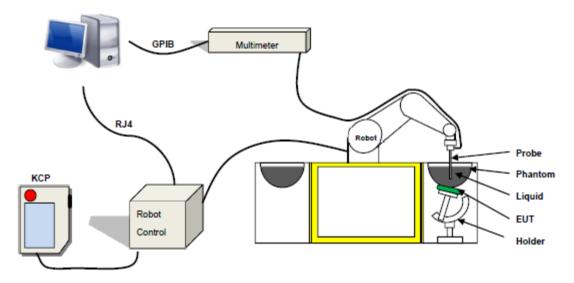
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

 $\boldsymbol{\rho}$ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 14/16 EP309 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 5 mm
- Length of Individual Dipoles: 4.5 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 2.7mm)
- Probe linearity: 0±2.27%(±0.10dB)
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: <0.10 dB
- Calibration range: 400 MHz to 3 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 32/14 SAM115

Figure-SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Head Tissue

Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	εr
750	0.2	/	/	1.4	0.2	57.0	/	41.1	0.89	41.9
835	0.2	/	/	1.4	0.2	57.9	/	40.3	0.90	41.5
900	0.2	/	/	1.4	0.2	57.9	/	40.3	0.97	41.5
1800	/	44.5	/	0.3	/	/	30.45	55.2	1.4	40.0
1900	/	44.5	/	0.3	1	1	30.45	55.2	1.4	40.0
2000	/	44.5	/	0.3	1		/	55.2	1.4	40.0
2450	/	44.9	1	0.1	/	1	1	55.0	1.80	39.2
2600	/	45.0	1	0.1	/	1	/	54.9	1.96	39.0

Body Tissue

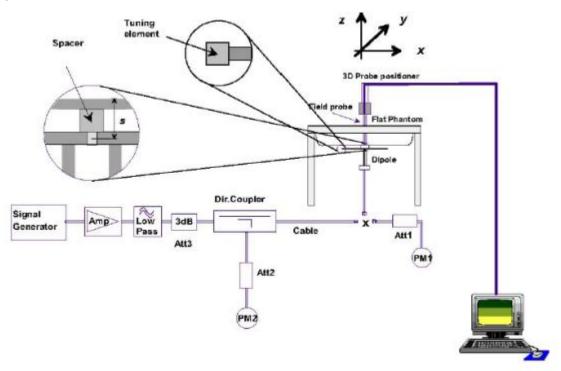
Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	εr
750	0.2	/	/	0.9	0.1	47.2	/	51.7	0.96	55.5
835	0.2	/	/	0.9	0.1	48.2	1	50.8	0.97	55.2
900	0.2	1	1	0.9	0.1	48.2	1	50.8	1.05	55.0
1800	/	29.4	1	0.4	1	1	30.45	70.2	1.52	53.3
1900	/	29.4	/	0.4	1	1	30.45	70.2	1.52	53.3
2000	/	29.4	1	0.4	1		/	70.2	1.52	53.3
2450	/	31.3	/	0.1	1	/	/	68.6	1.95	52.7
2600	/	31.7	/	0.1	/	/	/	68.2	2.16	52.3

Tissue dielectric parameters for head and body phantoms								
Frequency		er	σ S/m					
	Head	Body	Head	Body				
300	45.3	58.2	0.87	0.92				
450	43.5	56.7	0.87	0.94				
900	41.5	55.0	0.97	1.05				
1450	40.5	54.0	1.20	1.30				
1800	40.0	53.3	1.40	1.52				
2450	39.2	52.7	1.80	1.95				
3000	38.5	52.0	2.40	2.73				
5800	35.3	48.2	5.27	6.00				

LIQUID MEASUREMENT RESULTS

Date	Ambient condition		Body Simulating Liquid		Parameters	Target	Measured	Deviation	Limited
Date	Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]	i arameters	larger	Measured	[%]	[%]
2018-06-04	23.4	47	24E0 MH→	23.1	Permittivity:	52.7	51.73	-1.84	± 5
2010-00-04	23.4	47	2450 MHz	23.1	Conductivity	1.95	1.90	-2.44	± 5

Date	Ambient condition		Body Simulating Liquid		Parameters	Target	Measured	Deviation	Limited	
Date	Temp. [°C]	' I Freduency	Frequency	Temp. [°C]	Parameters	larget	Measureu	[%]	[%]	
2018-07-03	22.8	46	2450 MHz	22.5	Permittivity:	52.7	52.08	-1.18	± 5	
2010-07-03	22.0	40	2450 MHz	243U IVIITZ	22.5	Conductivity	1.95	1.87	-4.10	± 5



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Nomalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
2450 Body	100	5.443	54.43	52.4	3.87	2018-06-04

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Nomalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
2450 Body	100	5.625	56.25	52.4	7.35	2018-07-03

Note: The tolerance limit of System validation ±10%.

6. SAR Evaluation Procedures

6.1 SAR Scan General Requirements

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3GHz	>3GHz		
Maximum distance from	closest meas	surement point	5±1 mm	½-ō·ln(2)±0.5 mm		
(geometric center of prob	e sensors) t	o phantom surface	3±1 mm	72·0·III(2)±0.5 IIIIII		
Maximum probe angle fro	om probe axi	s to phantom surface	30°±1°	20°±1°		
normal at the measurement	ent location		30 ±1	20 ±1		
			≤ 2 GHz: ≤ 15 mm	3–4 GHz: ≤ 12 mm		
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm		
			When the x or y dimension of t	he test device, in the		
Maximum area scan spat	tial resolutior	n: ∆x Area , ∆y Area	measurement plane orientation	n, is smaller than the above,		
			the measurement resolution m	ust be ≤ the corresponding x		
			or y dimension of the test device	ce with at least one		
			measurement point on the test device.			
Maximum zaam aaan aa	atial sanalutia	m: Av Zoom Av Zoom	≤ 2 GHz: ≤ 8 mm	3–4 GHz: ≤ 5 mm*		
Maximum zoom scan spa	atiai resolutio	п. дх 200т , ду 200т	2 –3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*		
				3–4 GHz: ≤ 4 mm		
	unifor	m grid: Δz Zoom (n)	≤ 5 mm	4–5 GHz: ≤ 3 mm		
				5–6 GHz: ≤ 2 mm		
Maximum zoom scan		∆z Zoom (1):		3–4 GHz: ≤ 3 mm		
spatial resolution,		between 1st two	≤ 4 mm	4–5 GHz: ≤ 2.5 mm		
normal to phantom	graded	points closest to	3411111	5_6 GHz: ≤ 2 mm		
surface	grid	phantom surface		3–0 GHZ. ≤ 2 IIIIII		
	giid	∆ z Zoom (n>1):	≤ 1.5·∆z 2	Zoom (n-1)		
		between subsequent				
		points				
Minimum zoom				3–4 GHz: ≥ 28 mm		
scan volume		x, y, z	≥30 mm	4–5 GHz: ≥ 25 mm		
Scall volume				5–6 GHz: ≥ 22 mm		

Note:

 ⁸ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

 ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: STS1805317H01

6.2 SAR Measurement Procedure

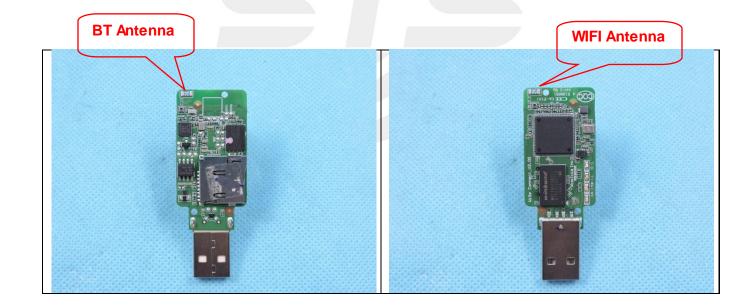
The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

6.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.


7. EUT Antenna Location Sketch

Vertical-Back

Vertical-Front

Vertical-Front

Vertical-Front

7.1 SAR test exclusion consider table

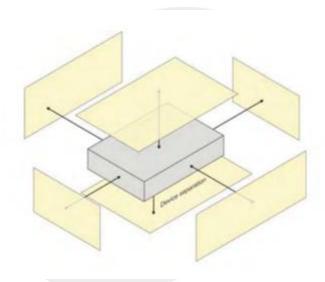
According with FCC KDB 447498 D01, appendix A, <SAR test exclusion thresholds for 100MHz ~ 6GHz and≤50mm > table, this device SAR test configurations consider as following:

		Test p	osition configu	ırations	_
Band	Vertical- Front	Vertical- Back	Horizontal- Up	Horizontal- Down	Top edge
WLAN	<5mm	<5mm	<5mm	<5mm	<5mm
VVLAIN	Yes	Yes	Yes	Yes	Yes

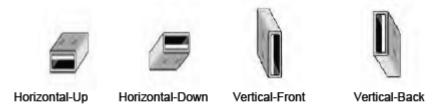
Note:

- maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- per KDB 447498 D01, standalone SAR test exclusion threshold is applied; if the distance of the antenna to the user is <5mm, 5mm is user to determine SAR exclusion threshold
- 4. per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distance ≤50mm are determined by: [(max.power of channel, including tune-up tolerance, Mw)/(min. test separation distance, mm)]*[√f(GHZ))≤3.0 for 1-g SAR and≤7.5 for10-g extremity SAR ,f(GHz) is the RF channel transmit frequency in GHz. Power and distance are rounded to the nearest mW and mm before calculation. The result is rounded to one decimal place for comparison For <50mm distance, we just calculate mW of the exclusion threshold value(3.0)to do compare</p>
- 5. per KDB 447498 D01, at 100 MHz to 6GHz and for test separation distances >50mm, the SAR test exclusion threshold is determined according to the following a)[threshold at 50mm in step 1]+(test separation distance -50mm)*(f (MHz)/150)]Mw, at 100 MHz to 1500 MHz
 b) [threshold at 50mm in step1]+(test separation distance -50mm) *10]mW at> 1500MHz and≤6GHz
- 6. Per KDB 447498 D02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/ HSUPA/DC-HSDPA output power is<0.25db higher than RMC 12.2Kbps,or reported SAR with RMC 12.2kbps setting is ≤1.2W/Kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded.
- 7. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.

Report No.: STS1805317H01


8. EUT Test Position

According to KDB 447498 D02, USB connector orientations on laptop computers, which is tested for SAR compliance in body-worn accessory and other use configurations described in the following subsections.


8.1 Hotspot mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm form that surface or edge.

When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm)is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration(surface).

8.2 USB connector Orientations Implemented on Laptop Computers

Note: These are USB connector orientations on laptop computers; USB dongles have the reverse configuration for plugging into the corresponding laptop computers.

8.3 Simple Dongle Test Procedures

Test all USB orientations [see figure below: (A) Horizontal-Up, (B) Horizontal-Down, (C) Vertical-Front, and (D) Vertical-Back] with a device-to-phantom separation distance of 5 mm or less, according to KDB Publication 447498 D01 requirements. These test orientations are intended for the exposure conditions found in typical laptop/notebook/netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measure-ement separation distance. The same test separation distance must be used to test all frequency

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, Chin Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical-Back (D) USB connection should be used to test one of the vertical USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter.

8.4 Dongles with Swicel or Rotating Connectors

A swivel or rotating USB connector may enable the dongle to connect in different orientations to host computers. When the antenna is built-in within the housing of a dongle, a swivel or rotating connector may allow the antenna to assume different positions. The combination of these possible configurations must be considered to determine the SAR test requirements. When the antenna is located near the tip of a dongle, it may operate at closer proximity to users in certain connector orientations where dongle tip testing may be required.

The 5 mm test separation distance used for testing simple dongles has been established based on the overall host platform (laptop/notebook/netbook) and device variations, and varying user operating configurations and exposure conditions expected for a peripheral device. The same test distance should generally apply to dongles with swivel or rotating connectors. The procedures described for simple dongles should be used to position the four surfaces of the dongle at 5 mm from the phantom to evaluate SAR. At least one of the horizontal and one of the vertical positions should be tested using an applicable host computer. If the antenna is within 1 cm from the tip of the dongle (the end without the USB connector), the tip of the dongle should also be tested at 5 mm perpendicular to the phantom. For antennas located within 2.5 cm from the USB connector and if the dongle can be positioned at 45° to 90° from the horizontal position [(A) or (B)], testing in one or more of these configurations may need to be considered. A KDB inquiry should be submitted to determine the applicable test configurations.

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
1::::	TET ET! \$ JETET		l	l					
1	Probe calibration	5.8	N	1	1	1	5.8	5.8	80
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	80
3	Hemispherical isotropy	5.9	R	√3	√Cp	√C _p	2.41	2.41	80
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞
5	Linearity	4.7	R	√3	1	1	2.71	2.71	80
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	80
7	Readout electronics	0.5	N	1	1	1	0.50	0.50	∞
8	Response time	0	R	√3	1	1	0	0	80
9	Integration time	1.4	R	√3	1	1	0.81	0.81	80
10	Ambient noise	3.0	R	√3	1	1	1.73	1.73	80
11	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	80
12	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	80
13	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	∞
14	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	80
Test s	ample related								
15	Device positioning	2.6	N	1	1	1	2.6	2.6	11 Shenzhen G

				Page 20	of 41	Repo	ort No.: S	TS18053	17H01
		T		1	1		1		•
16	Device holder	3	N	1	1	1	3.0	3.0	7
17	Drift of output pow er	5.0	R	√3	1	1	2.89	2.89	∞
Phant	om and set-up							l	
18	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	∞
19	Liquid conductivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	5
20	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	80
22	Liquid Permittivity (meas)	5.0	N	1	0.23	0.26	1.15	1.30	80
Comb	ined standard	2	RSS	U	$C_C = \sqrt{\sum_{i=1}^n C_i^2 U}$	2	10.63%	10.54%	
Expar (P=95	nded uncertainty %)	$U = k U_C$,k=2					21.26%	21.08%	

9.2 System validation Uncertainty

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
1:111	ter eri Syeler								
1	Probe calibration	5.8	N	1	1	1	5.8	5.8	8
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	∞
3	Hemispherical isotropy	5.9	R	√3	$\sqrt{C_p}$	$\sqrt{C_p}$	2.41	2.41	∞
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞
5	Linearity	4.7	R	√3	1	1	2.71	2.71	∞
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	∞
7	Modulation response	0	N	1	1	1	0	0	∞
8	Readout electronics	0.5	N	1	1	1	0.50	0.50	∞
9	Response time	0	R	√3	1	1	0	0	∞
10	Integration time	1.4	R	√3	1	1	0.81	0.81	∞
11	Ambient noise	3.0	R	√3	1	1	1.73	1.73	∞
12	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	∞
13	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	∞
14	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	∞
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	∞
Dipole)								
16	Deviation of experimental source from	4	N	1	1	1	4.00	4.00	∞

				Page 22	of 41	Repo	ort No.: S	TS18053	17H01
17	Input pow er and SAR drit measurement	5	R	√3	1	1	2.89	2.89	80
18	Dipole Axis to liquid Distance	2	R	√3	1	1			8
Phant	om and set-up								
19	Phanto m uncertainty	4.0	R	√3	1	1	2.31	2.31	80
20	Uncertainty in SAR correction for deviation (in	2.0	N	1	1	0.84	2	1.68	8
21	Liquid conductivity (target)	2	N	1	1	0.84	2.00	1.68	∞
22	Liquid conductivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
23	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
24	Liquid Permittivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	80
25	Liquid Permittivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
26	Liquid Permittivity (meas)	5.0	N	1	0.23	0.26	1.15	1.30	80
Comb	ined standard		RSS	U	$V_C = \sqrt{\sum_{i=1}^n C_i^2 U}$	2	10.15%	10.05%	

U = k $U_{\it c}$,k=2

20.29%

20.10%

Expanded uncertainty (P=95%)

10. Conducted Power Measurement

10.1 Test Result

WLAN

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	1	2412	14.45
802.11b	6	2437	14.40
	11	2462	14.31
	1	2412	14.38
802.11g	6	2437	14.13
	11	2462	14.23
	1	2412	14.17
802.11n(HT 20)	6	2437	14.17
	11	2462	13.76
	3	2422	14.17
802.11n(HT 40)	6	2437	14.10
	9	2452	14.12

BLE

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	0	2402	3.65
GFSK(1Mbps)	19	2440	4.06
	39	2480	4.45

10.2 Tune-up Power

Mode	WLAN(AVG)		
IEEE 802.11b	14±1dBm		
IEEE 802.11g	14±1dBm		
IEEE 802.11n(HT 20)	14±1dBm		
IEEE 802.11n(HT 40)	14±1dBm		

Mode	BLE(AVG)
GFSK	4±1dBm

10.3 SAR Test Exclusions Applied

Per FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHZ)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- f(GHZ) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of **Bluetooth Body** (rounded to the nearest mW) and the antenna to user separation distance,

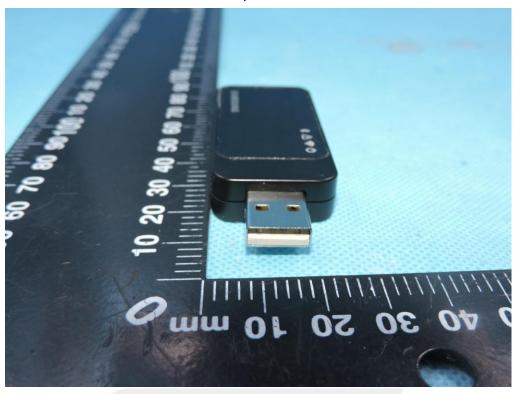
Bluetooth Body SAR was not required; $[3.162/5)^* \sqrt{2.480} = 1.00 < 3.0$.

Based on the maximum conducted power of 2.4 GHz WLAN Body (rounded to the nearest mW) and the antenna to user separation distance.

2.4 GHz WLAN SAR was required; $[(31.623/5)^* \sqrt{2.462}] = 9.92 > 3.0$.

11. EUT And Test Setup Photo

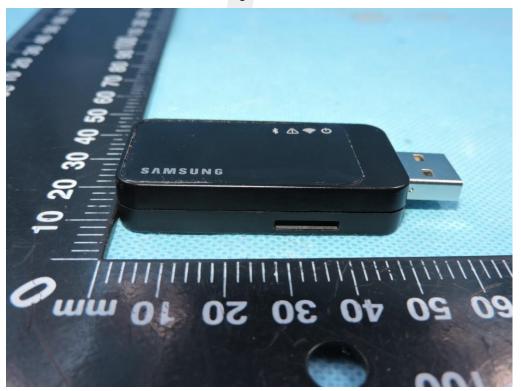
11.1 EUT Photo



Back side

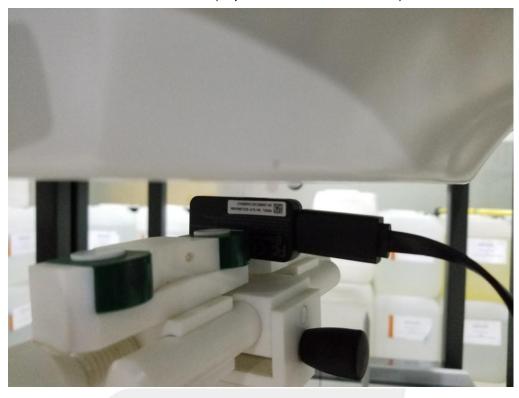
Top side

Bottom side



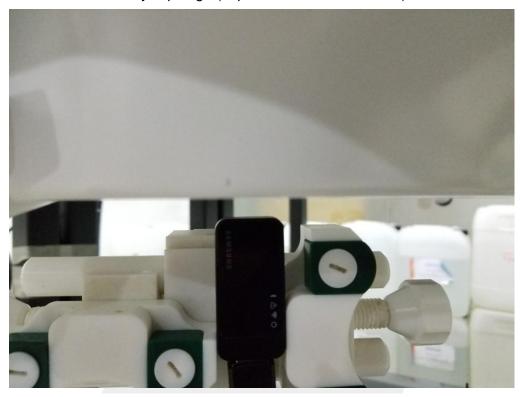
Left side

Right side

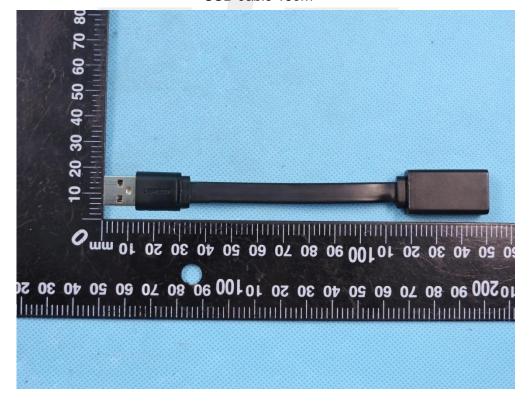


.Horizontal- Down side (separation distance is 5mm)

Verticall- Front (separation distance is 5mm)

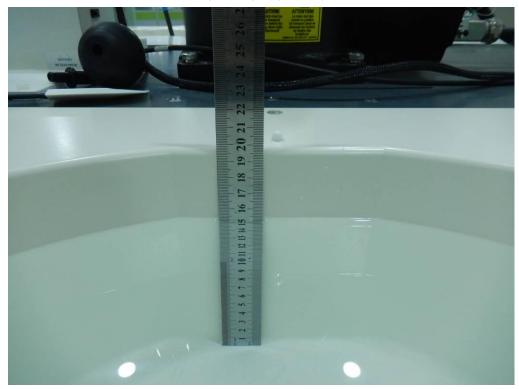


Verticall- Back (separation distance is 5mm)



Body Top edge (separation distance is 5mm)

USB cable 15cm



Liquid depth (15 cm)

12.1 Body SAR

Use cable:

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
		Vertical- Front	1	0.451	1.52	15	14.45	100	0.512	/
	802.11b	Vertical- Back	1	0.505	-1.36	15	14.45	100	0.573	1
VVLAIN	WLAIN 002.11b	Horizontal- Down	1	0.382	3.01	15	14.45	100	0.434	/
		Top- edge	1	0.314	-0.59	15	14.45	100	0.356	/

Use host:

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
WLAN	802.11b	Horizontal- Up	1	0.455	-3.65	15	14.45	100	0.516	2

Note:

- 1. The test separation of all above table is 5mm.
- 2. Per KDB 447498 D01 v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 3. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was **0.564** W/Kg for Body)
- 4. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

Page 33 of 41 Report No.: STS1805317H01

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

Position	Simultaneous state
Body	1. WLAN + Bluetooth

NOTE:

- 1. For simultaneous transmission at head and body exposure position, 2 transmitters simultaneous transmission was the worst state.
- 2. Based upon KDB 447498 D01, BT SAR is excluded as below table.
- 3. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 4. For minimum test separation distance ≤ 50 mm,Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm) $\cdot [\sqrt{f} (GHz)/x] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR
- 5. The reported SAR summation is calculated based on the same configuration and test position.
- 6. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:
 - a) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[\sqrt{f} (GHz) /x] W/kg for test separation distances \leq 50 mm; Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm.

Estimated SAR		Maximu	aximum Power		Antenna		Frequency(GHz)	Stand alone	
		dBm	mW	to user(mm)		n)		SAR(1g) [W/kg]	
ВТ	Body	5	3.162		5		2.480	0.133	

Simultaneous Mode	Position	Mode	Max. 1-g SAR (W/kg)	1-g Sum SAR (W/kg)
M/L ANL L Divista of h	Dody	ВТ	0.133	0.706
WLAN + Bluetooth	Body	WLAN	0.573	0.706

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.

When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR-1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR-1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

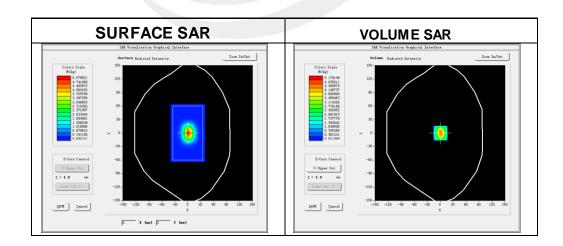
13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHz Dipole	MVG	SID2450	SN 30/14 DIP2G450-335	2017.08.15	2020.08.14
E-Field Probe	MVG	SSE5	SN 14/16 EP309	2017.12.15	2018.12.14
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2017.12.03	2018.12.02
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	2014.09.01	N/A
Phantom2	MVG	SAM	SN 32/14 SAM116	2014.09.01	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	2014.09.01	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	2014.09.01	N/A
Network Analyzer	Agilent	8753ES	US38432810	2018.03.08	2019.03.07
Multi Meter	Keithley	Multi Meter 2000	4050073	2017.10.15	2018.10.14
Signal Generator	Agilent	N5182A	MY50140530	2017.10.15	2018.10.14
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2017.10.15	2018.10.14
Wireless Communication Test Set	R&S	CMW500	117239	2017.10.15	2018.10.14
Power Amplifier	DESAY	ZHL-42W	9638	2017.10.15	2018.10.14
Power Meter	R&S	NRP	100510	2017.10.15	2018.10.14
Power Meter	Agilent	E4418B	GB43312526	2017.10.15	2018.10.14
Power Sensor	R&S	NRP-Z11	101919	2017.10.15	2018.10.14
Power Sensor	Agilent	E9301A	MY41497725	2017.10.15	2018.10.14
9dB Attenuator	Agilent	99899	DC-18GHz	2018.05.09	2019.05.08
11dB Attenuator	Agilent	8494B	DC-18GHz	2018.05.09	2019.05.08
110dB Attenuator	Agilent	8494B	DC-18GHz	2018.05.09	2019.05.08
Directional coupler	Narda	4226-20	3305	2017.10.15	2018.10.14
hygrothermograph	MiEO	HH660	N/A	2017.10.18	2018.10.17
Thermograph	Elitech	RC-4	S/N EF7176501537	2017.11.10	2018.11.09

Appendix A. System Validation Plots

System Performance Check Data (2450MHz Body)

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

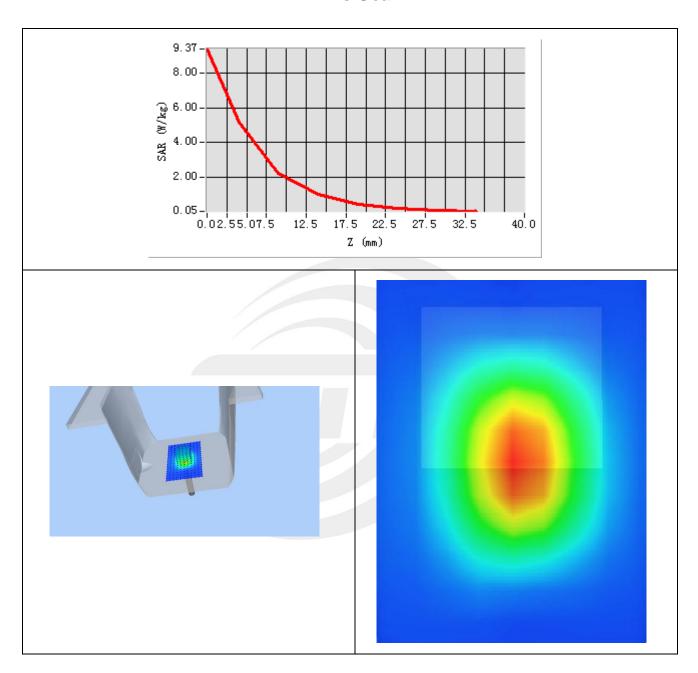

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018-06-04

Measurement duration: 14 minutes 23 seconds

Experimental conditions.

Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	51.73
Conductivity (S/m)	1.90
Power drift (%)	-0.07
Probe	SN 14/16 EP309
ConvF	5.24
Crest factor:	1:1



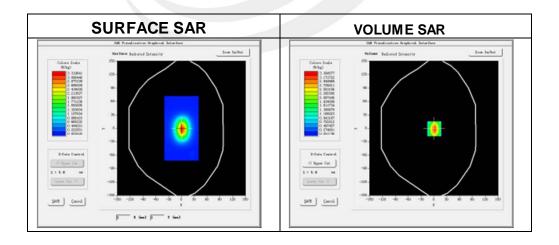
Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	2.410247
SAR 1g (W/Kg)	5.443047

Z Axis Scan

System Performance Check Data (2450MHz Body)

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

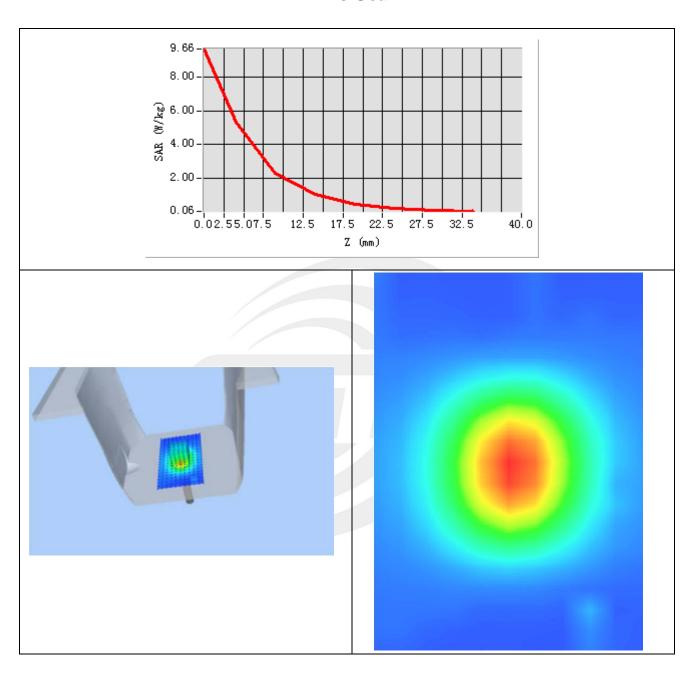

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018-07-03

Measurement duration: 14 minutes 23 seconds

Experimental conditions.

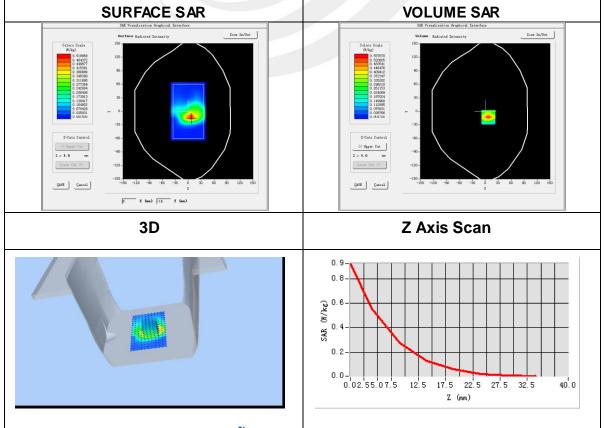
Device Position	Validation plane		
Band	2450 MHz		
Channels	-		
Signal	CW		
Frequency (MHz)	2450		
Relative permittivity	52.08		
Conductivity (S/m)	1.87		
Power drift (%)	2.6		
Probe	SN 14/16 EP309		
ConvF	5.24		
Crest factor:	1:1		



Maximum location: X=-6.00, Y=-1.00

SAR 10g (W/Kg)	2.405215
SAR 1g (W/Kg)	5.625466

Z Axis Scan


Appendix B. SAR Test Plots

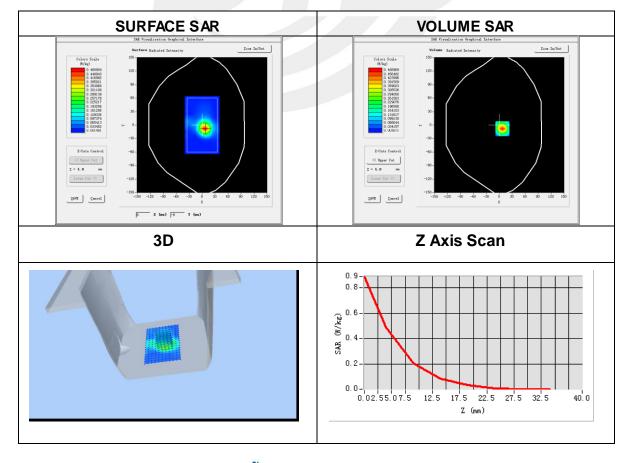
Plot 1: DUT: SBM-U-BW,WBUW; EUT Model: SLP-B211BWUXWW, WBUW

<u>-</u>	· · · · · · · · · · · · · · · · · · ·
Test Date	2018-06-04
Probe	SN 14/16 EP309
ConvF	5.24
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Vertical- Back
Band	IEEE 802.11b ISM
Channels	Low
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2412
Relative permittivity (real part)	52.70
Conductivity (S/m)	1.95
Variation (%)	-1.36

Maximum location: X=7.00, Y=-13.00 SAR Peak: 0.91 W/kg

SAR 10g (W/Kg)	0.232029
SAR 1g (W/Kg)	0.504670

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Plot 2: DUT: SBM-U-BW,WBUW; EUT Model: SLP-B211BWUXWW, WBUW

Test Date	2018-07-03
Probe	SN 14/16 EP309
ConvF	5.24
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Horizontal-Up
Band	IEEE 802.11b ISM
Channels	Low
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2412
Relative permittivity (real part)	52.70
Conductivity (S/m)	1.95
Variation (%)	-3.65

Maximum location: X=7.00, Y=-8.00 SAR Peak: 0.91 W/kg

SAR 10g (W/Kg)	0.185951
SAR 1g (W/Kg)	0.455315

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

